

Unit Loading/Fan Out

Pin Names	Description	54F/74F	
		U.L. HIGH/LOW	Input $\mathrm{I}_{\mathrm{IH}} / \mathrm{I}_{\mathrm{IL}}$ Output $\mathrm{IOH}_{\mathrm{OH}} / \mathrm{I}_{\mathrm{OL}}$
$\overline{\mathrm{CE}}$	Count Enable Input (Active LOW)	1.0/3.0	$20 \mu \mathrm{~A} /-1.8 \mathrm{~mA}$
CP	Clock Pulse Input (Active Rising Edge)	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\mathrm{P}_{0}-\mathrm{P}_{3}$	Parallel Data Inputs	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\overline{\mathrm{PL}}$	Asynchronous Parallel Load Input (Active LOW)	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
\bar{U} / D	Up/Down Count Control Input	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$Q_{0}-Q_{3}$	Flip-Flop Outputs	50/33.3	-1 mA/20 mA
$\overline{\mathrm{RC}}$	Ripple Clock Output (Active LOW)	50/33.3	-1 mA/20 mA
TC	Terminal Count Output (Active HIGH)	50/33.3	-1 mA/20 mA

Functional Description

The ' F 190 is a synchronous up/down BCD decade counter containing four edge-triggered flip-flops, with internal gating and steering logic to provide individual preset, count-up and count-down operations. It has an asynchronous parallel load capability permitting the counter to be preset to any desired number. When the Parallel Load ($\overline{\mathrm{PL}}$) input is LOW, information present on the Parallel Data inputs $\left(\mathrm{P}_{0}-\mathrm{P}_{3}\right)$ is loaded into the counter and appears on the Q outputs. This operation overrides the counting functions, as indicated in the Mode Select Table. A HIGH signal on the $\overline{\text { CE input inhib- }}$ its counting. When $\overline{\mathrm{CE}}$ is LOW, internal state changes are initiated synchronously by the LOW-to-HIGH transition of the clock input. The direction of counting is determined by the \bar{U} / D input signal, as indicated in the Mode Select Table, $\overline{\mathrm{CE}}$ and \bar{U} / D can be changed with the clock in either state, provided only that the recommended setup and hold times are observed.
$\overline{\mathrm{RC}}$ Truth Table

Inputs			Output
$\overline{\mathbf{C E}}$	TC*	$\mathbf{C P}$	$\overline{\mathbf{R C}}$
L	H	U-	U
H	X	X	H
X	L	X	H

*TC is generated internally
$H=$ HIGH Voltage Level
L = LOW Voltage Level
$\mathrm{X}=$ Immaterial
$\widetilde{\sim}=$ LOW-to-HIGH Clock Transition
Ч = LOW Pulse

State Diagram

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Storage Temperature
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature under Bias
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Junction Temperature under Bias
$-55^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$ Plastic
$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$V_{C C}$ Pin Potential to Ground Pin
-0.5 V to +7.0 V
-0.5 V to +7.0 V
Input Voltage (Note 2)
-30 mA to +5.0 mA
Voltage Applied to Output
in HIGH State (with $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$)
Standard Output
TRI-STATE ${ }^{\circledR}$ Output
Current Applied to Output in LOW State (Max)
twice the rated $\mathrm{l}_{\mathrm{OL}}(\mathrm{mA})$ useful life inpaired beyond which the device may these conditions is not implied.
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

Recommended Operating

 Conditions| Free Air Ambient Temperature | $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |
| :--- | ---: |
| Military | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ |
| \quad Commercial | |
| Supply Voltage | +4.5 V to +5.5 V |
| \quad Military | +4.5 V to +5.5 V |

DC Electrical Characteristics

Symbol	Parameter		54F/74F			Units	V_{cc}	Conditions
			Min	Typ	Max			
V_{IH}	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
$\mathrm{V}_{C D}$	Input Clamp Diode Voltage				-1.2	V	Min	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	$\begin{aligned} & 54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} \% \mathrm{~V}_{\mathrm{CC}} \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \\ & 2.7 \end{aligned}$			V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \end{aligned}$
$\mathrm{V}_{\text {OL }}$	Output LOW $54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}}$ Voltage $74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}}$				$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA} \end{aligned}$
IIH	Input HIGH Current	$\begin{aligned} & 54 \mathrm{~F} \\ & 74 \mathrm{~F} \end{aligned}$			$\begin{gathered} 20.0 \\ 5.0 \end{gathered}$	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current Breakdown Test				$\begin{aligned} & \hline 100 \\ & 7.0 \\ & \hline \end{aligned}$	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}$
$I_{\text {CEX }}$	Output HIGH 54 F Leakage Current 74 F				$\begin{gathered} 250 \\ 50 \\ \hline \end{gathered}$	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$
$\mathrm{V}_{\text {ID }}$	Input Leakage Test	74F	4.75			V	0.0	$\mathrm{I}_{\mathrm{ID}}=1.9 \mu \mathrm{~A}$ All Other Pins Grounded
IOD	Output Leakage Circuit Current	74F			3.75	$\mu \mathrm{A}$	0.0	$V_{I O D}=150 \mathrm{mV}$ All Other Pins Grounded
IIL	Input LOW Current				$\begin{aligned} & -0.6 \\ & -1.8 \end{aligned}$	mA	Max	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}, \text { except } \overline{\mathrm{CE}} \\ & \mathrm{~V}_{\mathrm{IN}}=0.5 \mathrm{~V}, \overline{\mathrm{CE}} \end{aligned}$
los	Output Short-Circuit Current		-60		-150	mA	Max	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
$\mathrm{I}_{\text {CCL }}$	Power Supply Current			38	55	mA	Max	$\mathrm{V}_{\mathrm{O}}=$ LOW

