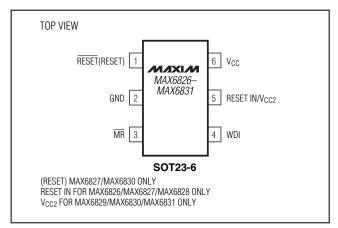


General Description

The MAX6826-MAX6831 are ultra-low-voltage microprocessor (µP) supervisory circuits designed to monitor two power supplies and have manual reset and watchdog input functions. These devices assert a system reset if any of the monitored supplies fall below the preprogrammed thresholds, and maintain reset for a minimum timeout period after the supplies rise above the threshold. Microprocessor supervisors significantly improve system reliability and accuracy compared to separate ICs or discrete components. These devices monitor primary voltages from +1.8V to +5.0V and secondary voltages from +0.9V to +2.5V. These devices are guaranteed to be in the correct state for VCC down to +1.0V.


A variety of preprogrammed reset threshold voltages are available (see the Threshold Suffix Guide). The devices include manual reset and watchdog inputs. The MAX6829/MAX6830/MAX6831 provide a factorytrimmed threshold to monitor a 2nd voltage down to +0.9V. The MAX6826/MAX6829 have a push-pull RESET, the MAX6827/MAX6830 have a push-pull RESET and the MAX6828/MAX6831 have an open-drain RESET. The MAX6826/MAX6827/MAX6828 have an auxiliary monitor that allows user adjustable input to monitor voltages down to +0.6V. See Selector Guide for functions available.

Applications

Portable/Battery-Powered Equipment **Embedded Controllers** Intelligent Instruments

Automotive Systems Critical µP Monitoring Multivoltage Systems

Pin Configuration

Typical Operating Circuit, Threshold Suffix Guide, and Selector Guide appear at end of data sheet.

Features

- ♦ Monitor Primary V_{CC} Supplies from +1.8V to +5.0V and Secondary V_{CC2} Supplies from +0.9V to +2.5V
- ♦ User Adjustable RESET IN Down to +0.63V (MAX6826/MAX6827/MAX6828)
- ♦ 140ms (min) Reset Timeout Delay
- ♦ 1.6s Watchdog Timeout Period
- ♦ Manual Reset Input
- **♦ Three Reset Output Options** Push-Pull RESET **Push-Pull RESET Open-Drain RESET**
- ♦ Guaranteed Reset Valid Down to V_{CC} = +1.0V
- ♦ Immune to Short Negative V_{CC} Transients
- **♦ No External Components**
- ♦ Small 6-pin SOT23 Packages

Ordering Information

PART†	TEMP RANGE	PIN-PACKAGE
MAX6826_UT-T	-40°C to +125°C	6 SOT23-6
MAX6827_UT-T	-40°C to +125°C	6 SOT23-6
MAX6828_UT-T	-40°C to +125°C	6 SOT23-6
MAX6829UT-T	-40°C to +125°C	6 SOT23-6
MAX6830UT-T	-40°C to +125°C	6 SOT23-6
MAX6831UT-T	-40°C to +125°C	6 SOT23-6

†Insert the desired suffix letter (from Standard Versions table) into the blanks to complete the part number.

Devices are available in both leaded and lead-free packaging. Specify lead-free by replacing "-T" with "+T" when ordering.

Standard Versions Table*

MAX6826/MAX6827/MAX6828						
L						
S						
R						
Z						
V						

*Samples are typically available for standard versions only. The MAX6826/MAX6827/MAX6828 require a 2.5k minimum order increment for all versions. Contact factory for availability.

Standard Versions Table continued at end of data sheet.

MIXIM

Maxim Integrated Products 1

ABSOLUTE MAXIMUM RATINGS

VCC, VCC2 to GND	0.3V to +6.0V
Open-Drain RESET	0.3V to +6.0V
Push-Pull RESET, RESET	$0.3V$ to $(V_{CC} + 0.3V)$
MR, WDI, RESET IN	0.3V to $(V_{CC} + 0.3V)$
Input Current (VCC)	20mA
Output Current (RESET, RESET)	20mA
Continuous Power Dissipation (T _A = +1	70°C)
6-Pin SOT23 (derate 8.7mW/°C above	e +70°C)696mW

Operating Temperature Range	40°C to +125°C
Junction Temperature	+150°C
Storage Temperature Range	65°C to +150°C
Lead Temperature (soldering, 10s)	+300°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

 $(V_{CC} = +4.5 \text{V to } +5.5 \text{V for MAX68_L/M}, \ V_{CC} = +2.7 \text{V to } +3.6 \text{V for MAX68__T/S/R}, \ V_{CC} = +2.1 \text{V to } +2.75 \text{V for MAX68__Z/Y}, \ V_{CC} = +1.53 \text{V to } +2.0 \text{V for MAX68__W/V}; \ T_A = -40 ^{\circ}\text{C} \ \text{to } +125 ^{\circ}\text{C}, \ \text{unless otherwise specified}. \ Typical values are at \ T_A = +25 ^{\circ}\text{C}.) \ (\text{Note 1})$

