

LP8340 Low Dropout, Low I_Q, 1.0A CMOS Linear Regulator

Check for Samples: LP8340

FEATURES

- ±1.5% Typical V_{OUT} Tolerance
- 420mV Typical Dropout @ 1.0A (Vo = 5V)
- Wide Operating Range 2.7V to 10V
- Internal 1.0A PMOS Output Transistor
- 19µA Typical Quiescent Current
- Thermal Overload Limiting
- Foldback Current Limiting
- Zener Trimmed Bandgap Reference
- Space Saving WSON package
- Temperature Range
 - LP8340C 0°C to 125°C
 - LP8340I -40°C to 125°C

APPLICATIONS

- Hard Disk Drives
- Notebook Computers
- Battery Powered Electronics
- Portable Instrumentation

Typical Applications

DESCRIPTION

The LP8340 low-dropout CMOS linear regulator is available in 5V, 3.3V, 2.5V, 1.8V and adjustable output versions. Packaged in the 6ld WSON package and 3ld PFM. The LP8340 can deliver up to 1.0A output current.

Typical dropout voltage is 420mV at 1.0A for the 5.0V version, 540mV at 1.0A for the 3.3V version, 670mV at 1.0A for the 2.5V version and 680mV at 800mA for the 1.8V version.

The LP8340 includes a zener trimmed bandgap voltage reference, foldback current limiting and thermal overload limiting.

The LP8340 features a PMOS output transistor which unlike PNP type low dropout regulators requires no base drive current. This allows the device ground current to remain less than $50\mu A$ over operating temperature, supply voltage and irrespective of the load current.

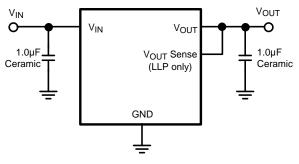


Figure 1. Fixed V_{OUT}

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. All trademarks are the property of their respective owners.

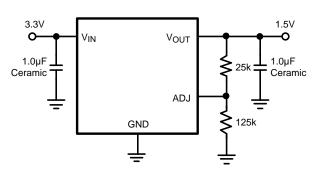


Figure 2. Adjustable VOUT

Connection Diagrams

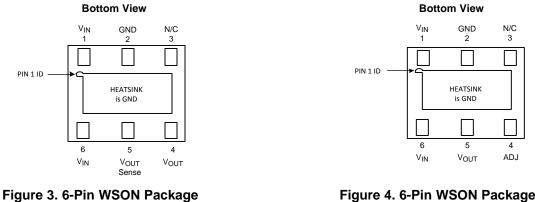


Figure 4. 6-Pin WSON Package Adjustable Output Voltage See Package Number NGD0006A

NOTE

 V_{IN} Pins (Pin 1 & 6) must be connected together externally for full 1 amp operation (500mA max per pin).

 V_{OUT} Sense (Pin 5) must be connected to V_{OUT} (Pin 4).

Fixed Output Voltage

See Package Number NGD0006A

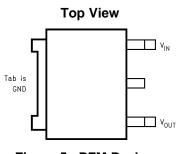


Figure 5. PFM Package See Package Number NDP0003B

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

SNVS221D-FEBRUARY 2003-REVISED APRIL 2013

www.ti.com

Absolute Maximum Ratings⁽¹⁾⁽²⁾⁽³⁾

V _{IN} , V _{OUT} , V _{OUT} Sense, ADJ	-0.3V to 12V	
Storage Temperature Range	−65°C to 160°C	
Junction Temperature (T _J)	150°C	
Power Dissipation	See ⁽⁴⁾	
ESD Rating	Human Body Model ⁽⁵⁾	2kV
	Machine Model	200V

(1) Absolute Maximum ratings indicate limits beyond which damage may occur. Electrical specifications do not apply when operating the device outside of its rated operating conditions.

(2) All voltages are with respect to the potential at the ground pin.

(3) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/ Distributors for availability and specifications.

T_{J(MAX)} - T_A

(4) Maximum Power dissipation for the device is calculated using the following equations:
 P_D = θ_{JA} where T_{J(MAX)} is the maximum junction temperature, T_A is the ambient temperature, and θ_{JA} is the junction-to-ambient thermal resistance. The value of the θ_{JA} for the WSON package is specifically dependant on the PCB trace area, trace material, and the number of layers and thermal vias. For improved thermal resistance and power dissipation for the WSON package, refer to Application Note AN-1187 (SNOA401).

