FOD3120

High Noise Immunity, 2.5A Output Current, Gate Drive Optocoupler

Features

■ High noise immunity characterized by $35 \mathrm{kV} / \mu \mathrm{s}$ minimum common mode rejection
■ 2.5A peak output current driving capability for most 1200V/20A IGBT
■ Use of P-channel MOSFETs at output stage enables output voltage swing close to the supply rail
■ Wide supply voltage range from 15 V to 30 V
■ Fast switching speed

- 400ns max. propagation delay
- 100ns max. pulse width distortion

■ Under Voltage LockOut (UVLO) with hysteresis

- Extended industrial temperate range, $-40^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$ temperature range
- Safety and regulatory approved
- UL1577, $5000 \mathrm{~V}_{\mathrm{RMS}}$ for 1 min .
- IEC60747-5-2
- $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ of 1Ω (typ.) offers lower power dissipation
■ $>8.0 \mathrm{~mm}$ clearance and creepage distance (option 'T' or 'TS')
■ 1,414V Peak Working Insulation Voltage ($\mathrm{V}_{\text {IORM }}$)

Applications

- Industrial inverter

■ Uninterruptible power supply

- Induction heating

■ Isolated IGBT/Power MOSFET gate drive

Functional Block Diagram

Note:

Package Outlines

A $0.1 \mu \mathrm{~F}$ bypass capacitor must be connected between pins 5 and 8 .

Truth Table

LED	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}} \text { "Positive Going" } \\ \text { (Turn-on) } \end{gathered}$	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}} \text { "Negative Going" } \\ \text { (Turn-off) } \end{gathered}$	V_{0}
Off	0 V to 30 V	0 V to 30 V	Low
On	OV to 11.5 V	0 V to 10 V	Low
On	11.5 V to 13.5 V	10 V to 12 V	Transition
On	13.5 V to 30 V	12 V to 30 V	High

Safety and Insulation Ratings

As per IEC 60747-5-2. This optocoupler is suitable for "safe electrical insulation" only within the safety limit data. Compliance with the safety ratings shall be ensured by means of protective circuits.

Symbol	Parameter	Min.	Typ.	Max.	Unit
	Installation Classifications per DIN VDE 0110/1.89 Table 1 For Rated Mains Voltage < 150Vrms		I-IV		
	For Rated Mains Voltage < 300Vrms		I-IV		
	For Rated Mains Voltage < 450Vrms		I-III		
	For Rated Mains Voltage < 600Vrms		I-III		
	For Rated Mains Voltage < 1000Vrms (Option T, TS)		I-III		
	Climatic Classification		40/100/21		
	Pollution Degree (DIN VDE 0110/1.89)		2		
CTI	Comparative Tracking Index	175			
$V_{P R}$	Input to Output Test Voltage, Method b, $\mathrm{V}_{\text {IORM }} \times 1.875=\mathrm{V}_{\mathrm{PR}}, 100 \%$ Production Test with $\mathrm{tm}=1$ sec., Partial Discharge < 5pC	2651			
	Input to Output Test Voltage, Method a, $\mathrm{V}_{\text {IORM }} \times 1.5=\mathrm{V}_{\mathrm{PR}}$, Type and Sample Test with $\mathrm{tm}=60 \mathrm{sec}$.,Partial Discharge $<5 \mathrm{pC}$	2121			
$V_{\text {IORM }}$	Max Working Insulation Voltage	1,414			$\mathrm{V}_{\text {peak }}$
$\mathrm{V}_{\text {IOTM }}$	Highest Allowable Over Voltage	6000			$V_{\text {peak }}$
	External Creepage	8			mm
	External Clearance	7.4			mm
	External Clearance (for Option T or TS - 0.4" Lead Spacing)	10.16			mm
	Insulation Thickness	0.5			mm
$\mathrm{T}_{\text {Case }}$	Safety Limit Values - Maximum Values Allowed in the Event of a Failure Case Temperature	150			${ }^{\circ} \mathrm{C}$
$\mathrm{I}_{\text {S,INPUT }}$	Input Current	25			mA
$\mathrm{P}_{\text {S, OUTPUT }}$	Output Power (Duty Factor $\leq 2.7 \%$)	250			mW
R_{IO}	Insulation Resistance at $\mathrm{T}_{\mathrm{S}}, \mathrm{V}_{1 \mathrm{O}}=500 \mathrm{~V}$	10^{9}			Ω