PARAMETER	SYMBOL	C	ONDITIONS	MIN	TYP	MAX	UNITS
Operating Voltage Renge	Vac	$T_A = 0$ °C to +85°C		1.0		5.5	V
Operating Voltage Range	VCC	$T_A = -40^{\circ}C \text{ to } +12$	5°C	1.2		5.5	\ \
		$V_{CC} = +5.5V,$	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		10	20	
V _{CC} Supply Current	loo	no load	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$			30	
MR and WDI Unconnected	Icc	$V_{CC} = +3.6V,$	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		7	16	μΑ
		no load	$T_A = -40^{\circ}\text{C to } + 125^{\circ}\text{C}$			25	
V _{CC2} Supply Current		$V_{CC2} \le +2.5V$				2	μΑ
		MAX68L	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	4.50	4.63	4.75	
		IVIAA00L	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$	4.47	4.63	4.78	
		MAX68M	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	4.25	4.38	4.50	- - - -
			$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$	4.22	4.38	4.53	
	-	MAX68T	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	3.00	3.08	3.15	
			$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$	2.97	3.08	3.17	
		MAX68S	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	2.85	2.93	3.00	
N			$T_A = -40^{\circ}\text{C to } + 125^{\circ}\text{C}$	2.83	2.93	3.02	
V _{CC} Reset Threshold (V _{CC} Falling)	V_{TH}	MAX68 R	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	2.55	2.63	2.70	V
(VCC raining)		$T_A = -40^{\circ}\text{C to } + 125^{\circ}\text{C}$ 2.53 2.	2.63	2.72			
		MAN/00 7	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	2.25	2.32	2.38	
		MAX68Z	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$	$T_A = -40^{\circ}\text{C to } + 125^{\circ}\text{C}$ 2.24 2	2.32	2.40	
		MAV69 V	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	2.12	2.19	2.25	
		MAX68Y	$T_A = -40^{\circ}\text{C to } + 125^{\circ}\text{C}$	2.11	2.19	2.26	
		MAY69 W	$T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$	1.62	1.67	1.71	
		MAX68W	$T_A = -40^{\circ}\text{C to } + 125^{\circ}\text{C}$	1.61	1.67	1.72	
		MAX68V	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	1.52	1.58	1.62	

MIXIM

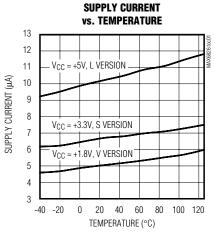
ELECTRICAL CHARACTERISTICS (continued)

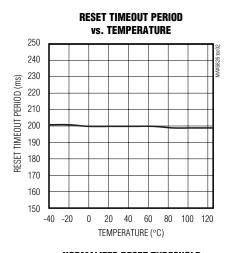
 $(V_{CC} = +4.5 \text{V to } +5.5 \text{V for MAX68_L/M}, \ V_{CC} = +2.7 \text{V to } +3.6 \text{V for MAX68_T/S/R}, \ V_{CC} = +2.1 \text{V to } +2.75 \text{V for MAX68_Z/Y}, \ V_{CC} = +1.53 \text{V to } +2.0 \text{V for MAX68_W/V}; \ T_A = -40 ^{\circ}\text{C} \ \text{to } +125 ^{\circ}\text{C}, \ \text{unless otherwise specified}. \ Typical values are at $T_A = +25 ^{\circ}\text{C}.$) (Note 1)$