(5) Human body model $1.5k\Omega$ in series with 100pF.

Operating Ratings⁽¹⁾⁽²⁾

Supply Voltage	2.7 to 10V
Temperature Range	
LP8340C	0°C to 125°C
LP8340I	−40°C to 125°C

 Absolute Maximum ratings indicate limits beyond which damage may occur. Electrical specifications do not apply when operating the device outside of its rated operating conditions.

(2) All voltages are with respect to the potential at the ground pin.

LP8340C Electrical Characteristics

Unless otherwise specified all limits ensured for $V_{IN} = V_O + 1V$, $C_{IN} = C_{OUT} = 10\mu$ F, $T_J = 25^{\circ}$ C. **Boldface** limits apply over the full operating temperature range of $T_J = 0^{\circ}$ C to 125° C

Symbol	Parameter	Conditions	Min ⁽¹⁾	Typ ⁽²⁾	Max ⁽¹⁾	Units
V _{IN}	Input Voltage	LP8340-ADJ,1.8, 2.5 LP8340-3.3, 5.0	2.7		10 10	V
V _{OUT} Output Voltage	$ LP8340-ADJ, ADJ = OUT \\ I_{OUT} = 10mA, V_{IN} = 2.7V, T_J = 25^{\circ}C \\ 100\muA \le I_{OUT} \le 800mA, 3.0V \le V_{IN} \le V_{OUT} + 4V \\ 800mA < I_{OUT} \le 1.0A, 3.2V \le V_{IN} \le V_{OUT} + 4V $	1.231 1.213 1.213	1.250	1.269 1.288 1.288	V	
		$ LP8340-1.8 \\ I_{OUT} = 10mA, V_{IN} = 2.8V, T_J = 25^{\circ}C \\ 100 \mu A \leq I_{OUT} \leq 800mA, 3.2V \leq V_{IN} \leq 6V \\ 800mA < I_{OUT} \leq 1.0A, 3.4V \leq V_{IN} \leq 6V $	1.773 1.746 1.746	1.800	1.827 1.854 1.854	V
		LP8340-2.5 I _{OUT} = 10mA, V _{IN} = 3.8V, T _J = 25°C 100µA ≤I _{OUT} ≤1.0A, 3.8V ≤V _{IN} ≤6.5V	2.463 2.425	2.500	2.538 2.575	V
	LP8340-3.3 $I_{OUT} = 10mA$, $V_{IN} = 4.3V T_J = 25^{\circ}C$ $100\muA \le I_{OUT} \le 1.0A$, $4.3V \le V_{IN} \le 7.5V$	3.250 3.201	3.300	3.350 3.399	V	
		LP8340-5.0 $I_{OUT} = 10mA, V_{IN} = 6V, T_J = 25^{\circ}C$ $100\muA ≤ I_{OUT} ≤ 1.0A, 6V ≤ V_{IN} ≤ 9V$	4.925 4.850	5.000	5.075 5.150	V

(1) All limits are specified by testing or statistical analysis.

(2) Typical Values represent the most likely parametric norm.

SNVS221D-FEBRUARY 2003-REVISED APRIL 2013

LP8340C Electrical Characteristics (continued)

Unless otherwise specified all limits ensured for $V_{IN} = V_O + 1V$, $C_{IN} = C_{OUT} = 10\mu$ F, $T_J = 25^{\circ}$ C. **Boldface** limits apply over the full operating temperature range of $T_J = 0^{\circ}$ C to 125° C