Absolute Maximum Ratings ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified)
Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Value	Units
$\mathrm{T}_{\text {STG }}$	Storage Temperature	-55 to +125	${ }^{\circ} \mathrm{C}$
TopR	Operating Temperature	-40 to +100	${ }^{\circ} \mathrm{C}$
T_{J}	Junction Temperature	-40 to +125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {SOL }}$	Lead Wave Solder Temperature (refer to page 21 for reflow solder profile)	260 for 10sec	${ }^{\circ} \mathrm{C}$
$\mathrm{I}_{\mathrm{F}(\mathrm{AVG})}$	Average Input Current	25	mA
$\mathrm{I}_{\text {(PEAK) }}$	Peak Transient Forward Current ${ }^{(10)}$	1	A
f	Operating Frequency ${ }^{(11)}$	50	kHz
V_{R}	Reverse Input Voltage	5	V
$\mathrm{l}_{\text {(PEAK) }}$	Peak Output Current ${ }^{(1)}$	3.0	A
$\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\text {EE }}$	Supply Voltage	0 to 35	V
	$\mathrm{T}_{\mathrm{A}} \geq 90^{\circ} \mathrm{C}$	0 to 30	
$\mathrm{V}_{\text {O(PEAK) }}$	Peak Output Voltage	0 to V_{CC}	V
$\mathrm{t}_{\mathrm{R}(\mathrm{IN})}, \mathrm{t}_{\mathrm{F}(\mathrm{IN})}$	Input Signal Rise and Fall Time	500	ns
PD_{1}	Input Power Dissipation ${ }^{(2)(4)}$	45	mW
PD_{O}	Output Power Dissipation ${ }^{(3)(4)}$	250	mW

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to absolute maximum ratings.

Symbol	Parameter	Value	Units
T_{A}	Ambient Operating Temperature	-40 to +100	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}$	Power Supply	15 to 30	V
$\mathrm{I}_{\mathrm{F}(\mathrm{ON})}$	Input Current (ON)	7 to 16	mA
$\mathrm{~V}_{\mathrm{F}(\mathrm{OFF})}$	Input Voltage (OFF)	0 to 0.8	V

Isolation Characteristics

Apply over all recommended conditions, typical value is measured at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Units
$\mathrm{V}_{\text {ISO }}$	Input-Output Isolation Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R} . \mathrm{H} .<50 \%, \mathrm{t}=1.0 \mathrm{~min}$, $\mathrm{I}_{-\mathrm{O}} \leq 10 \mu \mathrm{~A}, 50 \mathrm{~Hz}(5)(6)$	5000			$\mathrm{~V}_{\mathrm{RMS}}$
$\mathrm{R}_{\mathrm{ISO}}$	Isolation Resistance	$\mathrm{V}_{\mathrm{I}-\mathrm{O}}=500 \mathrm{~V}^{(5)}$		10^{11}		Ω
$\mathrm{C}_{\text {ISO }}$	Isolation Capacitance	$\mathrm{V}_{\mathrm{I}-\mathrm{O}}=0 \mathrm{~V}$, Freq $=1.0 \mathrm{MHz}^{(5)}$		1	pF	

Electrical Characteristics
Apply over all recommended conditions, typical value is measured at $\mathrm{V}_{\mathrm{CC}}=30 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=\mathrm{Ground}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified.