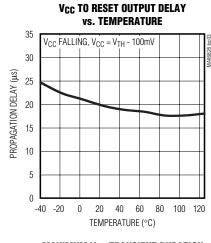
No Parameter Name No Parameter Name Parameter Name <th< th=""><th>PARAMETER</th><th>SYMBOL</th><th>COI</th><th>NDITIONS</th><th>MIN</th><th>TYP</th><th>MAX</th><th>UNITS</th></th<>	PARAMETER	SYMBOL	COI	NDITIONS	MIN	TYP	MAX	UNITS
Ta = -40°C to +125°C 2.218 2.313 2.388 Y			7	$T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$	2.244	2.313	2.381	
VCC2 Reset Threshold VTH2 TA = -40°C to +125°C 2.113 2.188 2.263 VCC2 Reset Threshold 1 A = 40°C to +85°C 1.615 1.665 1.715 VTH2 TA = -40°C to +125°C 1.611 1.665 1.719 VTH2 TA = -40°C to +85°C 1.525 1.575 1.629 TA = -40°C to +85°C 1.346 1.388 1.429 TA = -40°C to +125°C 1.341 1.388 1.433 TA = -40°C to +125°C 1.343 1.388 1.433 TA = -40°C to +125°C 1.268 1.313 1.358 TA = -40°C to +85°C 1.271 1.313 1.358 TA = -40°C to +125°C 1.268 1.313 1.358 TA = -40°C to +85°C 1.077 1.110 1.143 TA = -40°C to +85°C 1.017 1.010 1.043 TA = -40°C to +85°C 1.017 1.050 1.083 TA = -40°C to +85°C 0.080 0.833 0.869 TA = -40°C to +85°C 0.080 0.833 0.869 <t< td=""><td rowspan="3"></td><td></td><td>$T_A = -40^{\circ}\text{C to } + 125^{\circ}\text{C}$ 2.238</td><td>2.313</td><td>2.388</td><td></td></t<>			$T_A = -40^{\circ}\text{C to } + 125^{\circ}\text{C}$ 2.238	2.313	2.388			
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$			V	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	2.119	2.188	2.257	
VCC2 Reset Threshold Name of the state of			Y	$T_A = -40^{\circ}\text{C to } + 125^{\circ}\text{C}$	2.113	2.188	2.263	
TA = -40°C to +125°C 1.611 1.665 1.719 V TA = -40°C to +85°C 1.525 1.575 1.625 TA = -40°C to +125°C 1.525 1.575 1.625 TA = -40°C to +125°C 1.346 1.388 1.429 VTH2 TA = -40°C to +85°C 1.271 1.313 1.354 TA = -40°C to +125°C 1.268 1.313 1.358 1 TA = -40°C to +85°C 1.271 1.313 1.358 1 TA = -40°C to +85°C 1.077 1.110 1.143 TA = -40°C to +85°C 1.077 1.110 1.143 TA = -40°C to +85°C 1.071 1.105 1.083 TA = -40°C to +85°C 1.071 1.105 1.083 TA = -40°C to +85°C 1.071 1.050 1.083 TA = -40°C to +85°C 1.071 1.050 1.083 TA = -40°C to +85°C 0.808 0.833 0.860 TA = -40°C to +85°C 0.808 0.833 0.860 TA = -40°C to +125°C 0.806 0.833			14/	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	1.615	1.665	1.715	
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$			VV	$T_A = -40^{\circ}\text{C to } + 125^{\circ}\text{C}$	1.611	1.665	1.719	
TA = -40°C to +125°C 1.521 1.575 1.629 VCC2 Reset Threshold VTH2 I TA = -40°C to +125°C 1.346 1.388 1.429 TA = -40°C to +85°C 1.343 1.388 1.433 TA = -40°C to +85°C 1.271 1.313 1.354 TA = -40°C to +125°C 1.268 1.313 1.358 TA = -40°C to +125°C 1.077 1.110 1.143 TA = -40°C to +125°C 1.077 1.110 1.146 Fe TA = -40°C to +125°C 1.014 1.050 1.080 TA = -40°C to +125°C 0.808 0.833 0.850 TA = -40°C to +125°C 0.060 0.833 0.850 TA = -40°C to +125°C 0.762 0.788 0.813 TA = -40°C to +125°C 0.761 0.788 0.813 TA = -40°C to +125°C 0.761 0.788 0.813 TA = -40°C to +125°C 0.601 0.600 0.8			M	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	1.525	1.575	1.625	
VCC2 Reset Threshold Note Threshold TA = -40°C to +125°C 1.343 1.388 1.433 1.433 1.433 1.434			V	$T_A = -40^{\circ}\text{C to } + 125^{\circ}\text{C}$	1.521	1.575	1.629	
VCC2 Reset Threshold TA = -40°C to +125°C 1.343 1.388 1.433 V V V A A A A A A A A A A A A A A A A A			1	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	1.346	1.388	1.429	
H	V Danat Thurshald		I	$T_A = -40^{\circ}\text{C to } + 125^{\circ}\text{C}$	1.343	1.388	1.433	.,
Ta = -40°C to +125°C	VCC2 Reset Infeshold	VTH2	11	$T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$	1.271	1.313	1.354	V
$ \begin{array}{c} F \\ F \\ E \\$			H	$T_A = -40^{\circ}\text{C to } + 125^{\circ}\text{C}$	1.268	1.313	1.358	
$ \begin{array}{c} T_A = -40^{\circ}\text{C to} + 125^{\circ}\text{C} & 1.074 & 1.110 & 1.146 \\ \hline F & T_A = -40^{\circ}\text{C to} + 85^{\circ}\text{C} & 1.017 & 1.050 & 1.083 \\ \hline T_A = -40^{\circ}\text{C to} + 125^{\circ}\text{C} & 1.014 & 1.050 & 1.086 \\ \hline T_A = -40^{\circ}\text{C to} + 125^{\circ}\text{C} & 0.808 & 0.833 & 0.858 \\ \hline T_A = -40^{\circ}\text{C to} + 125^{\circ}\text{C} & 0.806 & 0.833 & 0.860 \\ \hline T_A = -40^{\circ}\text{C to} + 125^{\circ}\text{C} & 0.761 & 0.788 & 0.813 \\ \hline T_A = -40^{\circ}\text{C to} + 125^{\circ}\text{C} & 0.761 & 0.788 & 0.813 \\ \hline T_A = -40^{\circ}\text{C to} + 125^{\circ}\text{C} & 0.761 & 0.788 & 0.813 \\ \hline T_A = -40^{\circ}\text{C to} + 125^{\circ}\text{C} & 0.761 & 0.788 & 0.813 \\ \hline T_A = -40^{\circ}\text{C to} + 125^{\circ}\text{C} & 0.761 & 0.788 & 0.813 \\ \hline T_A = -40^{\circ}\text{C to} + 125^{\circ}\text{C} & 0.761 & 0.788 & 0.815 \\ \hline T_A = -40^{\circ}\text{C to} + 125^{\circ}\text{C} & 0.615 & 0.630 & 0.645 \\ \hline T_A = -40^{\circ}\text{C to} + 85^{\circ}\text{C} & 0.615 & 0.630 & 0.645 \\ \hline T_A = -40^{\circ}\text{C to} + 125^{\circ}\text{C} & 0.610 & 0.650 \\ \hline T_A = -40^{\circ}\text{C to} + 125^{\circ}\text{C} & 0.610 & 0.650 \\ \hline T_A = -40^{\circ}\text{C to} + 125^{\circ}\text{C} & 0.610 & 0.650 \\ \hline T_A = -40^{\circ}\text{C to} + 125^{\circ}\text{C} & -25 & +25 \\ \hline T_A = -40^{\circ}\text{C to} + 125^{\circ}\text{C} & -100 & +100 \\ \hline T_A = -40^{\circ}\text{C to} + 125^{\circ}\text{C} & -100 & +100 \\ \hline T_A = -40^{\circ}\text{C to} + 125^{\circ}\text{C} & -100 & +100 \\ \hline T_A = -40^{\circ}\text{C to} + 125^{\circ}\text{C} & -100 & +100 \\ \hline T_A = -40^{\circ}\text{C to} + 125^{\circ}\text{C} & -100 & +100 \\ \hline T_A = -40^{\circ}\text{C to} + 125^{\circ}\text{C} & -100 & +100 \\ \hline T_A = -40^{\circ}\text{C to} + 125^{\circ}\text{C} & -100 & +100 \\ \hline T_A = -40^{\circ}\text{C to} + 125^{\circ}\text{C} & -100 & +100 \\ \hline T_A = -40^{\circ}\text{C to} + 125^{\circ}\text{C} & -100 & +100 \\ \hline T_A = -40^{\circ}\text{C to} + 125^{\circ}\text{C} & -100 & +100 \\ \hline T_A = -40^{\circ}\text{C to} + 125^{\circ}\text{C} & -100 & +100 \\ \hline T_A = -40^{\circ}\text{C to} + 125^{\circ}\text{C} & -100 & +100 \\ \hline T_A = -40^{\circ}\text{C to} + 125^{\circ}\text{C} & -100 & +100 \\ \hline T_A = -40^{\circ}\text{C to} + 125^{\circ}\text{C} & -100 & +100 \\ \hline T_A = -40^{\circ}\text{C to} + 125^{\circ}\text{C} & -100 & +100 \\ \hline T_A = -40^{\circ}\text{C to} + 125^{\circ}\text{C} & -100 & +100 \\ \hline T_A = -40^{\circ}\text{C to} + 125^{\circ}\text{C} & -100 & +100 \\ \hline T_A = -40^{\circ}\text{C to} + 125^{\circ}\text{C} & -100 & +100 \\ \hline T_A = -40^{\circ}\text{C to} + 125^{\circ}\text{C} & -100 & +10$			0	$T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$	1.077	1.110	1.143	