Symbol	Parameter	Conditions	Min ⁽¹⁾	Typ ⁽²⁾	Max ⁽¹⁾	Units
ΔV _O	Load Regulation	LP8340-ADJ, ADJ=OUT I_{OUT} = 1mA to 1.0A, V_{IN} = 3.2V		6	25	
		LP8340-1.8 I _{OUT} = 1mA to 1.0A, V _{IN} = 3.4V		8	30	
		LP8340-2.5 I _{OUT} = 1mA to 1.0A, V _{IN} = 3.5V		15	50	mV
		LP8340-3.3 I _{OUT} = 1mA to 1.0A, V _{IN} = 4.3V		20	75	
		LP8340-5.0 I _{OUT} = 1mA to 1.0A, V _{IN} = 6V		25	100	
ΔV _O	Line Regulation	$V_{OUT} + 0.5V \le V_{IN} \le 10V, I_{OUT} = 25mA^{(3)}$		4	15	mV
V _{IN} – V _O	Dropout Voltage ⁽³⁾⁽⁴⁾	LP8340-1.8 I _{OUT} = 800mA		680	1400	
		LP8340-2.5 I _{OUT} = 800mA		550	1000	
		LP8340-2.5 I _{OUT} = 1.0A		670	1300	
		LP8340-3.3 LP8340-ADJ, V _{OUT} = 3.3V, I _{OUT} = 800mA		420	800	mV
		LP8340-3.3 LP8340-ADJ, I _{OUT} = 1.0A		540	1000	
		LP8340-5.0 I _{OUT} = 800mA		330	650	
		LP8340-5.0 I _{OUT} = 1.0A		420	800	
l _Q	Quiescent Current	V _{IN} ≤10V		19	50	μA
	Minimum Load Current	$V_{IN} - V_{OUT} \leq 4V$			100	μA
I _{LIMIT}	Foldback Current Limit	V _{IN} - V _{OUT} >5V		450		
		V _{IN} - V _{OUT} <4V		1600		mA
	Ripple Rejection Ratio	$V_{IN} (dc) = V_{OUT} + 2V$ $V_{IN} (ac) = 1 V_{P-P} @ 120Hz$	48	55		dB
T _{SD}	Thermal Shutdown Temp. Thermal Shutdown Hyst.			160 10		°C
	ADJ Input Leakage Current	V _{ADJ} = 1.5V or 0V		±0.01	±100	nA
	V _{OUT} Leakage Current	LP8340-ADJ ADJ = OUT, V _{OUT} = 2V, V _{IN} = 10V			10	
		LP8340-1.8, V _{OUT} = 2.5V, V _{IN} = 10V			10	1
		LP8340-2.5, V _{OUT} = 3.5V, V _{IN} = 10V			10	μA
		LP8340-3.3, V _{OUT} = 4V, V _{IN} = 10V			10	1
		LP8340-5.0, V _{OUT} = 6V, V _{IN} = 10V			10	
e _n	Output Noise	10Hz to 10kHz, $R_L = 1k\Omega$, $C_{OUT} = 10\mu F$		250		µVrms

 $\begin{array}{ll} \text{(3)} & \text{Condition does not apply to input voltages below 2.7V since this is the minimum input operating voltage.} \\ \text{(4)} & \text{Dropout voltage is measured by reducing V}_{\text{IN}} \text{ until V}_{\text{O}} \text{ drops 100mV from its normal value.} \end{array}$

LP8340I Electrical Characteristics

Unless otherwise specified all limits ensured for $V_{IN} = V_O + 1V$, $C_{IN} = C_{OUT} = 10\mu$ F, $T_J = 25^{\circ}$ C. **Boldface** limits apply over the full operating temperature range of $T_J = -40^{\circ}$ C to 125° C