AC Electrical Characteristics

Symbol	Parameter	74F			54F		74F		Units
		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \hline \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Mil} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Com} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		
		Min	Typ	Max	Min	Max	Min	Max	
$\mathrm{f}_{\text {max }}$	Maximum Clock Frequency	100	125		75		90		MHz
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay CP to Q_{n}	$\begin{aligned} & 3.0 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.5 \\ & 8.5 \\ & \hline \end{aligned}$	$\begin{gathered} 7.5 \\ 11.0 \\ \hline \end{gathered}$	$\begin{array}{r} 3.0 \\ 5.0 \\ \hline \end{array}$	$\begin{gathered} 9.5 \\ 13.5 \\ \hline \end{gathered}$	$\begin{aligned} & 3.0 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{gathered} 8.5 \\ 12.0 \\ \hline \end{gathered}$	ns
${ }_{\mathrm{t}}^{\mathrm{PLH}}$	Propagation Delay CP to TC	$\begin{aligned} & 6.0 \\ & 5.0 \end{aligned}$	$\begin{gathered} 10.0 \\ 8.5 \end{gathered}$	$\begin{aligned} & 13.0 \\ & 11.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 16.5 \\ & 13.5 \end{aligned}$		$\begin{aligned} & 14.0 \\ & 12.0 \end{aligned}$	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay CP to $\overline{R C}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 9.0 \end{aligned}$		$\begin{aligned} & 8.5 \\ & 8.0 \end{aligned}$	ns
$\begin{aligned} & \text { tpLH } \\ & t_{\text {PHL }} \\ & \hline \end{aligned}$	Propagation Delay $\overline{\mathrm{CE}}$ to $\overline{\mathrm{RC}}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 8.0 \end{aligned}$	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $\overline{\mathrm{U}} / \mathrm{D}$ to $\overline{\mathrm{RC}}$	$\begin{aligned} & 7.0 \\ & 5.5 \\ & \hline \end{aligned}$	$\begin{gathered} 11.0 \\ 9.0 \\ \hline \end{gathered}$	$\begin{aligned} & 18.0 \\ & 12.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.0 \\ & 5.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 22.0 \\ & 14.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.0 \\ & 5.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 20.0 \\ & 13.0 \\ & \hline \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay \bar{U} / D to $\overline{T C}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 10.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 13.5 \\ & 12.5 \\ & \hline \end{aligned}$		$\begin{aligned} & 11.0 \\ & 11.0 \end{aligned}$	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $P_{n} \text { to } Q_{n}$	$\begin{aligned} & 3.0 \\ & 6.0 \end{aligned}$	$\begin{gathered} 4.5 \\ 10.0 \\ \hline \end{gathered}$	$\begin{gathered} 7.0 \\ 13.0 \\ \hline \end{gathered}$	$\begin{aligned} & 3.0 \\ & 6.0 \end{aligned}$	$\begin{gathered} 9.0 \\ 16.0 \\ \hline \end{gathered}$	$\begin{aligned} & 3.0 \\ & 6.0 \end{aligned}$	$\begin{gathered} 8.0 \\ 14.0 \\ \hline \end{gathered}$	ns
${ }^{\text {tpLH }}$ tpHL	Propagation Delay $\overline{\mathrm{PL}}$ to Q_{n}	$\begin{aligned} & 5.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 11.0 \\ & 12.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 13.0 \\ & 14.5 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 12.0 \\ & 13.0 \end{aligned}$	ns

AC Operating Requirements

Ordering Information

The device number is used to form part of a simplified purchasing code where the package type and temperature range are defined as follows:

Physical Dimensions inches (millimeters) (Continued)

16-Lead Ceramic Flatpak (F) NS Package Number W16A

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