$ \begin{array}{c} \begin{tabular}{cccccccccccccccccccccccccccccccccccc$			G	$T_A = -40^{\circ}\text{C to } + 125^{\circ}\text{C}$	1.074	1.110	1.146	
$ \begin{array}{c} T_{A} = -40^{\circ}\text{C to} + 125^{\circ}\text{C} & 1.014 & 1.050 & 1.086 \\ \hline E & T_{A} = -40^{\circ}\text{C to} + 85^{\circ}\text{C} & 0.808 & 0.833 & 0.858 \\ \hline T_{A} = -40^{\circ}\text{C to} + 125^{\circ}\text{C} & 0.806 & 0.833 & 0.860 \\ \hline T_{A} = -40^{\circ}\text{C to} + 125^{\circ}\text{C} & 0.762 & 0.788 & 0.813 \\ \hline T_{A} = -40^{\circ}\text{C to} + 125^{\circ}\text{C} & 0.762 & 0.788 & 0.813 \\ \hline T_{A} = -40^{\circ}\text{C to} + 125^{\circ}\text{C} & 0.761 & 0.788 & 0.815 \\ \hline \end{array} $ Reset Threshold Temperature Coefficient $ \begin{array}{c} & & & & & & & & & & & & & & & & & & &$			F	$T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$	1.017	1.050	1.083	1
$ \begin{array}{c} E \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $				$T_A = -40^{\circ}\text{C to } + 125^{\circ}\text{C}$	1.014	1.050	1.086	
$ \begin{array}{c} T_{A} = -40^{\circ}\text{C to } + 125^{\circ}\text{C} & 0.806 & 0.833 & 0.860 \\ T_{A} = -40^{\circ}\text{C to } + 85^{\circ}\text{C} & 0.762 & 0.788 & 0.813 \\ \hline T_{A} = -40^{\circ}\text{C to } + 125^{\circ}\text{C} & 0.761 & 0.788 & 0.813 \\ \hline T_{A} = -40^{\circ}\text{C to } + 125^{\circ}\text{C} & 0.761 & 0.788 & 0.815 \\ \hline \end{array} $ Reset Threshold Temperature Coefficient $ \begin{array}{c} Reset \text{ Threshold Hysteresis} \\ Reset \text{ Threshold Hysteresis} \\ RESET \text{ IN Threshold} \\ RESET \text{ IN Threshold} \\ RESET \text{ IN Hysteresis} \\ RESET \text{ IN Hysteresis} \\ RESET \text{ IN Input Current (Note 2)} \\ \hline T_{A} = -40^{\circ}\text{C to } + 85^{\circ}\text{C} & 0.615 & 0.630 & 0.645 \\ \hline T_{A} = -40^{\circ}\text{C to } + 125^{\circ}\text{C} & 0.610 & 0.650 \\ \hline \end{array} $			Е	$T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$	0.808	0.833	0.858	- - - -
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				$T_A = -40^{\circ}\text{C to } + 125^{\circ}\text{C}$	0.806	0.833	0.860	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			D	$T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$	0.762	0.788	0.813	
Coefficient Go Ppm/°C Reset Threshold Hysteresis $2 \times V_{TH}$ mV RESET IN Threshold $V_{RSTINTH}$ falling $T_A = 0^{\circ}C$ to $+85^{\circ}C$ 0.615 0.630 0.645 V RESET IN Hysteresis $T_A = -40^{\circ}C$ to $+85^{\circ}C$ 0.610 $T_A = -40^{\circ}C$ to			U	$T_A = -40^{\circ}\text{C to } + 125^{\circ}\text{C}$	0.761	0.788	0.815	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	•					60		ppm/°C
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Reset Threshold Hysteresis					2 x V _{TH}		mV
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	DECET IN THE SECOND	.,		$T_A = 0$ °C to +85°C	0.615	0.630	0.645	
$ \frac{\text{TA} = -40^{\circ}\text{C to} + 85^{\circ}\text{C}}{\text{TA} = -40^{\circ}\text{C to} + 125^{\circ}\text{C}} - 25 + 25}{\text{TA} = -40^{\circ}\text{C to} + 125^{\circ}\text{C}} - 100 + 100} $ $ \frac{\text{VCC to Reset Output Delay}}{\text{VCC}} = \frac{\text{VCC}}{\text{VTH to}} = \frac{\text{VCC}}{\text{VTH to}} = \frac{100^{\circ}\text{C to}}{\text{VCC}} + \frac{100^{\circ}\text{C to}}{\text{C to}} + \frac{100^{\circ}\text{C to}}{\text{VCC}} + \frac{100^{\circ}\text{C to}}{\text{C to}} + \frac{100^{\circ}\text{C to}}{\text{C to}$	RESET IN Threshold	VRSTINTH	VRSTINTH falling	$T_A = -40^{\circ}\text{C to } + 125^{\circ}\text{C}$	0.610		0.650	j V
RESET IN Input Current (Note 2) IRSTIN $T_A = -40^{\circ}\text{C to} + 125^{\circ}\text{C}$ -100 $+100$ $+100$ VCC to Reset Output Delay $T_A = -40^{\circ}\text{C to} + 125^{\circ}\text{C}$ -100 $+100$ $+$	RESET IN Hysteresis			1		2.5		mV
$T_{A} = -40^{\circ}\text{C to} + 125^{\circ}\text{C}$ -100 $+100$ $+10$	DECET IN L. C. L. (N. L. C.)		$T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$)	-25		+25	
	RESET IN Input Current (Note 2)	IRSTIN			-100		+100	nA
RESET IN to Reset Output Delay VRSTIN = VRSTINTH to (VRSTINTH - 30mV) 15 µs	V _{CC} to Reset Output Delay	t _{RD}	V _{CC} = V _{TH} to (V _{TH} - 100mV)			20		μs
	RESET IN to Reset Output Delay				İ	15		μs
$T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$ 140 200 280	Reset Timeout Period				140	200	280	
Reset Timeout Period t_{RP} $T_{A} = -40^{\circ}\text{C to } +125^{\circ}\text{C}$ $t_{A} = -40^{\circ}\text{C to } +125^{\circ}\text{C}$ $t_{A} = -40^{\circ}\text{C to } +125^{\circ}\text{C}$		tRP			100		320	ms
$V_{CC} \ge 1.0V$, $I_{SINK} = 50\mu A$, reset asserted, $T_{A} = 0^{\circ}C$ to $+85^{\circ}C$			V _{CC} ≥ 1.0V, I _{SINK} = 50µA, reset asserted,				0.3	
RESET Output LOW Vo. Vo. 1.2V January = 100µA recent asserted 0.3		VOI		100µA, reset asserted			0.3	1 ,
(Push-Pull or Open-Drain)	(Push-Pull or Open-Drain)							
$V_{CC} \ge 4.25V$, $I_{SINK} = 3.2$ mA, reset asserted 0.4								