Symbol	Parameter	Conditions	Min ⁽¹⁾	Тур ⁽²⁾	Max ⁽¹⁾	Units
V _{IN}	Input Voltage	LP8340-ADJ,1.8, 2.5 LP8340-3.3, 5.0	2.7		10 10	V
V _{OUT}	Output Voltage	$ \begin{array}{l} LP8340\text{-}ADJ, \ ADJ = OUT \\ I_{OUT} = 10mA, \ V_{\text{IN}} = 2.7V, \ T_{\text{J}} = 25^{\circ}\text{C} \\ 100\mu\text{A} \leq I_{OUT} \leq 800\text{mA}, \ 3.0V \leq V_{\text{IN}} \leq V_{OUT} + 4V \\ 800\text{mA} < I_{OUT} \leq 1.0\text{A}, \ 3.2V \leq V_{\text{IN}} \leq V_{OUT} + 4V \end{array} $	1.231 1.213 1.213	1.250	1.269 1.288 1.288	V
		$ LP8340-1.8 \\ I_{OUT} = 10mA, V_{IN} = 2.8V, T_J = 25^{\circ}C \\ 100\muA \leq I_{OUT} \leq 800mA, 3.2V \leq V_{IN} \leq 6V \\ 800mA < I_{OUT} \leq 1.0A, 3.4V \leq V_{IN} \leq 6V $	1.773 1.746 1.746	1.800	1.827 1.854 1.854	V
		LP8340-2.5 $I_{OUT} = 10mA, V_{IN} = 3.8V, T_J = 25^{\circ}C$ $100\muA \le I_{OUT} \le 1.0A, 3.8V \le V_{IN} \le 6.5V$	2.463 2.425	2.500	2.538 2.575	V
		LP8340-3.3 $I_{OUT} = 10$ mA, $V_{IN} = 4.3$ V $T_J = 25$ °C 100 μ A $\leq I_{OUT} \leq 1.0$ A, 4.3V $\leq V_{IN} \leq 7.5$ V	3.250 3.201	3.300	3.350 3.399	V
		LP8340-5.0 $I_{OUT} = 10$ mA, $V_{IN} = 6$ V, $T_J = 25$ °C 100μ A $\leq I_{OUT} \leq 1.0$ A, 6 V $\leq V_{IN} \leq 9$ V	4.925 4.850	5.000	5.075 5.150	V
ΔV _O	Load Regulation	LP8340-ADJ, ADJ=OUT I_{OUT} = 1mA to 1.0A, V_{IN} = 3.2V		6	25	
		LP8340-1.8 I _{OUT} = 1mA to 1.0A, V _{IN} = 3.4V		8	30	
		LP8340-2.5 I _{OUT} = 1mA to 1.0A, V _{IN} = 3.5V		15	50	mV
		LP8340-3.3 I_{OUT} = 1mA to 1.0A, V_{IN} = 4.3V		20	75	
		LP8340-5.0 $I_{OUT} = 1$ mA to 1.0A, $V_{IN} = 6V$		25	100	
ΔV _O	Line Regulation	$V_{OUT} + 0.5V \le V_{IN} \le 10V, I_{OUT} = 25mA^{(3)}$		4	15	mV
V _{IN} – V _O	Dropout Voltage ⁽³⁾⁽⁴⁾	LP8340-1.8 I _{OUT} = 800mA		680	1400	
		LP8340-2.5 I _{OUT} = 800mA		550	1000	
		LP8340-2.5 I _{OUT} = 1.0A		670	1300	
		LP8340-3.3 LP8340-ADJ, V _{OUT} = 3.3V, I _{OUT} = 800mA		420	800	mV
		LP8340-3.3 LP8340-ADJ, I _{OUT} = 1.0A		540	1000	
		LP8340-5.0 I _{OUT} = 800mA		330	650	
		LP8340-5.0 I _{OUT} = 1.0A		420	800	
l _Q	Quiescent Current	V _{IN} ≤10V		19	50	μA
	Minimum Load Current	V _{IN} − V _{OUT} ≤4V			100	μA
I _{LIMIT}	Foldback Current Limit	V _{IN} - V _{OUT} >5V		450		
		V _{IN} - V _{OUT} <4V		1600		mA
	Ripple Rejection Ratio	V_{IN} (dc) = V_{OUT} + 2V V_{IN} (ac) = 1 V_{P-P} @ 120Hz	48	55		dB

(1) All limits are specified by testing or statistical analysis.

(2) Typical Values represent the most likely parametric norm.

(3) Condition does not apply to input voltages below 2.7V since this is the minimum input operating voltage.

(4) Dropout voltage is measured by reducing V_{IN} until V_O drops 100mV from its normal value.

Copyright © 2003–2013, Texas Instruments Incorporated

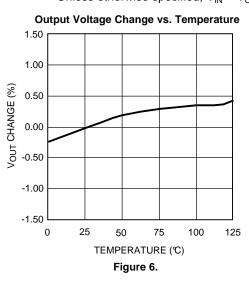
TEXAS INSTRUMENTS

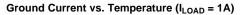
SNVS221D-FEBRUARY 2003-REVISED APRIL 2013

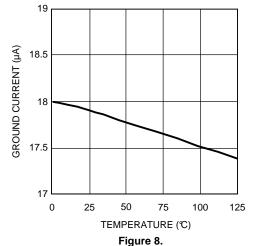
www.ti.com

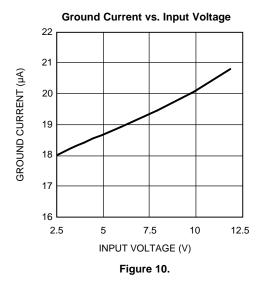
LP8340I Electrical Characteristics (continued)