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Units
V_{F}	Input Forward Voltage	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$	1.2	1.5	1.8	V
$\Delta\left(\mathrm{V}_{\mathrm{F}} / \mathrm{T}_{\mathrm{A}}\right)$	Temperature Coefficient of Forward Voltage			-1.8		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
$B V_{R}$	Input Reverse Breakdown Voltage	$\mathrm{I}_{\mathrm{R}}=10 \mu \mathrm{~A}$	5			V
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{VF}=0 \mathrm{~V}$		60		pF
IOH	High Level Output Current ${ }^{(1)}$	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}-3 \mathrm{~V}$	-1	-2.0	-2.5	A
		$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}-6 \mathrm{~V}$	-2.0		-2.5	
l OL	Low Level Output Current ${ }^{(1)}$	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\text {EE }}+3 \mathrm{~V}$	1	2.0	2.5	A
		$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{EE}}+6 \mathrm{~V}$	2.0		2.5	
V_{OH}	High Level Output Voltage	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{O}}=-2.5 \mathrm{~A}$	$\mathrm{V}_{\mathrm{CC}}-6.25 \mathrm{~V}$	$\mathrm{V}_{\mathrm{CC}}-2.5 \mathrm{~V}$		V
		$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{O}}=-100 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{CC}}-0.25 \mathrm{~V}$	$\mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V}$		
$\mathrm{V}_{\text {OL }}$	Low Level Output Voltage	$\mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{I}_{\mathrm{O}}=2.5 \mathrm{~A}$		$\mathrm{V}_{\mathrm{EE}}+2.5 \mathrm{~V}$	$\mathrm{V}_{\mathrm{EE}}+6.25 \mathrm{~V}$	V
		$\mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{I}_{\mathrm{O}}=100 \mathrm{~mA}$		$\mathrm{V}_{\mathrm{EE}}+0.1 \mathrm{~V}$	$\mathrm{V}_{\mathrm{EE}}+0.25 \mathrm{~V}$	
$\mathrm{I}_{\mathrm{CCH}}$	High Level Supply Current	$\mathrm{V}_{\mathrm{O}}=$ Open, $\mathrm{I}_{\mathrm{F}}=7$ to 16 mA		2.8	3.8	mA
$\mathrm{I}_{\text {CCL }}$	Low Level Supply Current	$\mathrm{V}_{\mathrm{O}}=$ Open, $\mathrm{V}_{\mathrm{F}}=0$ to 0.8 V		2.8	3.8	mA
$\mathrm{I}_{\text {FLH }}$	Threshold Input Current Low to High	$\mathrm{I}_{\mathrm{O}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}>5 \mathrm{~V}$		2.3	5.0	mA
$\mathrm{V}_{\text {FHL }}$	Threshold Input Voltage High to Low	$\mathrm{I}_{\mathrm{O}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}<5 \mathrm{~V}$	0.8			V
V UVLO+	Under Voltage Lockout Threshold	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}>5 \mathrm{~V}$	11.5	12.7	13.5	V
$\mathrm{V}_{\text {UVLO- }}$		$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}<5 \mathrm{~V}$	10.0	11.2	12.0	V
UVLOHYS	Under Voltage Lockout Threshold Hysteresis			1.5		V

Switching Characteristics

Apply over all recommended conditions, typical value is measured at $\mathrm{V}_{\mathrm{CC}}=30 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=\mathrm{Ground}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified.

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Units
$\mathrm{t}_{\text {PHL }}$	$\begin{array}{l}\text { Propagation Delay Time to Logic } \\ \text { Low Output }\end{array}$	$\begin{array}{l}\mathrm{I}_{\mathrm{F}}=7 \mathrm{~mA} \text { to } 16 \mathrm{~mA}, \\ \mathrm{Rg}=10 \Omega, \mathrm{Cg}=10 \mathrm{nF},\end{array}$				
$\mathrm{f}=10 \mathrm{kHz}$, Duty Cycle $=50 \%$						

Notes:

1. Maximum pulse width $=10 \mu \mathrm{~s}$, maximum duty cycle $=1.1 \%$
2. Derate linearly above $87^{\circ} \mathrm{C}$, free air temperature at a rate of $0.77 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
3. No derating required across temperature range.
4. Functional operation under these conditions is not implied. Permanent damage may occur if the device is subjected to conditions outside these ratings.
5. Device is considered a two terminal device: Pins 2 and 3 are shorted together and Pins 5, 6, 7 and 8 are shorted together.
6. $5,000 \mathrm{~V}_{\mathrm{RMS}}$ for 1 minute duration is equivalent to $6,000 \mathrm{VAC}_{\mathrm{RMS}}$ for 1 second duration.
7. The difference between $t_{\text {PHL }}$ and $t_{\text {PLH }}$ between any two FOD3120 parts under same test conditions.
8. Common mode transient immunity at output high is the maximum tolerable negative $\mathrm{dVcm} / \mathrm{dt}$ on the trailing edge of the common mode impulse signal, Vcm , to assure that the output will remain high (i.e. $\mathrm{V}_{\mathrm{O}}>15.0 \mathrm{~V}$).
9. Common mode transient immunity at output low is the maximum tolerable positive $\mathrm{dV} \mathrm{cm} / \mathrm{dt}$ on the leading edge of the common pulse signal, Vcm , to assure that the output will remain low (i.e. $\mathrm{V}_{\mathrm{O}}<1.0 \mathrm{~V}$).
10. Pulse Width, $\mathrm{P}_{\mathrm{W}} \leq 1 \mu \mathrm{~s}, 300 \mathrm{pps}$
11. Exponential Waveform, $\mathrm{I}_{\mathrm{O}(\text { PEAK })} \leq|2.5 \mathrm{~A}|(\leq 0.3 \mu \mathrm{~s})$