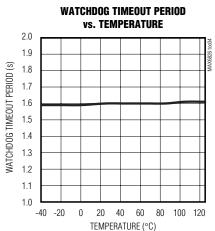
ELECTRICAL CHARACTERISTICS (continued)

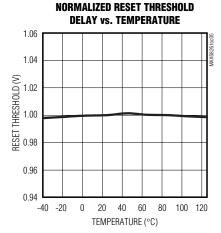
 $(V_{CC} = +4.5 \text{V to } +5.5 \text{V for MAX68_L/M}, \ V_{CC} = +2.7 \text{V to } +3.6 \text{V for MAX68__T/S/R}, \ V_{CC} = +2.1 \text{V to } +2.75 \text{V for MAX68__Z/Y}, \ V_{CC} = +1.53 \text{V to } +2.0 \text{V for MAX68__W/V}; \ T_{A} = -40 ^{\circ}\text{C} \ \text{to } +125 ^{\circ}\text{C}, \ \text{unless otherwise specified.} \ \text{Typical values are at } T_{A} = +25 ^{\circ}\text{C}.) \ \text{(Note 1)}$

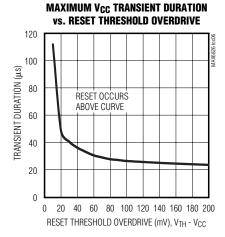

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
		$V_{CC} \ge 1.8V$, $I_{SOURCE} = 200\mu A$, reset not asserted	0.8×V _{CC}				
RESET Output HIGH (Push-Pull Only)	VoH	V _{CC} ≥ 3.15V, I _{SOURCE} = 500µA, reset not asserted	0.8×V _{CC}			V	
(i dan-i dii Oriiy)		V _{CC} ≥ 4.75V, I _{SOURCE} = 800µA, reset not asserted	0.8×V _{CC}				
Open-Drain RESET Output Leakage Current (Note 1)	I _{LKG}	RESET not asserted			1.0	μΑ	
DESET O 1 1 1 1 1 O 1		$V_{CC} \ge 1.0V$, $I_{SOURCE} = 1\mu A$, reset asserted, $T_A = 0^{\circ}C$ to $+85^{\circ}C$	0.8×V _{CC}				
RESET Output HIGH (Push-Pull Only)	VoH	V _{CC} ≥ 1.50V, I _{SOURCE} = 100µA, reset asserted	0.8×V _{CC}			V	
(rush-rum Orny)		V _{CC} ≥ 2.55V, I _{SOURCE} = 500µA, reset asserted	0.8×V _{CC}				
		V _{CC} ≥ 4.25V, I _{SOURCE} = 800µA, reset asserted	0.8×V _{CC}				
DECET OUTSIDE LOW		V _{CC} ≥ 1.8V, I _{SINK} = 500µA, reset asserted			0.3		
RESET Output LOW (Push-Pull Only)	VoH	V _{CC} ≥ 3.15V, I _{SINK} = 1.2mA, reset asserted			0.3	V	
(r dorr dii Criiy)		V _{CC} ≥ 4.75V, I _{SINK} = 3.2mA, reset asserted			0.3		
MANUAL RESET INPUT							
MR Input voltage	VIL				0.3×V _{CC}	V	
With hipdi voltage	VIH		$0.7 \times V_{CC}$			· ·	
MR Minimum Input Pulse			1			μs	
MR Glitch Rejection				100		ns	
MR to Reset Delay				200		ns	
MR Pullup Resistance			25	50	75	kΩ	
WATCHDOG INPUT	1	<u></u>					
Watchdog Timeout Period	twp	$T_A = -40$ °C to $+85$ °C	1.12	1.6	2.4	S	
Waterladg Timedat Feriod	עעט	$T_A = -40$ °C to $+125$ °C	0.80		2.60		
WDI Pulse Width (Note 2)	twDI		50			ns	
WDI Input Voltage	VIL				0.3×V _{CC}	V	
pat Voltago	VIH		0.7×V _{CC}				
WDI Input Current	I _{WDI}	WDI = V _{CC} , time average		120	160	μA	
The impact outron	יעטיי	WDI = 0, time average	-20	-15		μΑ	

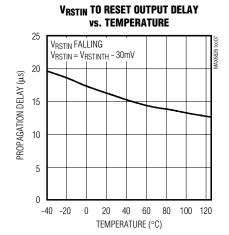

Note 1: Over-temperature limits are guaranteed by design and not production tested. Devices tested at +25°C.