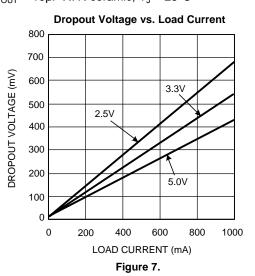
Unless otherwise specified all limits ensured for $V_{IN} = V_O + 1V$, $C_{IN} = C_{OUT} = 10\mu$ F, $T_J = 25^{\circ}$ C. **Boldface** limits apply over the full operating temperature range of $T_J = -40^{\circ}$ C to 125° C

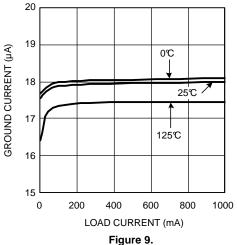

Symbol Parameter		Parameter Conditions Min ⁽				
	Thermal Shutdown Temp. Thermal Shutdown Hyst.			160 10		°C
	ADJ Input Leakage Current	V _{ADJ} = 1.5V or 0V		±0.01	±100	nA
	V _{OUT} Leakage Current	LP8340-ADJ ADJ = OUT, V _{OUT} = 2V, V _{IN} = 10V			10	
		LP8340-1.8, V _{OUT} = 2.5V, V _{IN} = 10V			10	
		LP8340-2.5, V _{OUT} = 3.5V, V _{IN} = 10V			10	μA
		LP8340-3.3, V _{OUT} = 4V, V _{IN} = 10V			10	
		LP8340-5.0, V _{OUT} = 6V, V _{IN} = 10V			10	
e _n	Output Noise	10Hz to 10kHz, $R_L = 1k\Omega$, $C_{OUT} = 10\mu F$		250		μVrms

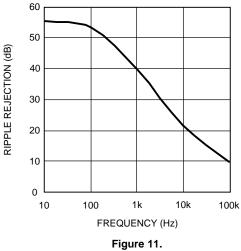





Typical Performance Characteristics


Unless otherwise specified, $V_{IN} = V_O + 1.5V$, $C_{IN} = C_{OUT} = 10\mu F X7R$ ceramic, $T_J = 25^{\circ}C$




SNVS221D-FEBRUARY 2003-REVISED APRIL 2013

Ground Current vs. Load Current

Ripple Rejection Ratio vs. Frequency

TEXAS INSTRUMENTS

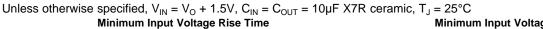
www.ti.com

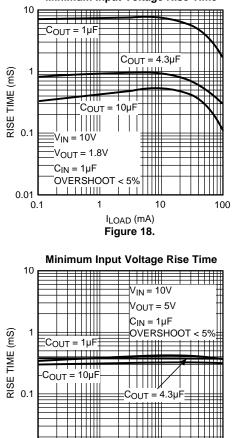
SNVS221D-FEBRUARY 2003-REVISED APRIL 2013

Typical Performance Characteristics (continued) Unless otherwise specified, $V_{IN} = V_O + 1.5V$, $C_{IN} = C_{OUT} = 10\mu F X7R$ ceramic, $T_J = 25^{\circ}C$ LP8340-1.8V Min VIN LP8340-ADJ Min VIN 3.6 3.3 3.2 3.4 3.1 125℃ 3.0 3.2 125℃ 25°C MIN VIN (V) MIN VIN (V) 2.9 3.0 2.8 25℃ 2.7 2.8 0°C 2.6 2.5 2.6 0°C 2.4 2.4 2.3 500 600 700 800 1000 500 600 700 800 900 1000 900 I_{LOAD} (mA) I_{LOAD} (mA) Figure 12. Figure 13. Load Transient Response Line Transient Response (I_{LOAD} = 10mA) V_{OUT} (100mV/DIV) V_{OUT} (100mV/DIV) I_{OUT} (10mA to 1.0A) V_{IN} (4.0V to 5.0V) 200µs/DIV 200µs/DIV Figure 14. Figure 15. Start-up Response **Minimum Input Voltage Rise Time** 10 **∏**С_{О∪Т} = 1µF V_{OUT} (2V/DIV) RISE TIME (mS) 0.1 C_{OUT} = 4.3µF ***** +++ $C_{OUT} = 10 \mu F$ | | | | V_{IN} = 10V ÷ VIN (0 to 5.0V) --V_{OUT} = 1.25V _C_{IN} = 1µF OVERSHOOT < 5% 0.01 50µs/DIV 10 100 0.1 1 I_{LOAD} (mA) Figure 16. Figure 17.

