CMOS 10- \& 12-Bit Monolithic Multiplying D/A Converters

AD7530, AD7531

FEATURES
AD7530: 10-Bit Resolution
AD7531: 12-Bit Resolution
8-, 9- and 10-Bit End Point Linearity
DTL/TTL/CMOS Compatible
Nonlinearity Tempco: 2ppm of FSR $/{ }^{\circ}$ C
Low Power Dissipation: 20 mW
Current Settling Time: 500ns
Feedthyough Error: 10 mV p-p @ 50 kHz

The AD7530 (AD7531) is a low cost, monolithic 10-bit (12-bit) multiplying digital-to-analog converter packaged in a 16 -pin (18-pin) DIP. The device uses advanced CMOS and thin film technologies providing up to 10-bit accuracy with DTL/TTL/CMOS compatibility.

The AD7530 (AD7531) operates from a +5 V to +15 V supply and dissipates only 20 mW , including the ladder network.

Typical applications include: digital/analog multiplication, CRT character generation, programmable power supplies, digitally controlled gain circuits, etc.

JRDERING INFORMATION

Nonlinearity	Temperature Range	
	$\mathbf{0}$ to $+\mathbf{7 0} 0^{\circ} \mathrm{C}$	$\mathbf{- 2 5}{ }^{\circ} \mathrm{C}$ to $+\mathbf{8 5}{ }^{\circ} \mathrm{C}$
0.2% (8-Bit)	AD 7530 JN	AD7530JD
	AD 7531 JN	AD7531JD
0.1% (9-Bit)	AD7530KN	AD7530KD
	AD7531 KN	AD7531KD
0.05% (10-Bit)	AD7530LN	AD7530LD
	AD7531LN	AD7531LD

AD7530, AD7531 FUNCTIONAL BLOCK DIAGRAM

DIGITAL INPUTS (DTL/TTL/CMOS COMPATIBLE)

PACKAGE IDENT/IFICATION
Suffix D: Cerarhic DIP

$$
\begin{aligned}
& \text { AD7530: (D16A) } \\
& \text { AD7531: (D18A) }
\end{aligned}
$$

Suffix N: Plastic DIP
AD7530: (N16B)
AD7531: (N18B)
${ }^{1}$ See Section 19 for package outline information.

PIN CONFIGURATION

NOTES

${ }^{1}$ Full scale range (FSR) is 10 V for unipolar mode and $\pm 10 \mathrm{~V}$ for bipolar mode.
${ }^{2}$ To minimize feedthrough with the ceramic package, the user must ground the metal lid. If the lid is not grounded, then the feedthrough is 10 mV typical and 30 mV maximum.
${ }^{3}$ Digital input levels should not go below ground or exceed the positive supply voltage, otherwise damage may occur.
*Same specifications as for AD7530.
Specifications subject to change without notice.

ABSOLUTE MAXIMUM RATINGS
$\left(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

V ${ }_{\text {DD }}$ (to Gnd) . +1	
VREF (to Gnd). $\pm 25 \mathrm{~V}$	
Digital Input Voltage Range V VD to Gnd	
Power Dissipation (package) up to $+75^{\circ} \mathrm{C}$. 450 mW	
Operating Temperature	
	JN, KN, LN Versions 0 to +7
	JD, KD, LD Versions $-25^{\circ} \mathrm{C}$ t

Figure 1 shows the analog circuit connections required polar binary (2 -quadrant multiplication) operation. The logic inputs are omitted for clarity. With a dc reference voltage or current (positive or negative polarity) applied at pin 15, the circuit is a unipolar D/A converter. With an ac reference voltage or current the circuit provides 2 -quadrant multiplication (digitally controlled attenuation). The input/output relationship is shown in Table I. Protection Schottky shown in Figure 1 is not required when using TRIFET output amplifiers such as the AD542 or AD544.
R1 provides full scale trim capability [i.e. -load the DAC register to 1111111111 , adjust R 1 for $\mathrm{V}_{\text {OUT }}=-V_{\text {REF }}$ $\left(1-2^{-10}\right)$]. Alternatively, Full Scale can be adjusted by omitting R1 and R2 and trimming the reference voltage magnitude.
C1 phase compensation (10 to 25 pF) may be required for stability when using high speed amplifiers. (C1 is used to cancel the pole formed by the DAC internal feedback resistance and output capacitance at IOUT1).
Amplifier A1 should be selected or trimmed to provide $\mathrm{V}_{\mathrm{OS}} \leqslant 10 \%$ of the voltage resolution at $\mathrm{V}_{\mathrm{OUT}}$. Additionally, the amplifier should exhibit a bias current which is low over the temperature range of interest (bias current causes output offset at $V_{\text {OUT }}$ equal to I_{B} times the DAC feedback resistance, nominally $15 \mathrm{k} \Omega$).

