National Semiconductor is now part of

Texas Instruments.

Search <u>http://www.ti.com/</u> for the latest technical

information and details on our current products and services.

One Step-Down DC/DC and Five Linear Regulators with I2C Compatible Interface

General Description

The LP8720 is a multi-function, programmable Power Management Unit, optimized for sub block power requirement solution. This device integrates one highly efficient 400 mA step-down DC/DC converter with Dynamic Voltage Scale (DVS), five low noise low dropout (LDO) voltage regulators and a 400 KHz I²C-compatible interface to allow a host controller access to the internal control registers of the LP8720. The LP8720 additionally features programmable power-on sequencing.

LDO regulators provide high PSRR and low noise ideally suited for supplying power to both analog and digital loads. The package will be the smallest 2.5 mm x 2.0 mm micro SMD 20–bump package.

Applications

- Cellular Handsets
- Portable hand-held products

Typical Application Diagram

Features

- 5 Low Noise LDO's for up to 300 mA
- One high-efficiency Synchronous Magnetic Buck Regulator, I_{OUT} 400 mA High efficiency PFM mode @low I_{OUT}
 - Auto Mode PFM/PWM switch Low inductance 2.2 µH @ 2 MHz clock Dynamic Voltage Scale control
- I²C-compatible interface for the controlling of internal registers
- 20-bump 2.5 x 2.0 mm micro SMD package

Key Specifications

- Programmable Vout from 0.8V to 2.3V on DC/DC
- Automatic soft start on DC/DC
- 200 mV typ Dropout Voltage at 300 mA on LDO's
- 2% (typ) Output Voltage accuracy on LDO's

_P8720 One Step-Down DC/DC and Five Linear Regulators with I2C Compatible Interface

Device Pin Diagram (Micro SMD 20)

Package Marking Information

30067503

Ordering Information

Order Number	Package Type	Product Identification	Supplied as
LP8720TLE	micro SMD	8720	250 Tape & Reel
LP8720TLX	micro SMD	8720	3000 Tape & Reel

Upon request there will be available custom versions – customer can order own default voltages and own startup sequence. For more information please contact local National Semiconductor Corp. sales office.

LP8720 Pin Descriptions

Pin Number	Name	Туре	Description
A4	VBATT	Р	Battery Input for LDO1 and all internal circuitry.
E4	VINB	Р	Battery Input for Buck.
A2	VIN1	Р	Battery Input for LDO2 and LDO3.
D1	VIN2	Р	Battery Input for LDO4 and LDO5.
B4	LDO1	A	LDO1 Output.
A3	LDO2	A	LDO2 Output.
A1	LDO3	A	LDO3 Output.
C1	LDO4	A	LDO4 Output.
E1	LDO5	A	LDO5 Output.
E3	SW	A	Buck Output.
D2	FB	A	Buck Feedback.
D4	GNDB	G	Power Ground for Buck.
B1	GND	G	IC Ground.
C4	SDA	DI/O	I ² C-compatible Serial Interface Data Input/Output. Open Drain output, external pull up resistor
			is needed, typ 1.5 k Ω . If not in use then hard wire to GND.
C3	SCL	DI	l ² C-compatible Serial Interface Clock input. External pull up resistor is needed, typ 1.5 k Ω . If
			not in use then hard wire to GND.
B3	IRQ_N	DO	Interrupt output, active LOW. Open Drain output, external pull up resistor is needed, typ
			10 k Ω . If not in use then hard wire to GND or leave floating.
E2	EN	DI	Enable. EN=LO standby. EN=HI power on. Internal pull down resistor 500 k Ω .
			If not in use then hard wire to VBATT.
B2	DEFSEL	DI	Control input that sets the default voltages and startup sequence. Must be hard wired to BATT
			or GND or left floating (Hi-Z) for specific application.
			When DEFSEL= VDATT then setup 1 is used for default voltages and startup sequence.
			When DEFSEL= floating (Hi-Z) setup 3 is used for default voltages and startup sequence.
C2	IDSEL	DI	Control input that sets the slave address for serial interface. Must be hard wired to BATT or
			GND or left floating (Hi-Z) for specific application.
			When IDSEL= VBATT then slave address is 7h'7F
			When IDSEL= floating (Hi-Z) then slave address is 7h'7C
D2	01/10		When IDSEL= GIND Then Slave address is /h'/D
D3	Dv5		When DVS-HI then Buck voltage set BLICK. V1 is in use
			When DVS=LO then Buck voltage set BUCK_V2 is in use.
			Buck voltage set BUCK_V1 should be higher than Buck voltage set BUCK_V2.
			If not in use then hard wire to VBATT or GND.

- A: Analog Pin
- D Digital Pin
- I Input Pin
- DI/O Digital Input/Output Pin
- G Ground
- O Output Pin
- P Power Connection

Device Description

OPERATION MODES

POWER-ON-RESET:	After VBATT gets above POR higher threshold DEFSEL-pin and IDSEL-pin are read. Then all internal
	registers of LP8720 are reset to the default values and after that LP8720 goes to STANDBY mode. This
	process duration max is 500 μs.

STANDBY: In STANDBY mode only serial interface is working and all other PMU functions are disabled – PMU is in low power condition. In STANDBY mode LP8720 can be (re)configured via Serial Interface.

START UP: START UP sequence is defined by registers contents. START UP sequence starts:

If rising edge on EN-pin.
 After cooling down from thermal shutdown event if EN=HI.

It is not recommended to write to LP8720 registers during START UP. If doing so then current START UP sequence may become undefined.

IDLE: PMU will enter into IDLE mode (normal operating mode) after end of START UP sequence. In IDLE mode all LDO's and BUCK can be enabled/disabled via Serial Interface. Also in IDLE mode LP8720 can be (re) configured via Serial Interface.

SHUT DOWN: SHUT DOWN sequence is "reverse order of start up sequence" and this is defined by registers contents. SHUT DOWN starts

1) If falling edge on EN-pin.

2) If temperature exceeds thermal shutdown threshold TSD +160°C.

It is not recommended to write to LP8720 registers during SHUT DOWN. If doing so then current SHUT DOWN sequence may become undefined.

Additional Functions

- SLEEP: If sum of all LDO's load currents and BUCK load current is no higher than 5mA then user can put PMU to SLEEP. In SLEEP PMU GND current is minimized. In SLEEP LDO's and BUCK cannot be loaded with big current. There are 2 possibilities to use SLEEP:
 - There are 2 possibilities to use SLEE
 - 1) Control via Serial Interface.
 - 2) Control by DVS-pin.
- DVS: Dynamic Voltage Scaling allows using 2 voltage sets for BUCK. There are 2 possibilities to use DVS:
 - 1) Control via Serial Interface.
 - 2) Control by DVS-pin.
- INTERRUPT: If interrupt is not masked then PMU forces IRQ_N low if temperature crossed TSD_EW limit (thermal shutdown early warning) or/and thermal shutdown event took place. IRQ_N is released by reading Interrupt register.