8

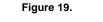
0.01


0.1

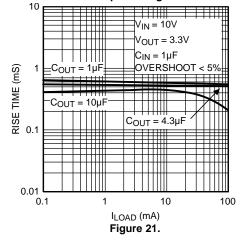

1

www.ti.com

Typical Performance Characteristics (continued)


10

I_{LOAD} (mA)


Figure 20.

100

Minimum Input Voltage Rise Time 10 $V_{IN} = 10V$ _Vout = 2.5V ++++++ -C_{IN} = 1µF C_{OUT} = 1µF OVERSHOOT < 5% L (mS) 10.1 ТÙП ╺ C_{OUT} = 10µF COUT = 4.3µF 0.01 0.1 1 10 100 ILOAD (mA)

Minimum Input Voltage Rise Time

SNVS221D-FEBRUARY 2003-REVISED APRIL 2013

www.ti.com

APPLICATIONS SECTION

GENERAL INFORMATION

The LP8340 is a low-dropout, low quiescent current linear regulator. As shown in Figure 22 it consists of a 1.25V reference, error amplifier, MOSFET driver, PMOS pass transistor and for the fixed output versions, an internal feedback network (R_1/R_2). In addition, the device is protected from overload by a thermal shutdown circuit and a foldback current limit circuit

The 1.25V reference is connected to the inverting input of the error amplifier. Regulation of the output voltage is achieved by means of negative feedback to the non-inverting input of the error amplifier. Feedback resistors R_1 and R_2 are either internal or external to the device, depending on whether it is a fixed voltage version or the adjustable version. The negative feedback and high open loop gain of the error amplifier cause the two inputs of the error amp to be virtually equal in voltage. If the output voltage changes due to load changes, the error amplifier and MOSFET driver provide the appropriate drive to the pass transistor to maintain the error amplifier's inputs as virtually equal.

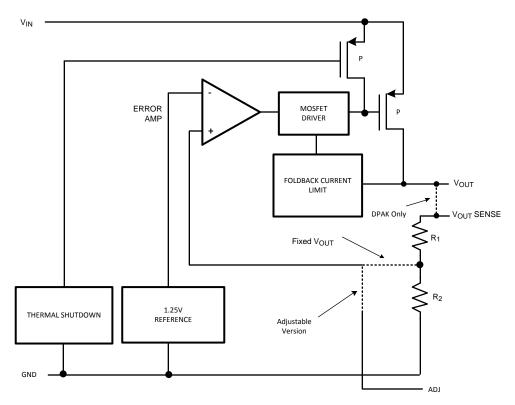


Figure 22. LP8340 Functional Block Diagram

EXTERNAL CAPACITOR

An Input capacitor of 1μ F or greater is required between the LP8340 V_{IN} pin and ground. While 1μ F will provide adequate bypassing of the V_{IN} supply larger values of input capacitor (i.e. 10μ F) can provide improved bypassing of power supply noise.

Stable operation can be achieved with an output capacitor of 1μ F or greater, either ceramic X7R dielectric or aluminum/tantalum electrolytic. While the minimum capacitor value is 1μ F, the typical output capacitor values selected range from 1μ F to 10μ F. The larger values provide improved load-transient response, power supply rejection and stability.

(2)

OUTPUT VOLTAGE SETTING (ADJ VERSION ONLY)

The output voltage is set according to the amount of negative feedback (Note that the pass transistor inverts the feedback signal). This feedback is determined by R_1 and R_2 with the resulting output voltage represented by the following equation:

$$V_{O} = V_{REF} \left[\frac{R_1}{R_2} + 1 \right]$$
(1)

Use the following equation to determine the values of R₁ and R₂ for a desired V_{OUT} (R₂ = 100k Ω is recommended).

$$R_1 = R_2 \left[\frac{V_0}{1.25V} - 1 \right]$$

MINIMUM LOAD CURRENT

A minimum load of 100µA is required for regulation and stability over the entire operating temperature range. If actual load current fall below 100µA it is recommended that a resistor of value $R_L = V_0/100µA$ be placed between V_0 and ground.

START UP CONSIDERATIONS

Under certain operating conditions, overshoot of V_{OUT} at start-up can occur. The observed overshoot is a function of rise time of V_{IN} waveform, C_{OUT} , start-up load current, and $V_{IN}-V_{OUT}$ differential. The relationship between these conditions is shown in the Typical Performance Characteristics curves (Minimum Input Voltage Rise Time). V_{IN} rise times above the curve result in <5% overshoot.