Typical Performance Curves

Fig. 2 Output High Voltage Drop vs. Ambient Temperature

Fig. 4 Output High Current vs. Ambient Temperature

Fig. 6 Output Low Voltage vs. Ambient Temperature

Typical Performance Curves (Continued)

Fig. 9 Supply Current vs. Ambient Temperature

Fig. 11 Low to High Input Current Threshold vs.

Fig. 8 Output Low Current vs. Ambient Temperature

Fig. 10 Supply Current vs. Supply Voltage

Typical Performance Curves (Continued)

Fig. 13 Propagation Delay vs. LED Forward Current

Fig. 15 Propagation Delay vs. Sereies Load Resistance

Fig. 17 Transfer Characteristics

Fig. 14 Propagation Delay vs. Ambient Temperature

Fig. 16 Propagation Delay vs. Load Capacitance

Fig. 18 Input Forward Current vs. Forward Voltage

Test Circuit

Figure 20. $\mathrm{IOL}_{\mathrm{OL}}$ Test Circuit

Figure 21. $\mathrm{IOH}_{\mathrm{OH}}$ Test Circuit

Test Circuit (Continued)

Figure 22. V_{OH} Test Circuit

Figure 23. V_{OL} Test Circuit

Test Circuit (Continued)

Figure 24. $\mathrm{I}_{\mathrm{CCH}}$ Test Circuit

Figure 25. $\mathrm{I}_{\mathrm{CCL}}$ Test Circuit

Test Circuit (Continued)

Figure 26. $\mathrm{I}_{\mathrm{FLH}}$ Test Circuit

Figure 27. $\mathrm{V}_{\mathrm{FHL}}$ Test Circuit

Figure 28. UVLO Test Circuit

Test Circuit (Continued)

Figure 29. $t_{\text {PHL }}, t_{\text {PLH }}, t_{R}$ and t_{F} Test Circuit and Waveforms

Figure 30. CMR Test Circuit and Waveforms

Ordering Information

Part Number	Package	Packing Method
FOD3120	DIP 8-Pin	Tube (50 units per tube)
FOD3120S	SMT 8-Pin (Lead Bend)	Tube (50 units per tube)
FOD3120SD	SMT 8-Pin (Lead Bend)	Tape and Reel (1,000 units per reel)
FOD3120V	DIP 8-Pin, IEC60747-5-2 option	Tube (50 units per tube)
FOD3120SV	SMT 8-Pin (Lead Bend), IEC60747-5-2 option	Tube (50 units per tube)
FOD3120SDV	SMT 8-Pin (Lead Bend), IEC60747-5-2 option	Tape and Reel (1,000 units per reel)
FOD3120T	DIP 8-Pin, 0.4" Lead Spacing	Tube (50 units per tube)
FOD3120TV	DIP 8-Pin, 0.4" Lead Spacing, IEC60747-5-2 option	Tube (50 units per tube)
FOD3120TS	SMT 8-Pin, 0.4" Lead Spacing	Tube (50 units per tube)
FOD3120TSV	SMT 8-Pin, 0.4" Lead Spacing, IEC60747-5-2 option	Tube (50 units per tube)
FOD3120TSR2	SMT 8-Pin, 0.4" Lead Spacing	Tape and Reel (700 units per reel)
FOD3120TSR2V	SMT 8-Pin, 0.4" Lead Spacing, IEC60747-5-2 option	Tape and Reel (700 units per reel)

Definitions	
1	Fairchild logo
2	Device number
3	IEC60747-5-2 Option (only appears on component ordered with this option) (Pending approval)
4	Two digit year code, e.g., '08'
5	Two digit work week ranging from '01' to ‘53'
6	Assembly package code

Carrier Tape Specifications (Option SD)