POWER-ON AND POWER-OFF SEQUENCES

 t_{BON} ~~ 150 μs – Reference and bias turn ON. Min 100 μs max 200 $\mu s.$

 t_S 25 μ s – time step. Time step accuracy is defined by OSC frequency accuracy.

Note 1 START UP and SHUT DOWN sequences are defined by registers. Sequences given here are valid if there the registers are not rewritten via Serial Interface.

Note 2 The timing showed here define time points when LDO's and BUCK are enabled/disabled. Enabling /disabling process duration depends on loading conditions. Buck startup duration is 140 μs for no load. LDO startup duration is no more than 35 μs. For details please see LDO's and BUCK electrical specifications.

Note 3 LDO5 and BUCK are disabled. If LDO5 and/or BUCK are enabled via Serial Interface and startup sequence is not changed via Serial interface, then LDO5 and BUCK are disabled with no delay from falling edge on EN-pin.

Note 4 At this time point registers 0x09 and 0x0C are reset to POR default values.

Note 5 At this time point registers 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07 and 0x08 are reset to POR default values.

www.national.com

LP8720

t_{BON} 150 μs – Reference and bias turn ON. Min 100 μs max 200 μs.

 t_s 25 µs – time step. Time step accuracy is defined by OSC frequency accuracy.

Note 1 START UP and SHUT DOWN sequences are defined by registers. Sequences given here are valid if there the registers are not rewritten via Serial Interface.

Note 2 The timing showed here define time points when LDO's and BUCK are enabled/disabled. Enabling /disabling process duration depends on loading conditions. Buck startup duration is 140 µs for no load. LDO startup duration is no more than 35 µs. For details please see LDO's and BUCK electrical specifications.

Note 3 LDO1, LDO2, LDO4, LDO5 and BUCK are disabled. If LDO1, LDO2, LDO4, LDO5 and/or BUCK are enabled via Serial Interface and startup sequence is not changed via Serial interface, then LDO1, LDO2, LDO4, LDO5 and BUCK are disabled with no delay from falling edge on EN-pin.

Note 4 At this time point registers 0x09 and 0x0C are reset to POR default values.

Note 5 At this time point registers 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07 and 0x08 are reset to POR default values.

Start Up Sequence

DEFSEL	Start Up Sequence	Shut Down Sequence
VBATT	LDO1, 2, 3, 4 enable same time.	In reverse order of start up sequence.
	LDO5 and BUCK enable via Serial Interface.	
GND	LDO3 enable.	In reverse order of start up sequence.
	LDO1, 2, 4, 5 and BUCK enable via Serial Interface .	
Hi-Z	LDO1, 2, 3, 4 enable same time.	In reverse order of start up sequence.
	LDO5 and BUCK enable via Serial Interface.	

Default Output Voltages

Output	Max Current [mA]	Default output Voltage [V] and default ON/OFF if EN=HI				
		DEFSEL=VBATT	DEFSEL=GND	DEFSEL=Hi-Z		
LDO1	300	3.0 ON	3.0 OFF	2.8 ON		
LDO2	300	2.6 ON	3.0 OFF	2.6 ON		
LDO3	300	1.8 ON	2.6 ON	1.8 ON		
LDO4	300	1.0 ON	2.6 OFF	1.2 ON		
LDO5	300	3.3 OFF	3.3 OFF	3.3 OFF		
BUCK	400	1.0 OFF	1.2/1.3 ¹⁾ OFF	1.2 OFF		

Note 1) BUCK voltage is 1.2V if DVS=LO and 1.3V if DVS=HI.

Control Register Map When IDSEL= VBATT then slave address is 7h'7F When IDSEL= floating (Hi-Z) then slave address is 7h'7C

		2	100(001	101	100	101	111	001	001	111	111	000(000(011
	L.	Ηi	0000 (01111	0111 0	0110 1	01100	1111	11101	0000 1	1000 1	00111	0000 0	0000 0	0000
	POR defaul	GND	0000 0101	1111 1101	1111 1101	0111 0101	1111 1010	1111 1111	1110 1011	0000 1001	1000 0100	0011 1111	0000 0000	0000 0000	0000 0011
		VBATT	0000 0001	0111 1101	0111 0101	0110 1100	0110 0011	1111 1111	1110 0101	0000 0101	1000 1111	0011 1111	0000 0000	0000 0000	0000 0011
	Bit 0		SHORT_ TIMESTEP		LDO2_ V[0]	LD03_ V[0]	LDO4_ V[0]	LDO5_ V[0]	BUCK_ V1[0]	BUCK_ V2[0]	LDO1_ EN	LDO1_ PULLDOWN	TSD_EW	TSD_EW_ INT	TSD_EW_ MASK
	Bit 1		EXT_SLEEP_ CONTROL	LDO1 V[1]	LDO2_ V[1]	LD03_ V[1]	LDO4_ V[1]	LDO5_ V[1]	BUCK_ V1[1]	BUCK_ V2[1]	LDO2_ EN	LDO2_ PULLDOWN	TSD	TSD_ INT	TSD_ MASK
	Bit 2		EXT_DVS_ CONTROL	LDO1_ V[2]	LDO2_ V[2]	LDO3_ V[2]	LDO4 V[2]	LDO5_ V[2]	BUCK_ V1[2]	BUCK_ V2[2]	EN LDO3_	PULLDOWN LDO3_			
	Bit 3			LDO1_ V[3]	LDO2_ V[3]	LD03_ V[3]	LDO4_ V[3]	LDO5_ V[3]	BUCK_ V1[3]	BUCK_ V2[3]	LDO4 EN	LDO4_ PULLDOWN			
	Bit 4			LD01_ V[4]	LDO2_ V[4]	LD03_ V[4]	LDO4_ V[4]	LDO5_ V[4]	BUCK_ V1[4]	BUCK_ V2[4]	LDO5_	PULLDO5_			
	Bit 5			LDO1_ T[0]	LD02_ T[0]	LD03_	LD04_ T[0]	LDO5_ T[0]	BUCK_ T[0]	FORCE_ PWM		BUCK_ PULLDOWN			
s is 7h'7D	Bit 6				LDO2_ T[1]	LD03_ T[1]	LDO4_ T[1]	LDO5_ T[1]	BUCK_ T[1]		SLEEP_ MODE				
slave addres	Bit 7			LDO1_ T[2]	LDO2_ T[2]	LD03_ T[2]	LD04_ T[2]	LD05_ T[2]	BUCK_ T[2]		DVS_ V2/V1	APU_ TSD			
SEL= GND then	Name		GENERAL_ SETTINGS	LDO1_ SETTINGS	LDO2_ SETTINGS	LDO3_ SETTINGS	LDO4_ SETTINGS	LDO5_ SETTINGS	BUCK_ SETTINGS1	BUCK_ SETTINGS2	ENABLE_ BITS	PULLDOWN_ BITS	STATUS_ BITS	INTERRUPT_ BITS *)	INTERRUPT_ MASK *)
When ID5	Addr		00X0	0x01	0x02	0x03	0x04	0x05	0x06	0x07	0x08	60X0	OxOA	OxOB	0×0C

*) Hegisters SIAIUS_BITS 0x0A and INTERRUPT_BITS 0x0B are read only.