Customers are encouraged to check the suitability of LP8340 in their specific application.

SNVS221D-FEBRUARY 2003-REVISED APRIL 2013

CI	hanges from Revision C (April 2013) to Revision D	Page
•	Changed layout of National Data Sheet to TI format	11

Copyright © 2003–2013, Texas Instruments Incorporated

www.ti.com

6-Feb-2020

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
LP8340ILDX-ADJ/NOPB	ACTIVE	WSON	NGD	6	4500	Green (RoHS & no Sb/Br)	SN	Level-3-260C-168 HR	0 to 125	L078B	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

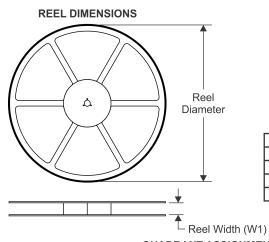
⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

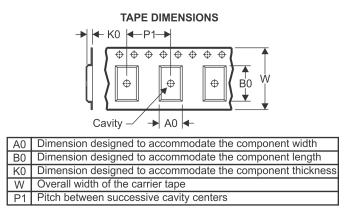
⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

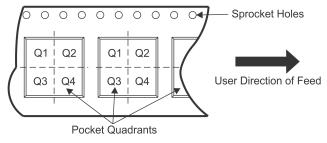
(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.


PACKAGE MATERIALS INFORMATION

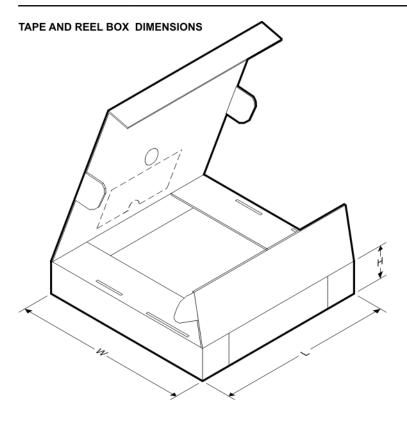
www.ti.com


Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

4	All dimensions are nominal	

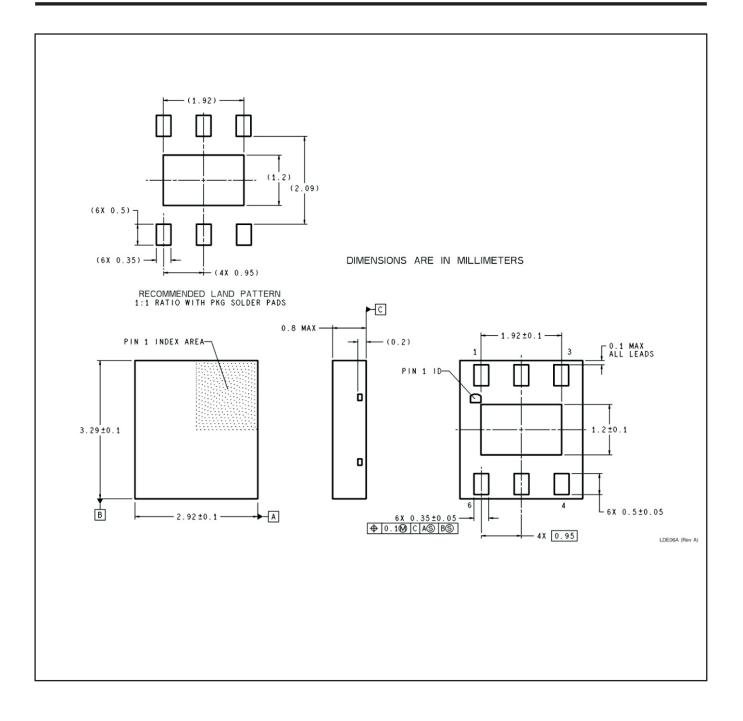

Device		Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
LP8340ILDX-ADJ/NOPB	WSON	NGD	6	4500	330.0	12.4	3.6	3.2	1.0	8.0	12.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

10-Aug-2016



*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
LP8340ILDX-ADJ/NOPB	WSON	NGD	6	4500	367.0	367.0	35.0

MECHANICAL DATA

NGD0006A

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2020, Texas Instruments Incorporated