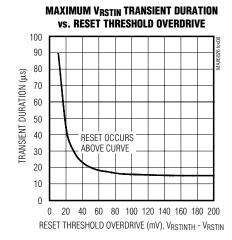

Note 2: Guaranteed by design and not production tested.

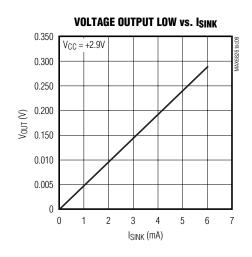

Typical Operating Characteristics

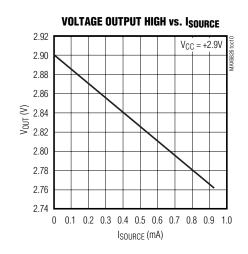

 $(T_A = +25^{\circ}C, \text{ unless otherwise noted.})$











Typical Operating Characteristics (continued)

 $(T_A = +25^{\circ}C, \text{ unless otherwise noted.})$

Pin Description

	PIN								
MAX 6826	MAX 6827	MAX 6828	MAX 6829	MAX 6830	MAX 6831	NAME	FUNCTION		
1		1	1		1	RESET	Active-Low Open-Drain or Push-Pull Reset Output. $\overline{\text{RESET}}$ changes from high to low when V_{CC1} , V_{CC2} , or RESET IN input drops below the selected reset threshold, $\overline{\text{MR}}$ is pulled low, or the watchdog triggers a reset. $\overline{\text{RESET}}$ remains low for the reset timeout period after all voltages exceed the device reset threshold, $\overline{\text{MR}}$ goes low to high, or the watchdog triggers a reset.		
	1			1		RESET	Active-High Push-Pull Reset Output. RESET changes from low to high when V _{CC1} , V _{CC2} , or RESET IN input drops below the selected reset threshold, MR is pulled low, or the watchdog triggers a reset. RESET remains HIGH for the reset timeout period after all voltages exceed the device reset threshold, MR goes low to high, or the watchdog triggers a reset.		
2	2	2	2	2	2	GND	Ground		
3	3	3	3	3	3	MR	Manual Reset Input, Active-Low, Internal $50k\Omega$ pullup to V_{CC} . Pull low to force a reset. Reset remains active as long as \overline{MR} is low and for the reset timeout period after \overline{MR} goes high. Leave unconnected or connect to V_{CC} , if unused.		
4	4	4	4	4	4	WDI	after MR goes high. Leave unconnected or connect to V _{CC} , if unused. Watchdog Input. If WDI remains high or low for longer than the watchdog timeor period, the internal watchdog timer runs out and a reset is triggered for the reset timeout period. The internal watchdog timer clears whenever reset is asserted, the manual reset is asserted, or WDI sees a rising or falling edge. If WDI is left unconnected or is connected to a three-stated buffer output, the watchdog feating disabled.		

Pin Description (continued)

		Р	IN						
MAX 6826	MAX 6827	MAX 6828	MAX 6829	MAX 6830	MAX 6831	NAME	FUNCTION		
5	5	5				RESET IN	Input for User Adjustable RESET IN Monitor. High-impedance input for internal reset comparator. Connect this pin to an external resistor-divider network to set the reset threshold voltage. 0.63V (typ) threshold.		
			5	5	5	V _{CC2}	Factory-Trimmed V _{CC2} Monitor. Connect this pin to a secondary power-supply voltage.		
6	6	6	6	6	6	Vcc	Supply Voltage. Input for primary reset threshold monitor.		