Register 0x00	
EXT_DVS_CONTROL	1 – DVS-pin control:
	DVS=HI then BUCK_V1[4:0]
	DVS=LO then BUCK_V2[4:0]
	0 – Serial interface control:
	DVS_V2/V1=1 then BUCK_V1[4:0]
	DVS_V2/V1=0 then BUCK_V2[4:0]
EXT_SLEEP_CONTROL	1 – DVS-pin control:
	DVS=HI then normal
	DVS=LO then SLEEP
	0 – Serial interface control:
	SLEEP_MODE=0 then normal
	SLEEP_MODE=1 then SLEEP
SHORT_TIMESTEP	1 – time step t _S =25 μs
	0 – time step t _S =50 μs
	By request time step 100 μs/200 μs is available.

Registers 0x01 – 0x07

LDO1_V[4:0]	00000 – 1.20V	01000 – 1.60V	10000 – 2.10V	11000 – 2.75V		
LDO2_V[4:0]	00001 – 1.25V	01001 – 1.65V	10001 – 2.20V	11001 – 2.80V		
LDO3_V[4:0]	00010 – 1.30V	01010 – 1.70V	10010 – 2.30V	11010 – 2.85V		
LDO5_V[4:0]	00011 – 1.35V	01011 – 1.75V	10011 – 2.40V	11011 – 2.90V		
	00100 – 1.40V	01100 – 1.80V	10100 – 2.50V	11100 – 2.95V		
	00101 – 1.45V	01101 – 1.85V	10101 – 2.60V	11101 – 3.00V		
	00110 – 1.50V	01110 – 1.90V	10110 – 2.65V	11110 – 3.10V		
	00111 – 1.55V	01111 – 2.00V	10111 – 2.70V	11111 – 3.30V		
LDO4_V[4:0]	00000 – 0.80V	01000 – 1.35V	10000 – 1.75V	11000 – 2.40V		
	00001 – 0.85V	01001 – 1.40V	10001 – 1.80V	11001 – 2.50V		
	00010 – 0.90V	01010 – 1.45V	10010 – 1.85V	11010 – 2.60V		
	00011 – 1.00V	01011 – 1.50V	10011 – 1.90V	11011 – 2.65V		
	00100 – 1.10V	01100 – 1.55V	10100 – 2.00V	11100 – 2.70V		
	00101 – 1.20V	01101 – 1.60V	10101 – 2.10V	11101 – 2.75V		
	00110 – 1.25V	01110 – 1.65V	10110 – 2.20V	11110 – 2.80V		
	00111 – 1.30V	01111 – 1.70V	10111 – 2.30V	11111 – 2.85V		
BUCK_V1[4:0] BUCK_V2[4:0]	0000	01000 – 1.15V	10000 – 1.55V	11000 – 1.95V		
	External resistor divider	01001 – 1.20V	10001 – 1.60V	11001 – 2.00V		
	00001 – 0.80V	01010 – 1.25V	10010 – 1.65V	11010 – 2.05V		
	00010 – 0.85V	01011 – 1.30V	10011 – 1.70V	11011 – 2.10V		
	00011 – 0.90V	01100 – 1.35V	10100 – 1.75V	11100 – 2.15V		
	00100 – 0.95V	01101 – 1.40V	10101 – 1.80V	11101 – 2.20V		
	00101 – 1.00V	01110 – 1.45V	10110 – 1.85V	11110 – 2.25V		
	00110 – 1.05V	01111 – 1.50V	10111 – 1.90V	11111 – 2.30V		
	00111 – 1.10V					
	BUCK_V1[4:0] should be	e higher (or equal) than B	UCK_V2[4:0].			
LDO1_T[2:0]	000 – start up delay 0		100 – start up delay = 4	* time step t _s		
LDO2_T[2:0]	001 - start up delay = 1	* time step t _s	101 - start up delay = 5	* time step ts		
LDO3_T[2:0]	010 - start up delay = 2	110 - start up delay = 6	* time step te			
LDO4_T[2:0]	011 - start up delay = 3	* time step t _s	111 – NO startup	111 - NO startup		
LDO5_T[2:0]	For proper startup operation "111 NO start up" should have corresponding bit in ENABLE BITS					
BUCK_T[2:0]	register 0x08 set to 0 (disable).					
FORCE_PWM	1 – Buck is forced to wo	rk in PWM mode				
_	0 - Buck works in autom	atic PFM/PWM selection	mode.			
	1					

LP8720

Register 0x08

LDO1_EN LDO2_EN	In STANDBY mode In IDLE mode the bit has immediate					
LDO3_EN LDO4_EN	1 – During next START UP sequence will be enabled.	effect.				
LDO5_EN BUCK_EN	0 – During next START UP sequence will be NOT enabled. 1 – Enable					
	For proper operation output having "111 NO start up" should	0 – Disable				
	have corresponding enable bit 0 (disable).					
SLEEP_MODE	1 – SLEEP					
	0 – normal					
	This bit has effect only if EXT_SLEEP_CONTROL=0 (register	0x00)				
DVS_V2/V1	1 – buck voltage is BUCK_V1[4:0]					
	0 – buck voltage is BUCK_V2[4:0]					
	This bit has effect only if EXT_DVS_CONTROL=0 (register 0x)	00)				

Register 0x09

LDO1_PULLDOWN	1 – Pull down enabled
LDO2_PULLDOWN	0 – Pull down disabled
LDO3_PULLDOWN	
LDO4_PULLDOWN	
LDO5_PULLDOWN	
BUCK_PULLDOWN	
APU_TSD	This bit defines either to reset registers or not before LP8720 automatically starts START UP sequence
	form Thermal Shutdown after cooling down if EN-pin is High.
	1 – No change to registers – registers content stays the same as before Thermal Shutdown.
	0 - Reset registers to default values before START UP from Thermal Shutdown.