Symbol	Description	Dimension in mm
W	Tape Width	16.0 ± 0.3
t	Tape Thickness	0.30 ± 0.05
P_{0}	Sprocket Hole Pitch	4.0 ± 0.1
D_{0}	Sprocket Hole Diameter	1.55 ± 0.05
E	Sprocket Hole Location	1.75 ± 0.10
F	Pocket Location	7.5 ± 0.1
P_{2}		2.0 ± 0.1
P	Pocket Pitch	12.0 ± 0.1
$\mathrm{~A}_{0}$	Pocket Dimensions	10.30 ± 0.20
$\mathrm{~B}_{0}$		10.30 ± 0.20
$\mathrm{~K}_{0}$		4.90 ± 0.20
$\mathrm{~W}_{1}$	Cover Tape Width	13.2 ± 0.2
d	Cover Tape Thickness	0.1 max
	Max. Component Rotation or Tilt	10°
R	Min. Bending Radius	30

Carrier Tape Specifications (Option TSR2)

Symbol	Description	Dimension in mm
W	Tape Width	24.0 ± 0.3
t	Tape Thickness	0.40 ± 0.1
P_{0}	Sprocket Hole Pitch	4.0 ± 0.1
D_{0}	Sprocket Hole Diameter	1.55 ± 0.05
E	Sprocket Hole Location	1.75 ± 0.10
F	Pocket Location	11.5 ± 0.1
P_{2}		2.0 ± 0.1
P	Pocket Pitch	16.0 ± 0.1
$\mathrm{~A}_{0}$	Pocket Dimensions	12.80 ± 0.1
$\mathrm{~B}_{0}$		10.35 ± 0.1
$\mathrm{~K}_{0}$		5.7 ± 0.1
$\mathrm{~W}_{1}$	Cover Tape Width	21.0 ± 0.1
d	Cover Tape Thickness	0.1 max
	Max. Component Rotation or Tilt	10°
R	Min. Bending Radius	30

Reflow Profile

Profile Freature	Pb-Free Assembly Profile
Temperature Min. (Tsmin)	$150^{\circ} \mathrm{C}$
Temperature Max. (Tsmax)	$200^{\circ} \mathrm{C}$
Time (t_{S}) from (Tsmin to Tsmax)	$60-120$ seconds
Ramp-up Rate (t_{L} to t_{P})	$3^{\circ} \mathrm{C} /$ second max.
Liquidous Temperature (T_{L})	$217^{\circ} \mathrm{C}$
Time (t_{L}) Maintained Above (T_{L})	$60-150$ seconds
Peak Body Package Temperature	$260^{\circ} \mathrm{C}+0^{\circ} \mathrm{C} /-5^{\circ} \mathrm{C}$
Time (t_{P}) within $5^{\circ} \mathrm{C}$ of $260^{\circ} \mathrm{C}$	30 seconds
Ramp-down Rate $\left(\mathrm{T}_{\mathrm{P}}\right.$ to T_{L})	$6^{\circ} \mathrm{C} /$ second max.
Time $25^{\circ} \mathrm{C}$ to Peak Temperature	8 minutes max.