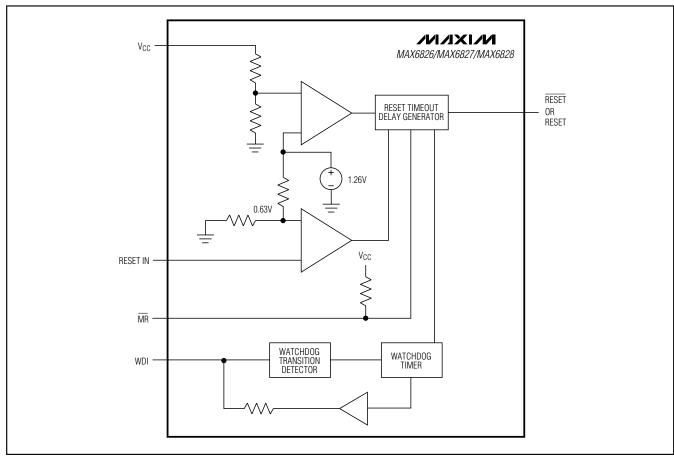


Figure 1. Functional Diagram of RESET IN

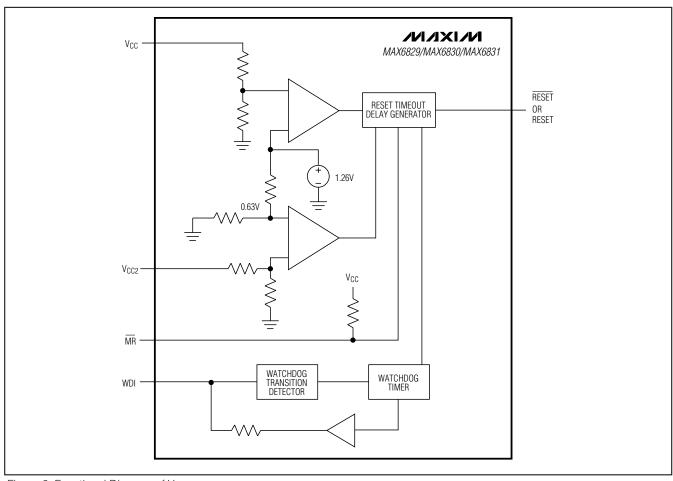


Figure 2. Functional Diagram of V_{CC2}

Detailed Description

RESET/RESET Output

A microprocessor's (µP's) reset input starts the µP in a known state. The MAX6826–MAX6831 µP supervisory circuits assert a reset to prevent code-execution errors during power-up, power-down, and brownout conditions. Whenever a monitored voltage falls below the reset threshold, the reset output asserts low for $\overline{\text{RESET}}$ and high for RESET. Once all monitored voltages exceed their reset thresholds, an internal timer keeps the reset output asserted for the specified reset timeout period (thro); after this interval, reset output returns to its original state (Figure 3).

Manual Reset Input

Many μ P-based products require manual-reset capability, allowing the operator, a test technician, or external logic circuitry to initiate a reset. A logic low on $\overline{\text{MR}}$

asserts a reset. Reset remains asserted while \overline{MR} is low, and for the timeout period (140ms min) after it returns high. \overline{MR} has an internal 50k Ω pullup resistor, so it can be left open if not used. This input can be driven with CMOS logic levels or with open-drain/collector

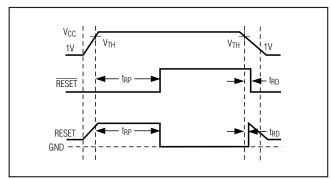


Figure 3. Reset Timing Diagram

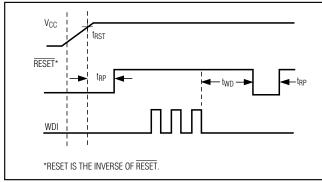


Figure 4. Watchdog Timing Relationship

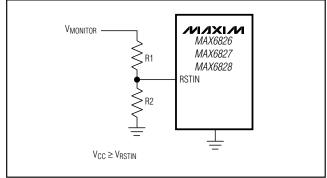


Figure 5. Monitoring a Voltage

outputs. Connect a normally open momentary switch from \overline{MR} to GND to create a manual-reset function; external debounce circuitry is not required. If \overline{MR} is driven from long cables or the device is used in a noisy environment, connect a 0.1 μ F capacitor from \overline{MR} to GND to provide additional noise immunity.

Watchdog Input

The watchdog circuit monitors the μP 's activity. If the μP does not toggle (low to high or high to low) the watchdog input (WDI) within the watchdog timeout period (1.6s nominal), reset asserts for the reset timeout period. The internal 1.6s timer can be cleared by either a reset pulse or by toggling WDI. The WDI can detect pulses as short as 50ns. While reset is asserted, the timer remains cleared and does not count. As soon as reset is released, the timer starts counting (Figure 4).

Disable the watchdog function by leaving WDI unconnected or by three-stating the driver connected to WDI. The watchdog input is internally driven low during the first 7/8 of the watchdog timeout period and high for the last 1/8 of the watchdog timeout period. When WDI is left unconnected, this internal driver clears the 1.6s timer every 1.4s. When WDI is three-stated or unconnected,

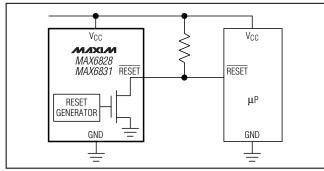


Figure 6. Interfacing Open-Drain RESET to μPs with Bidirectional Reset I/O

the maximum allowable leakage current is 10µA and the maximum allowable load capacitance is 200pF.

Adjustable Reset Thresholds

The MAX6826/MAX6827/MAX6828 provide a user adjustable input to monitor a second voltage. The threshold voltage at RSTIN is typically 0.63V. To monitor a voltage higher than 0.63V, connect a resistor-divider to the circuit as shown in Figure 5. The threshold at $V_{MONITOR}$ is:

$$V_{MONITOR_TRIP} = 0.63V \left(\frac{R1 + R2}{R2}\right)$$

Note that RSTIN is powered by V_{CC} , and its voltage must therefore remain lower than V_{CC} .

_Applications Information

Watchdog Input Current

The WDI inputs are internally driven through a buffer and series resistor from the watchdog timer (Figure 1). When WDI is left unconnected, the watchdog timer is serviced within the watchdog timeout period by a low-high-low pulse from the counter chain. For minimum watchdog input current (minimum overall power consumption), leave WDI low for the majority of the watchdog timeout period, pulsing it low-high-low once within the first 7/8 of the watchdog timeout period to reset the watchdog timer. If WDI is externally driven high for the majority of the timeout period, up to 160µA can flow into WDI.

Interfacing to µPs with Bidirectional Reset Pins

Since the \overline{RESET} output on the MAX6828/MAX6831 is open drain, these devices interface easily with μPs that have bidirectional reset pins, such as the Motorola 68HC11. Connecting the μP supervisor's \overline{RESET} output

directly to the microcontroller's RESET pin with a single pullup resistor allows the device to assert a reset (Figure 6).