Register 0x0A (Read Only)

TSD	1 – device is in Thermal Shutdown. 0 – device is NOT in Thermal Shutdown .
TSD_EW	 1 – device temperature is higher than Thermal Shutdown Early Warning threshold. 0 – device temperature is lower than Thermal Shutdown Early Warning threshold.

Register 0x0B (Read Only)

TSD_INT	 1 – Interrupt that was caused by Thermal Shutdown 0 – No Interrupt that was caused by Thermal Shutdown
TSD_EW	 1 – Interrupt that was caused by Thermal Shutdown Early Warning 0 – No Interrupt that was caused by Thermal Shutdown Early Warning

Note 1: all reads from this register are destructive (all bits are reset to 0 after reading). Note 2: read form this register releases IRQ_N-pin (if was pushed down).

Register 0x0C

TSD_MASK	1 – TSD interrupt is masked 0 – TSD interrupt is NOT masked
TSD_EW_MASK	1 – TSD_EW interrupt is masked 0 – TSD_EW interrupt is NOT masked

Support Functions

REFERENCE

LP8720 has internal reference block creating all necessary references and biasing for all blocks.

OSCILLATOR

There is internal oscillator giving clock to the bucks and to logic control.

V_{BATT}=3.6V

Parameter	Тур	Min	Max	Unit
Oscillator	2.0	1.9	2.1	MHz
frequency				

THERMAL SHUTDOWN

The Thermal Shutdown (TSD) function monitors the chip temperature to protect the chip from temperature damage caused eg. by excessive power dissipation. The temperature monitoring function has two threshold values TSD and TSD_EW that result in protective actions.

When TSD_EW +125°C is exceeded, then IRQ_N is set to low and "1" is written to TSD_EW bit in both STATUS register and in INTERRUPT register.

If the temperature exceeds TSD +160°C, then PMU initiates Emergency Shutdown.

The POWER UP operation after Thermal Shutdown can be initiated only after the chip has cooled down to the +115 $^{\circ}$ C threshold

Parameter	Тур	Unit
TSD *)	160	°C
TSD_EW *)	125	°C
TSD_EW Hysteresis *)	10	°C

*) Guaranteed by design.

Absolute Maximum Ratings (Note 1, Note

2)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

V _{BATT} = VINB, VBATT	-0.3V to +6V
VIN1, VIN2	-0.3V to V_{BATT} +0.15V, max 6V
All other pins	-0.3V to V _{BATT} +0.3V, max 6V
Junction Temperature (TJ-	MAX) 150°C
Storage Temperature	-40 to 150ºC
Maximum Continuous Pow Dissipation	/er
P _{D-MAX} (<i>Note 3</i>)	1.75 W
ESD (<i>Note 4</i>)	2 kV HBM
	200V MM

Operating Ratings (Note 1, Note 2)

$ \begin{array}{llllllllllllllllllllllllllllllllllll$
$ \begin{array}{llllllllllllllllllllllllllllllllllll$
$\label{eq:amplitude} \mbox{Ambient Temperature (T_A)} \qquad -40 \mbox{ to } 85^{\circ}\mbox{C}$
Maximum Power Dissipation
(TA = 70°C), (<i>Note 5</i>) 1.2 W

Thermal Properties (Note 9)

Junction-to-Ambient Thermal Resistance (θ_{JA}) (Jedec Standard Thermal PCB) Micro SMD 20 45°C/W

Current Consumption

Unless otherwise noted, $V_{VBATT} = V_{VIN1} = V_{VIN2} = 3.6V$, GND=GNDB=0V, $C_{VBATT} = C_{VIN1} = C_{VIN2} = 2.2 \ \mu$ F, $C_{VINB} = 10 \ \mu$ F. Typical values and limits appearing in normal type apply for $T_{J} = 25^{\circ}$ C. Limits appearing in **boldface** type apply over the entire junction temperature range for operation, $T_{J} = -40$ to $+125^{\circ}$ C. (*Note 6*)

Symbol	Dexemptor	Conditions	Turn	Limit		Unito	
Symbol	Parameter	Conditions	тур	Min	Max	Units	
I _{Q(STANDBY)}	Battery Standby Current	$V_{BATT} = 3.6V$	0.7		5	μA	
I _{Q(SLEEP)}	Battery Current in SLEEP Mode @ 0 load	BUCK and all LDO's enabled	190		270	μA	
I _{Q(SLEEP)}	Battery Current in SLEEP Mode @ 0 load	LDO1, LDO2, LDO3 and LDO4 enabled	170			μA	
I _{Q(SLEEP)}	Battery Current in SLEEP Mode @ 0 load	LDO3 enabled	100		150	μA	
I _{Q(SLEEP)}	Battery Current in SLEEP Mode @ 0 load	LDO1 and BUCK enabled	100			μA	
I _Q	Battery Current @ 0 load	BUCK and all LDO's enabled	270		400	μA	
I _Q	Battery Current @ 0 load	LDO1, LDO2, LDO3 and LDO4 enabled	230			μA	
Ι _Q	Battery Current @ 0 load	LDO3 enabled	120		200	μA	
Ι _Q	Battery Current @ 0 load	LDO1 and BUCK enabled	120			μA	

Power on Reset

Unless otherwise noted, $V_{VBATT} = V_{VINB} = V_{VIN1} = V_{VIN2} = 3.6V$, GND=GNDB=0V, $C_{VBATT} = C_{VIN1} = C_{VIN2} = 2.2 \ \mu\text{F}$, $C_{VINB} = 10 \ \mu\text{F}$. Typical values and limits appearing in normal type apply for $T_J = 25^{\circ}\text{C}$. Limits appearing in **boldface** type apply over the entire junction temperature range for operation, $T_J = -40$ to $+125^{\circ}\text{C}$. (*Note 6*)

Symbol	Paramatar	Conditions	Tun	Limit		Unito
Symbol	Farameter	Conditions	тур	Min	Max	Units
V _{POR_HI}	POR higher threshold	V _{VBATT} rising	2.2	2.0	2.4	V
V _{POR_LO}	POR lower threshold	V _{VBATT} falling (<i>Note 7</i>)	1.4			V

Logic and Control

Unless otherwise noted, $V_{VBATT} = V_{VINB} = V_{VIN1} = V_{VIN2} = 3.6V$, GND=GNDB=0V, $C_{VBATT} = C_{VIN1} = C_{VIN2} = 2.2\mu$ F, $C_{VINB} = 10\mu$ F. Typical values and limits appearing in normal type apply for $T_J = 25^{\circ}$ C. Limits appearing in **boldface** type apply over the entire junction temperature range for operation, $T_J = -40$ to $+125^{\circ}$ C. (*Note 6*)