Figure 1. Unipolar Binary Operation (2-Quadrant Multiplication)

DIGITAL INPUT	ANALOG OUTPUT
11111111111	$-\mathrm{V}_{\mathrm{REF}}\left(1-2^{-10}\right)$
100000001	$-\mathrm{V}_{\text {REF }}\left(1 / 2+2^{-10}\right)$
1000000000	$\begin{gathered} -\mathrm{V}_{\text {REF }} \\ 2 \end{gathered}$
0111111111111	$-\mathrm{V}_{\text {REF }}\left(1 / 2-2^{-10}\right)$
0000000001	$-\mathrm{V}_{\text {REF }}\left(2^{-10}\right)$
0000000000	0

Table 1. Code Table - Unipolar Binary Operation

BIPOLAR OPERATION

(4-QUADRANT MULTIPLICATION)
Figure 2 and Table II illustrate the circuitry and code relationship for bipolar operation. With a dc reference (positive or negative polarity) or an ac reference the circuit provides offset binary operation. Protection Schottky shown in Figure 2 is not required when using TRIFET output amplifiers such as the AD 542 or AD5 44.
With he PAC registeploaded to 1000000000 , adjust R1 for Vou $=0 \mathrm{~V}$ (alternativery, one can omit R1 and R2 and a ljust the ratio of $\mathrm{R} / 3 \mathrm{t} / \mathrm{R}$ +for V O $\mathrm{ST}-\mathrm{QV}$). Full Scale triphming can be accomblished by adjusting the atpplitude ASix unipolar pp ration, A1 must be chosp $\begin{aligned} & \mathrm{V}_{\mathrm{R}} \mathrm{E} \text { for } \mathrm{l} \text { or by var ing the valug of R5. } \mathrm{OS} \text { and } \\ & \text { and }\end{aligned}$ low $I_{B} . R 3, R$ ahd R 5 nnust be select d f r matcling and tracking. Mismatch of 2 R3 to R4 caufes oth off et andFull Scale error. Mismatch of R5 to R4 oL2R 3 cause. Fu 1 Scale error. C1 phase compensation $(10 \mathrm{pF}$ to 25 pF$)$ n hay ber
quired for stability. quired for stability.

Figure 2. Bipolar Operation (4-Quadrant Multiplication)

DIGITAL INPUT	ANALOG OUTPUT
1111111111	$-\mathrm{V}_{\text {REF }}\left(1-2^{-9}\right)$
1000000001	$-\mathrm{V}_{\text {REF }}\left(2^{-9}\right)$
1000000000	0
0111111111	$\mathrm{V}_{\text {REF }}\left(2^{-9}\right)$
0000000001	$\mathrm{V}_{\text {REF }}\left(1-2^{-9}\right)$
0000000000	$\mathrm{V}_{\text {REF }}$

Table I/ Code Table - Bipolar (Offset Binary) Operation

RELATIVE ACCURACY: Relative accuracy or end-point nonlinearity is a measure of the maximum deviation from a straight line passing through the end-points of the DAC transfer function. It is measured after adjusting for ideal zero and full scale and is expressed in \% or ppm of full scale range or (sub) multiples of 1LSB.

RESOLUTION: Value of the LSB. For example, a unipolar converter with n bits has a resolution of $\left(2^{-n}\right)\left(V_{R E F}\right)$. A bipolar converter of n bits has a resolution of $[2-(n-1)]$ [$\mathrm{V}_{\mathrm{REF}}$]. Resolution in no way implies linearity.

SETTLING TIME: Time required for the output function of the DAC to settle to within $1 / 2 \mathrm{LSB}$ for a given digital input stimulus, i.e., 0 to Full Scale.

GAIN: Ratio of the DAC's operational amplifier output voltage to the input voltage.

AD7531

FEEDTHROUGH ERROR: Error caused by capacitive
çpling from $V_{R E F}$ to output with all switches OFF.

LEAD NO. 1 IDENTIFIED BY DOT OR NOTCH
LEADS ARE SOLDER OR TIN-PLATED KOVAR OR ALLOY 42

18-PIN CERAMIC DIP