Negative-Going Vcc Transients

These supervisors are relatively immune to short-duration, negative-going VCC transients (glitches), which usually do not require the entire system to shut down. Resets are issued to the µP during power-up, powerdown, and brownout conditions. The Typical Operating Characteristics show a graph of the Maximum VCC Transient Duration vs. Reset Threshold Overdrive, for which reset pulses are not generated. The graph was produced using negative-going VCC pulses, starting at the standard monitored voltage and ending below the reset threshold by the magnitude indicated (reset threshold overdrive). The graph shows the maximum pulse width that a negative-going VCC transient can typically have without triggering a reset pulse. As the amplitude of the transient increases (i.e., goes farther below the reset threshold), the maximum allowable pulse width decreases. Typically, a VCC transient that goes 100mV below the reset threshold and lasts for 20µs or less will not trigger a reset pulse.

Ensuring a Valid RESET Output Down to V_{CC} = 0

The MAX6826–MAX6831 are guaranteed to operate properly down to V_{CC} = 1V. In applications that require valid reset levels down to V_{CC} = 0, a pulldown resistor to active-low outputs (push/pull only, Figure 7) and a pullup resistor to active-high outputs (push/pull only) will ensure that the reset line is valid while the reset output can no longer sink or source current. This scheme does not work with the open-drain outputs of the MAX6828/MAX6831. The resistor value used is not critical, but it must be small enough not to load the reset output when V_{CC} is above the reset threshold. For falling slew rates greater than 1V/s, a 100k Ω is adequate.

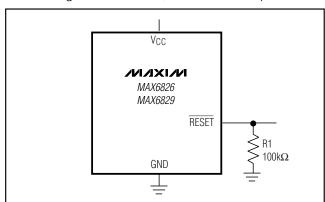


Figure 7. RESET Valid to V_{CC} = Ground Circuit

Watchdog Software Considerations

One way to help the watchdog timer monitor software execution more closely is to set and reset the watchdog input at different points in the program, rather than pulsing the watchdog input high-low-high or low-high-low. This technique avoids a stuck loop, in which the watchdog timer would continue to be reset inside the loop, keeping the watchdog from timing out.

Figure 8 shows an example of a flow diagram where the I/O driving the watchdog input is set high at the beginning of the program, set low at the beginning of every subroutine or loop, then set high again when the program returns to the beginning. If the program should hang in any subroutine, the problem would quickly be corrected, since the I/O is continually set low and the watchdog timer is allowed to time out, causing a reset or interrupt to be issued. As described in the *Watchdog Input Current* section, this scheme results in higher time average WDI input current than does leaving WDI low for the majority of the timeout period and periodically pulsing it low-high-low.

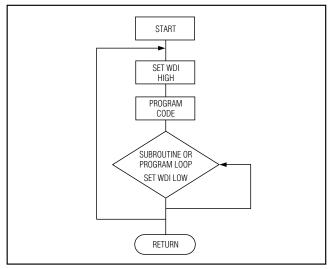


Figure 8. Watchdog Flow Diagram

Threshold Suffix Guide

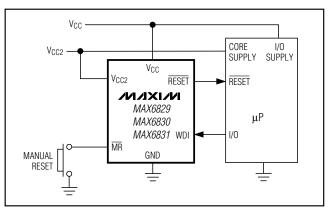
V _{CC} THRESHOLD	RESET THRESHOLD (V)	V _{CC2} THRESHOLD	RESET THRESHOLD (V)
L	4.63	Z	2.313
M	4.38	Υ	2.188
Т	3.08	W	1.665
S	2.93	V	1.575
R	2.63	I	1.388
Z	2.32	Н	1.313
Υ	2.19	G	1.110
W	1.67	F	1.050
\ /	1.50	Е	0.833
V	1.58	D	0.788

Selector Guide

FUNCTION	ACTIVE-LOW RESET	ACTIVE-HIGH RESET	OPEN-DRAIN RESET	WATCHDOG INPUT	MANUAL RESET INPUT	FIXED V _{CC2} MONITOR	ADJUSTABLE RESET INPUT
MAX6826	~	_	_	✓	~	_	~
MAX6827	_	~	_	~	~	_	~
MAX6828	_	_	~	V	~	_	~
MAX6829	V	_	_	>	~	>	_
MAX6830	_	~	_	~	~	~	_
MAX6831	_	_	~	~	~	~	_

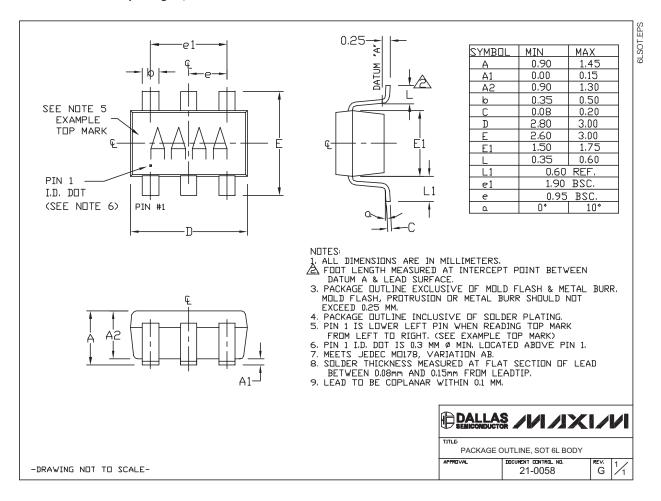
Standard Versions Table* (continued)

MAX6829/MAX6830/MAX6831								
	Vcc							
3.3V	2.5V	1.8V	_					
TZ	_	_	2.5V					
SV	ZW	_	1.8V					
SH	YH	WI	1.5V					
SF	YG	VF	1.2V					
SD	YD	VD	0.9V					


^{*}Samples are typically available for standard versions only. For the MAX6829/MAX6830/MAX6831, standard versions require a 2.5k minimum order increment, while nonstandard versions require a 10k minimum order increment and are not typically available in samples. Contact factory for availability.

_Chip Information

TRANSISTOR COUNT: 750


PROCESS TECHNOLOGY: BICMOS

Typical Operating Circuit

Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.