Symbol	Dexemptor	Conditions Typ Lim		nit	Unite	
Symbol	Parameter			Min	Max	Units
Logic and Control Inputs				•		
VIL	Input Low Level	EN, SCL, SDA, DVS			0.4	V
VIH	Input High Level	EN, SCL, SDA, DVS		1.2		V
IIL	Input Current	All logic inputs		-5	+5	μA
RPD	Pull Down Resistance	From EN to GND	550	300	900	kΩ
Logic and Control Outputs			•			
VOL	Output Low Level	IRQ_N, SDA, IOUT=2mA			0.4	V
VOH	Output High Level	IRQ_N, SDA are Open drain outputs.		NA		μA

Buck Converter

Unless otherwise noted, $V_{VBATT}=V_{VINB}=V_{VIN1}=V_{VIN2}=3.6V$, GND=GNDB=0V, $C_{VBATT}=C_{VIN1}=C_{VIN2}=2.2 \ \mu$ F, $C_{VINB}=10 \ \mu$ F. Typical values and limits appearing in normal type apply for $T_J=25^{\circ}$ C. Limits appearing in **boldface** type apply over the entire junction temperature range for operation, $T_J=-40$ to +125°C. (*Note 6, Note 10*)

Oursels al	Demonster	Devemeter		Li	Limit		
Symbol	Parameter	Conditions	Тур	Min	Max	Units	
V _{FB}	Feedback Voltage	$3.0V \le V_{IN} \le 4.5V$ external resistor divider	0.5	0.485	0.515	V	
V _{BUCK}	Output Voltage, PWM Mode	$3.0V \le V_{IN} \le 4.5V$	1.2	1.164	1.236	V	
V _{VOUT,PFM}	Output Voltage regulation in PFM mode relative to regulation in PWM mode	(Note 7)	1.5			%	
V _{OUT}	Line Regulation	$3.0V \le V_{IN} \le 4.5V$ $I_{OUT} = 10 \text{ mA}$	0.14			%/V	
V _{OUT}	Load Regulation	100mA ≤ I _{OUT} ≤ 300mA	0.09			%/mA	
I _{LIM_PWM}	Switch Peak Current Limit	PWM Mode @ 400 mA $3.0V \le V_{IN} \le 4.5V$	900	500		mA	
R _{DSON(P)}	P channel FET on resistance	V _{IN} = 3.6V, I _D = 100mA	310		500	mΩ	
R _{DSON(N)}	N channel FET on resistance		160		300	mΩ	
f _{OSC}	Internal Oscillator Frequency	PWM Mode	2	1.9 1.7	2.1 2.3	MHz	
Efficiency		I _{OUT} = 5mA, PFM-mode V _{OUT} = 1.2V (<i>Note 7</i>)	88			9/	
		I _{OUT} = 200mA, PWM-mode V _{OUT} = 1.2V (<i>Note 7</i>)	90			70	
T _{STUP}	Start Up Time	I _{OUT} = 0, V _{OUT} = 1.2V (<i>Note 7</i>)	140			μs	

Buck Output Voltage Programming in Register 0x06 and 0x07

BUCK1_Vx	V _{OUT}	BUCK1_Vx	V _{OUT}
5h'00	External resistor divider	5h'10	1.55
5h'01	0.80	5h'11	1.60
5h'02	0.85	5h'12	1.65
5h'03	0.90	5h'13	1.70
5h'04	0.95	5h'14	1.75
5h'05	1.00	5h'15	1.80
5h'06	1.05	5h'16	1.85
5h'07	1.10	5h'17	1.90
5h'08	1.15	5h'18	1.95
5h'09	1.20	5h'19	2.00
5h'0A	1.25	5h'1A	2.05
5h'0B	1.30	5h'1B	2.10
5h'0C	1.35	5h'1C	2.15
5h'0D	1.40	5h'1D	2.20
5h'0E	1.45	5h'1E	2.25
5h'0F	1.50	5h'1F	2.30

Output Voltage Selection Using External Resistor Divider

Buck1 output voltage can be programmed via the selection of the external feedback resistor network.

 V_{OUT} will be adjusted to make the voltage at FB equal to 0.5V. The resistor from FB to ground R_{FB2} should be around 200 kΩ to keep the current drawn through the resistor network to a minimum but large enough that it is not susceptible to noise. With R_{FB2}=200 kΩ and V_{FB} at 0.5V, the current through the resistor feedback network will be 2.5 µA. The formula for output voltage selection is

$$V_{OUT} = V_{FB} x \left(1 + \frac{R_{FB1}}{R_{FB2}} \right)$$

V_{OUT} - output voltage

V_{FB} – feedback voltage (0.5V)

For any out voltage greater than or equal to 0.8V a transfer function zero should be added by the addition of a capacitor C1. The formula for calculation of C1 is:

C1 =
$$\frac{1}{(2 \times \pi \times R_{FB1} \times 45 \times 10^3)}$$

For recommended component values see the table below.

V _{OUT} [V]	$R_{FB1}\left[k\Omega ight]$	$R_{FB2}\left[k\Omega ight]$	C1 [pF]	L [µH]	C _{OUT} [µF]
1.0	200	200	18	2.2	10
1.2	280	200	12	2.2	10
1.4	360	200	10	2.2	10
1.5	360	180	10	2.2	10
1.6	440	200	8.2	2.2	10
1.85	540	200	6.8	2.2	10

LDO's

There are all together 5 LDO's in LP8720 grouped as

A-type LDO's (LDO 2,3) D-type LDO's (LDO 1,5) LO-type LDO (LDO4)

The A-type LDO's are optimized for supplying of analog loads and have ultra low noise (15 $\mu VRMS$) and excellent PSRR (70dB) performance.

The D-type LDO's are optimized for good dynamic performance to supply different fast changing (digital) loads.

The LO-type LDO is optimized for low output voltage and for good dynamic performance to supply different fast changing (digital) loads.

Data Code LDOx_V	LDOx [V]	Data Code LDOx_V	LDOx [V]
5h'00	1.20	5h'10	2.10
5h'01	1.25	5h'11	2.20
5h'02	1.30	5h'12	2.30
5h'03	1.35	5h'13	2.40
5h'04	1.40	5h'14	2.50
5h'05	1.45	5h'15	2.60
5h'06	1.50	5h'16	2.65
5h'07	1.55	5h'17	2.70
5h'08	1.60	5h'18	2.75
5h'09	1.65	5h'19	2.80
5h'0A	1.70	5h'1A	2.85
5h'0B	1.75	5h'1B	2.90
5h'0C	1.80	5h'1C	2.95
5h'0D	1.85	5h'1D	3.00
5h'0E	1.90	5h'1E	3.10
5h'0F	2.00	5h'1F	3.30

LDO1, 2, 3 and 5 Output Voltage Programming

All LDO's can be programmed through serial interface for 32 different output voltage value, which are summarized in the in the "LDO Output Voltage Programming" tables below.