FAIRCHILD

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPower ${ }^{\text {TM }}$	F-PFS ${ }^{\text {TM }}$	OPTOPLANAR ${ }^{\left({ }^{(1)}\right.}$	C SYSTEM
AttitudeEngine ${ }^{\text {TM }}$	FRFET ${ }^{\circledR}$		\checkmark GENERAL
Awinda ${ }^{\text {® }}$	Global Power Resource ${ }^{\text {SM }}$	${ }^{(8)}$	TinyBoost ${ }^{\text {® }}$
AX-CAP ${ }^{\text {® }}$ *	GreenBridge ${ }^{\text {TM }}$	Power Supply WebDesigner ${ }^{\text {TM }}$	TinyBuck ${ }^{\text {® }}$
BitSiC ${ }^{\text {™ }}$	Green FPS ${ }^{\text {™ }}$	PowerTrench ${ }^{\text {® }}$	TinyCalc ${ }^{\text {™ }}$
Build it Now $^{\text {™ }}$	Green FPS ${ }^{\text {TM }}$ e-Series ${ }^{\text {™ }}$	PowerXS ${ }^{\text {TM }}$	TinyLogic ${ }^{\text {® }}$
CorePLUS ${ }^{\text {™ }}$	Gmax ${ }^{\text {™ }}$	Programmable Active Droop ${ }^{\text {TM }}$	TINYOPTOTM
CorePOWER ${ }^{\text {TM }}$	GTO ${ }^{\text {™ }}$	QFET ${ }^{\circledR}$	TinyPower ${ }^{\text {TM }}$
CROSSVOLT ${ }^{\text {TM }}$	IntellimAX ${ }^{\text {TM }}$	$\mathrm{QS}^{\text {™ }}$	TinyPWM ${ }^{\text {™ }}$
CTL ${ }^{\text {™ }}$	ISOPLANAR ${ }^{\text {™ }}$	Quiet Series ${ }^{\text {TM }}$	TinyWire ${ }^{\text {TM }}$
Current Transfer Logic ${ }^{\text {TM }}$	Making Small Speakers Sound Louder	RapidConfigure ${ }^{\text {TM }}$	TranSiC ${ }^{\text {™ }}$
DEUXPEED ${ }^{\text {® }}$	and Better ${ }^{\text {TM }}$	(${ }^{\text {TM }}$	TriFault Detect ${ }^{\text {TM }}$
Dual Cool ${ }^{\text {TM }}$	MegaBuck ${ }^{\text {™ }}$		TRUECURRENT ${ }^{\text {® }}$ *
EcoSPARK ${ }^{\text {® }}$	MICROCOUPLER ${ }^{\text {TM }}$	Saving our world, $1 \mathrm{~mW} / \mathrm{W} / \mathrm{kW}$ at a time ${ }^{\text {TM }}$	μ SerDes $^{\text {TM }}$
EfficientMax ${ }^{\text {TM }}$	MicroFET ${ }^{\text {TM }}$	SignalWise ${ }^{\text {TM }}$	
ESBC ${ }^{\text {™ }}$	MicroPak ${ }^{\text {M }}$	SmartMax ${ }^{\text {TM }}$ SMART START ${ }^{\text {TM }}$	SerDes*
Γ^{\circledR}	MicroPak2 ${ }^{\text {™ }}$	SMART START ${ }^{\text {TM }}$ Solution for Your Success ${ }^{\text {TM }}$	UHC^{\circledR}
Fairchild ${ }^{\text {® }}$	MillerDrive ${ }^{\text {TM }}$	Solutions for Your Success ${ }^{\text {TM }}$ SPM ${ }^{\text {® }}$	Ultra FRFET ${ }^{\text {TM }}$
Fairchild Semiconductor ${ }^{\text {® }}$	MotionMax ${ }^{\text {™ }}$	STEALTH ${ }^{\text {TM }}$	UniFET ${ }^{\text {m }}$
FACT Quiet Series ${ }^{\text {TM }}$	MotionGrid ${ }^{\text {® }}$	SuperFET ${ }^{\text {® }}$	VCX ${ }^{\text {TM }}$
$\mathrm{FACT}^{\text {® }}$	MTi ${ }^{\text {® }}$	SuperSOT ${ }^{\text {mm-3 }}$	VisualMax ${ }^{\text {TM }}$
FastvCore ${ }^{\text {TM }}$	MVN ${ }^{\text {M }}$	SuperSOT ${ }^{\text {TM }}$-6	VoltagePlus ${ }^{\text {TM }}$
FETBench ${ }^{\text {™ }}$	mWSaver ${ }^{\text {® }}$	SuperSOT ${ }^{\text {TM }}$-8	Xsens ${ }^{\text {m }}$
FPS ${ }^{\text {™ }}$	OptoHiT ${ }^{\text {TM }}$	SupreMOS ${ }^{\text {S }}$ S ${ }^{\text {® }}$	仙童 ${ }^{\circledR}$
	OPTOLOGIC ${ }^{\circledR}$	Sync-Lock ${ }^{\text {TM }}$	

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. TO OBTAIN THE LATEST, MOST UP-TO-DATE DATASHEET AND PRODUCT INFORMATION, VISIT OUR WEBSITE AT HTTP://WWW.FAIRCHILDSEMI.COM. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

AUTHORIZED USE

Unless otherwise specified in this data sheet, this product is a standard commercial product and is not intended for use in applications that require extraordinary levels of quality and reliability. This product may not be used in the following applications, unless specifically approved in writing by a Fairchild officer: (1) automotive or other transportation, (2) military/aerospace, (3) any safety critical application - including life critical medical equipment - where the failure of the Fairchild product reasonably would be expected to result in personal injury, death or property damage. Customer's use of this product is subject to agreement of this Authorized Use policy. In the event of an unauthorized use of Fairchild's product, Fairchild accepts no liability in the event of product failure. In other respects, this product shall be subject to Fairchild's Worldwide Terms and Conditions of Sale, unless a separate agreement has been signed by both Parties.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Terms of Use
Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.
PRODUCT STATUS DEFINITIONS
Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