At the PMU power on, LDO's start up according to the selected startup sequence and the default voltages after start-up sequence depend on startup setup. See section Power-On and Power-Off Sequences for details.

For stability all LDO's have to have connected to output an external capacitor C_{OUT} with recommended value of 1 μ F. It is important to select the type of capacitor which capacitance will in no case (voltage, temperature, etc) be outside of limits specified in the LDO electrical characteristics.

Data Code	LDO4 [V]	Data Code	LDO4 [V]
LDO4_V		LDO4_V	
5h'00	0.80	5h'10	1.75
5h'01	0.85	5h'11	1.80
5h'02	0.90	5h'12	1.85
5h'03	1.00	5h'13	1.90
5h'04	1.10	5h'14	2.00
5h'05	1.20	5h'15	2.10
5h'06	1.25	5h'16	2.20
5h'07	1.30	5h'17	2.30
5h'08	1.35	5h'18	2.40
5h'09	1.40	5h'19	2.50
5h'0A	1.45	5h'1A	2.60
5h'0B	1.50	5h'1B	2.65
5h'0C	1.55	5h'1C	2.70
5h'0D	1.60	5h'1D	2.75
5h'0E	1.65	5h'1E	2.80
5h'0F	1.70	5h'1F	2.85

LDO4 Output Voltage Programming

A-Type LDO Electrical Characteristics

Unless otherwise noted, $V_{VBATT}=V_{VINB}=V_{VIN1}=V_{VIN2}=3.6V$, GND=GNDB=0V, $C_{VBATT}=C_{VIN1}=C_{VIN2}=2.2 \ \mu$ F, $C_{VINB}=10 \ \mu$ F. Typical values and limits appearing in normal type apply for $T_J=25^{\circ}$ C. Limits appearing in **boldface** type apply over the entire junction temperature range for operation, $T_J=-40$ to $+125^{\circ}$ C. (*Note 6*)

	Demonster	O and iti an a	LDO#	Тур	Limit		11
Symbol	Parameter	Conditions			Min	Max	Units
V _{OUT}	Output Voltage Accuracy	I _{OUT} = 1mA, V _{OUT} = 2.85V	2.2		-2	+2	%
			2,3		-3	+3	%
I _{SC}	Output Current Limit	V _{OUT} = 0V	2,3	600			mA
V _{DO}	Dropout Voltage	I _{OUT} = I _{MAX} (<i>Note 8</i>)	2,3	200		400	mV
ΔV _{OUT}	Line Regulation	$V_{OUT} + 0.5V \le V_{IN} \le 4.5V$ $I_{OUT} = I_{MAX}$	2,3	1			mV
	Load Regulation	1mA ≤ I _{OUT} ≤ I _{MAX}	2,3	5			mV
e _N	Output Noise Voltage	10Hz ≤ f ≤ 100kHz C _{OUT} = 1µF (<i>Note 7</i>)	2,3	15			μV _{RMS}
PSRR	Power Supply Ripple Rejection Ratio	f=10kHz, C _{OUT} = 1μF I _{OUT} = 20mA (<i>Note 7</i>)	2,3	70			dB
t _{START UP}	Start-Up Time from Shut- down	C _{OUT} = 1µF, I _{OUT} = I _{MAX} (<i>Note 7</i>)	2,3	35			μs
V _{Transient}	Start-Up Transient Overshoot	C _{OUT} = 1µF, I _{OUT} = I _{MAX} (<i>Note 7</i>)	2,3			30	mV
C _{OUT}	External output capacitance for stability		2,3	1.0	0.5	20	μF

D-Type and LO-Type LDO Electrical Characteristics

Unless otherwise noted, $V_{VBATT}=V_{VINB}=V_{VIN1}=V_{VIN2}=3.6V$, GND=GNDB=0V, $C_{VBATT}=C_{VIN1}=C_{VIN2}=2.2 \ \mu$ F, $C_{VINB}=10 \ \mu$ F. Typical values and limits appearing in normal type apply for $T_J=25^{\circ}$ C. Limits appearing in **boldface** type apply over the entire junction temperature range for operation, $T_J=-40$ to $+125^{\circ}$ C. (*Note 6*)

Symbol	Dexemptor	Conditions	LDO#	Тур	Limit		Unito
Symbol	Parameter	Conditions			Min	Max	Units
V _{OUT}	Output Voltage Accuracy	I _{OUT} = 1mA, V _{OUT} = 2.85V	1.5		-2	+2	%
			1,5		-3	+3	%
		I _{OUT} = 1mA, V _{OUT} = 1.20V	1		-2	+2	%
			4		-3	+3	%
		$I_{OUT} = 1$ mA, $V_{OUT} = 2.60$ V	4		-3	+3	%
			4		-4	+4	%
I _{SC}	Output Current Limit	V _{OUT} = 0V	1,4,5	600			mA
V _{DO}	Dropout Voltage	I _{OUT} = I _{MAX} (<i>Note 8</i>)	1,4,5	190		400	mV
ΔV _{OUT}	Line Regulation	$V_{OUT} + 0.5V \le V_{IN} \le 4.5V$ $I_{OUT} = I_{MAX}$	1,4,5	2			mV
	Load Regulation	$1 \text{mA} \leq \text{I}_{\text{OUT}} \leq \text{I}_{\text{MAX}}$	1,4,5	5			mV
e _N	Output Noise Voltage	$10Hz \le f \le 100kHz C_{OUT} = 1\mu F$ (<i>Note 7</i>)	1,4,5	100			μV _{RMS}
PSRR	Power Supply Ripple Rejection Ratio	f=10kHz, C _{OUT} = 1µF I _{OUT} = 20mA (<i>Note 7</i>)	1,4,5	55			dB
t _{START UP}	Start-Up Time from Shut- down	C _{OUT} = 1µF, I _{OUT} = I _{MAX} (<i>Note 7</i>)	1,4,5	35			μs
V _{Transient}	Start-Up Transient Overshoot	C _{OUT} = 1μF, I _{OUT} = I _{MAX} (<i>Note 7</i>)	1,4,5			30	mV
C _{OUT}	External output capacitance for stability		1,4,5	1.0	0.5	20	μF

Serial Interface

Unless otherwise noted, $V_{VBATT} = V_{VINB} = V_{VIN1} = V_{VIN2} = 3.6V$, GND=GNDB=0V, $C_{VBATT} = C_{VIN1} = C_{VIN2} = 2.2 \ \mu$ F, $C_{VINB} = 10 \ \mu$ F. Typical values and limits appearing in normal type apply for $T_J = 25^{\circ}$ C. Limits appearing in **boldface** type apply over the entire junction temperature range for operation, $T_J = -40$ to $+125^{\circ}$ C. (*Note 6, Note 7*)

Cumhal	Deveneter	neter Conditions	Тур	Limit		Unite
Symbol	Parameter			Min	Max	Units
f _{CLK}	Clock Frequency				400	kHz
t _{BF}	Bus-Free Time between START and STOP			1.3		μs
t _{HOLD}	Hold Time Repeated START Condition		0.6		μs	
t _{CLK-LP}	CLK Low Period			1.3		μs
t _{CLK-HP}	CLK High Period			0.6		μs
t _{SU}	Set-Up Time Repeated START Condition			0.6		μs
t _{DATA-HOLD}	Data Hold Time			50		ns
t _{DATA-SU}	Data Set-Up Time			100		ns
t _{su}	Set-Up Time for STOP Condition			0.6		μs
t _{TRANS}	Maximum Pulse Width of Spikes that Must Be Suppressed by the Input Filter of Both DATA & CLK Signals		50			ns

Notes to Electrical Characteristics Tables

Note 1: Absolute Maximum Ratings are limits beyond which damage to the device may occur. Operating Ratings are conditions under which operation of the device is guaranteed. Operating Ratings do not imply guaranteed performance limits. For guaranteed performance limits and associated test conditions, see the Electrical Characteristics tables.

Note 2: All voltages are with respect to the potential at the GND pin.

Note 3: The Absolute Maximum power dissipation depends on the ambient temperature and can be calculated using the formula

 $P = (T_J - T_A)/\theta_{JA}$, (eq. 1)

where T_J is the junction temperature, T_A is the ambient temperature, and θ_{JA} is the junction-to-ambient thermal resistance. The 1.75W rating appearing under Absolute Maximum Ratings results from substituting the Absolute Maximum junction temperature, 150°C for T_J , 70°C for T_A , and 45°C/W for θ_{JA} . More power can be dissipated safely at ambient temperatures below 70°C. Less power can be dissipated safely at ambient temperatures above 70°C. The Absolute Maximum power dissipation can be increased by 22mW for each degree below 70°C, and it must be de-rated by 22 mW for each degree above 70°C.

Note 4: The human-body model is 100 pF discharged through 1.5 kΩ. The machine model is a 200 pF capacitor discharged directly into each pin, MIL-STD-883 3015.7.

Note 5: Like the Absolute Maximum power dissipation, the maximum power dissipation for operation depends on the ambient temperature. The 1.2W rating for Micro SMD 20 appearing under Operating Ratings results from substituting the maximum junction temperature for operation, 125° C, for T_J, 70° C for T_A, and 45° C/W for θ_{JA} into (eg. 1) above. More power can be dissipated at ambient temperatures below 70°C. Less power can be dissipated at ambient temperatures above 70°C. The maximum power dissipation for operation can be increased by 22mW for each degree below 70°C, and it must be de-rated by 22 mW for each degree above 70°C.

Note 6: All limits are guaranteed. All electrical characteristics having room-temperature limits are tested during production with $T_{J} = 25^{\circ}$ C. All hot and cold limits are guaranteed by correlating the electrical characteristics to process and temperature variations and applying statistical process control.

Note 7: Guaranteed by design.

Note 8: Dropout voltage is the input-to-output voltage difference at which the output voltage is 100mV below its nominal value. This specification does not apply in cases it implies operation with an input voltage below the 2.5V minimum appearing under Operating Ratings. For example, this specification does not apply for devices having 1.5V outputs because the specification would imply operation with an input voltage at or about 1.5V.

Note 9: Junction-to-ambient thermal resistance is highly application and board-layout dependent. In applications where high maximum power dissipation exists, special care must be paid to thermal dissipation issues in board design.

Note 10: Guaranteed for output voltages no less than 1.0V

I²C-Compatible Serial Bus Interface

INTERFACE BUS OVERVIEW

The I²C compatible synchronous serial interface provides access to the programmable functions and registers on the device.

This protocol uses a two-wire interface for bi-directional communications between the IC's connected to the bus. The two interface lines are the Serial Data Line (SDA), and the Serial Clock Line (SCL). These lines should be connected to a positive supply, via a pull-up resistor of 1.5 k Ω , and remain HIGH even when the bus is idle.

Every device on the bus is assigned a unique address and acts as either a Master or a Slave depending on whether it generates or receives the serial clock (SCL).

DATA TRANSACTIONS

One data bit is transferred during each clock pulse. Data is sampled during the high state of the serial clock (SCL). Consequently, throughout the clock's high period, the data should remain stable. Any changes on the SDA line during the high state of the SCL and in the middle of a transaction, aborts the current transaction. New data should be sent during the low SCL state. This protocol permits a single data line to transfer both command/control information and data using the synchronous serial clock.

FIGURE 1. Bit Transfer

Each data transaction is composed of a Start Condition, a number of byte transfers (set by the software) and a Stop

Condition to terminate the transaction. Every byte written to the SDA bus must be 8 bits long and is transferred with the most significant bit first. After each byte, an Acknowledge signal must follow. The following sections provide further details of this process.

START AND STOP

The Master device on the bus always generates the Start and Stop Conditions (control codes). After a Start Condition is generated, the bus is considered busy and it retains this status until a certain time after a Stop Condition is generated. A high-to-low transition of the data line (SDA) while the clock (SCL) is high indicates a Start Condition. A low-to-high transition of the SDA line while the SCL is high indicates a Stop Condition.

FIGURE 2. Start and Stop Conditions

In addition to the first Start Condition, a repeated Start Condition can be generated in the middle of a transaction. This allows another device to be accessed, or a register read cycle.

ACKNOWLEDGE CYCLE

The Acknowledge Cycle consists of two signals: the acknowledge clock pulse the master sends with each byte transferred, and the acknowledge signal sent by the receiving device.

The master generates the acknowledge clock pulse on the ninth clock pulse of the byte transfer. The transmitter releases the SDA line (permits it to go high) to allow the receiver to send the acknowledge signal. The receiver must pull down the SDA line during the acknowledge clock pulse and ensure that SDA remains low during the high period of the clock pulse, thus signaling the correct reception of the last data byte and its readiness to receive the next byte.

"ACKNOWLEDGE AFTER EVERY BYTE" RULE

The master generates an acknowledge clock pulse after each byte transfer. The receiver sends an acknowledge signal after every byte received.

There is one exception to the "acknowledge after every byte" rule.

When the master is the receiver, it must indicate to the transmitter an end of data by not-acknowledging ("negative acknowledge") the last byte clocked out of the slave. This "negative acknowledge" still includes the acknowledge clock pulse (generated by the master), but the SDA line is not pulled down.

ADDRESSING TRANSFER FORMATS

Each device on the bus has a unique slave address. The LP8720 operates as a slave device. Slave address is selectable by IDSEL-pin.

When IDSEL= VBATT then slave address is 7h'7F

When IDSEL= floating (Hi-Z) then slave address is 7h'7C When IDSEL= GND then slave address is 7h'7D

Before any data is transmitted, the master transmits the address of the slave being addressed. The slave device should send an acknowledge signal on the SDA line, once it recognizes its address.

The slave address is the first seven bits after a Start Condition. The direction of the data transfer (R/W) depends on the bit sent after the slave address — the eighth bit.

When the slave address is sent, each device in the system compares this slave address with its own. If there is a match, the device considers itself addressed and sends an acknowledge signal. Depending upon the state of the R/W bit (1:read, 0:write), the device acts as a transmitter or a receiver.

CONTROL REGISTER WRITE CYCLE

- Master device generates start condition.
- Master device sends slave address (7 bits) and the data direction bit (r/w = '0').
- Slave device sends acknowledge signal if the slave address is correct.
- Master sends control register address (8 bits).
- Slave sends acknowledge signal.
- Master sends data byte to be written to the addressed register.
- Slave sends acknowledge signal.
- If master will send further data bytes the control register address will be incremented by one after acknowledge signal.
- Write cycle ends when the master creates stop condition.

CONTROL REGISTER READ CYCLE

- Master device generates a start condition.
- Master device sends slave address (7 bits) and the data direction bit (r/w = '0').
- Slave device sends acknowledge signal if the slave address is correct.
- Master sends control register address (8 bits).
- · Slave sends acknowledge signal.
- · Master device generates repeated start condition.
- Master sends the slave address (7 bits) and the data direction bit (r/w = "1").
- Slave sends acknowledge signal if the slave address is correct.
- Slave sends data byte from addressed register.
- If the master device sends acknowledge signal, the control register address will be incremented by one. Slave device sends data byte from addressed register.
- Read cycle ends when the master does not generate acknowledge signal after data byte and generates stop condition.

	Address Mode			
Data Read	<start condition=""></start>			
	<slave address=""><r w="0">[Ack]</r></slave>			
	<register addr.="">[Ack]</register>			
	<repeated condition="" start=""></repeated>			
	<slave address=""><r w="1">[Ack]</r></slave>			
	[Register Data] <ack nack="" or=""></ack>			
	additional reads from subsequent register			
	address possible			
	<stop condition=""></stop>			
Data Write	<start condition=""></start>			
	<slave address=""><r w="0">[Ack]</r></slave>			
	<register addr.="">[Ack]</register>			
	<register data="">[Ack]</register>			
	additional writes to subsequent register			
	address possible			
	<stop condition=""></stop>			
< > Data from master [] Data from slave				

Physical Dimensions inches (millimeters) unless otherwise noted

LP8720

Notes

Notes

For more National Semiconductor product information and proven design tools, visit the following Web sites at: www.national.com

Products		Design Support		
Amplifiers	www.national.com/amplifiers	WEBENCH® Tools	www.national.com/webench	
Audio	www.national.com/audio	App Notes	www.national.com/appnotes	
Clock and Timing	www.national.com/timing	Reference Designs	www.national.com/refdesigns	
Data Converters	www.national.com/adc	Samples	www.national.com/samples	
Interface	www.national.com/interface	Eval Boards	www.national.com/evalboards	
LVDS	www.national.com/lvds	Packaging	www.national.com/packaging	
Power Management	www.national.com/power	Green Compliance	www.national.com/quality/green	
Switching Regulators	www.national.com/switchers	Distributors	www.national.com/contacts	
LDOs	www.national.com/ldo	Quality and Reliability	www.national.com/quality	
LED Lighting	www.national.com/led	Feedback/Support	www.national.com/feedback	
Voltage References	www.national.com/vref	Design Made Easy	www.national.com/easy	
PowerWise® Solutions	www.national.com/powerwise	Applications & Markets	www.national.com/solutions	
Serial Digital Interface (SDI)	www.national.com/sdi	Mil/Aero	www.national.com/milaero	
Temperature Sensors	www.national.com/tempsensors	SolarMagic™	www.national.com/solarmagic	
PLL/VCO	www.national.com/wireless	PowerWise® Design University	www.national.com/training	

THE CONTENTS OF THIS DOCUMENT ARE PROVIDED IN CONNECTION WITH NATIONAL SEMICONDUCTOR CORPORATION ("NATIONAL") PRODUCTS. NATIONAL MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS PUBLICATION AND RESERVES THE RIGHT TO MAKE CHANGES TO SPECIFICATIONS AND PRODUCT DESCRIPTIONS AT ANY TIME WITHOUT NOTICE. NO LICENSE, WHETHER EXPRESS, IMPLIED, ARISING BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT.

TESTING AND OTHER QUALITY CONTROLS ARE USED TO THE EXTENT NATIONAL DEEMS NECESSARY TO SUPPORT NATIONAL'S PRODUCT WARRANTY. EXCEPT WHERE MANDATED BY GOVERNMENT REQUIREMENTS, TESTING OF ALL PARAMETERS OF EACH PRODUCT IS NOT NECESSARILY PERFORMED. NATIONAL ASSUMES NO LIABILITY FOR APPLICATIONS ASSISTANCE OR BUYER PRODUCT DESIGN. BUYERS ARE RESPONSIBLE FOR THEIR PRODUCTS AND APPLICATIONS USING NATIONAL COMPONENTS. PRIOR TO USING OR DISTRIBUTING ANY PRODUCTS THAT INCLUDE NATIONAL COMPONENTS, BUYERS SHOULD PROVIDE ADEQUATE DESIGN, TESTING AND OPERATING SAFEGUARDS.

EXCEPT AS PROVIDED IN NATIONAL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NATIONAL ASSUMES NO LIABILITY WHATSOEVER, AND NATIONAL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO THE SALE AND/OR USE OF NATIONAL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.

National Semiconductor and the National Semiconductor logo are registered trademarks of National Semiconductor Corporation. All other brand or product names may be trademarks or registered trademarks of their respective holders.

Copyright© 2009 National Semiconductor Corporation

For the most current product information visit us at www.national.com

National Semiconductor Americas Technical Support Center Email: support@nsc.com Tel: 1-800-272-9959

National Semiconductor Europe Technical Support Center Email: europe.support@nsc.com National Semiconductor Asia Pacific Technical Support Center Email: ap.support@nsc.com National Semiconductor Japan Technical Support Center Email: jpn.feedback@nsc.com