74LCX04

Low Voltage Hex Inverter with 5V Tolerant Inputs

Features

－5V tolerant inputs
－ $2.3 \mathrm{~V}-3.6 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$ specifications provided
■ $5.2 \mathrm{~ns} \mathrm{t}_{\mathrm{PD}}$ max．$\left(\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}\right), 10 \mu \mathrm{~A} \mathrm{I}_{\mathrm{CC}} \max$ ．
－Power down high impedance inputs and outputs
■ $\pm 24 \mathrm{~mA}$ output drive $\left(\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}\right)$
－Implements proprietary noise／EMI reduction circuitry
■ Latch－up performance exceeds JEDEC 78 conditions
■ ESD performance：
－Human body model＞2000V
－Machine model＞200V
■ Leadless DQFN package

General Description

The LCX04 contains six inverters．The inputs tolerate voltages up to 7 V allowing the interface of 5 V systems to 3 V systems．

The 74LCX04 is fabricated with advanced CMOS tech－ nology to achieve high speed operation while maintain－ ing CMOS low power dissipation．

Ordering Information

Order Number	Package Number	Package Description
74LCX04M	M14A	14－Lead Small Outline Integrated Circuit（SOIC），JEDEC MS－012，0．150＂Narrow
74LCX04SJ	M14D	14－Lead Small Outline Package（SOP），EIAJ TYPE II，5．3mm Wide
74LCX04BQX ${ }^{(1)}$	MLP14A	14－Terminal Depopulated Quad Very－Thin Flat Pack No Leads（DQFN），JEDEC MO－241，2．5 x 3．0mm
74LCX04MTC	MTC14	14－Lead Thin Shrink Small Outline Package（TSSOP），JEDEC MO－153，4．4mm Wide

Note：

1．DQFN package available in Tape and Reel only．
Device also available in Tape and Reel．Specify by appending suffix letter＂X＂to the ordering number．
All packages are lead free per JEDEC：J－STD－020B standard．

Pin Description

Pin Names	Description
A_{n}, B_{n}	Inputs
$\overline{\mathrm{O}}_{n}$	Outputs
DAP	No Connect

Note: DAP (Die Attach Pad)

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Rating
V_{CC}	Supply Voltage	-0.5 V to +7.0 V
$\mathrm{~V}_{\mathrm{I}}$	DC Input Voltage	-0.5 V to +7.0 V
$\mathrm{~V}_{\mathrm{O}}$	DC Output Voltage, Output in HIGH or LOW State ${ }^{(2)}$	-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
I_{IK}	DC Input Diode Current, $\mathrm{V}_{\mathrm{I}}<\mathrm{GND}$	-50 mA
I_{OK}	DC Output Diode Current $\mathrm{V}_{\mathrm{O}}<\mathrm{GND}$	
	$\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}$	-50 mA
I_{O}	DC Output Source/Sink Current	+50 mA
I_{CC}	DC Supply Current per Supply Pin	$\pm 50 \mathrm{~mA}$
$\mathrm{I}_{\mathrm{GND}}$	DC Ground Current per Ground Pin	$\pm 100 \mathrm{~mA}$
$\mathrm{~T}_{\mathrm{STG}}$	Storage Temperature	$\pm 100 \mathrm{~mA}$

Note:

2. I_{O} Absolute Maximum Rating must be observed.

Recommended Operating Conditions ${ }^{(3)}$

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to absolute maximum ratings.

Symbol	Parameter	Min.	Max.	Units
V_{CC}	Supply Voltage Operating	2.0	3.6	V
	Data Retention	1.5	3.6	
V_{1}	Input Voltage	0	5.5	V
V_{O}	Output Voltage, HIGH or LOW State	0	V_{Cc}	V
$\mathrm{l}_{\mathrm{OH}} / \mathrm{l}_{\mathrm{OL}}$	Output Current $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}-3.6 \mathrm{~V}$		± 24	mA
	$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}-3.0 \mathrm{~V}$		± 12	
	$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}-2.7 \mathrm{~V}$		± 8	
T_{A}	Free-Air Operating Temperature	-40	85	${ }^{\circ} \mathrm{C}$
$\Delta \mathrm{t} / \Delta \mathrm{V}$	Input Edge Rate, $\mathrm{V}_{\mathrm{IN}}=0.8 \mathrm{~V}-2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V}$	0	10	ns/V

Note:

3. Unused inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

Symbol	Parameter	$\mathrm{V}_{\mathrm{Cc}}(\mathrm{V})$	Conditions	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Units
				Min.	Max.	
V_{IH}	HIGH Level Input Voltage	2.3-2.7		1.7		V
		2.7-3.6		2.0		
VIL	LOW Level Input Voltage	2.3-2.7			0.7	V
		2.7-3.6			0.8	
V_{OH}	HIGH Level Output Voltage	2.3-3.6	$\mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{CC}}-0.2$		V
		2.3	$\mathrm{I}_{\mathrm{OH}}=-8 \mathrm{~mA}$	1.8		
		2.7	$\mathrm{IOH}=-12 \mathrm{~mA}$	2.2		
		3.0	$\mathrm{I}_{\mathrm{OH}}=-18 \mathrm{~mA}$	2.4		
			$\mathrm{IOH}=-24 \mathrm{~mA}$	2.2		
V_{OL}	LOW Level Output Voltage	2.3-3.6	$\mathrm{l}_{\mathrm{OL}}=100 \mu \mathrm{~A}$		0.2	V
		2.3	$\mathrm{l}_{\mathrm{OL}}=8 \mathrm{~mA}$		0.6	
		2.7	$\mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA}$		0.4	
		3.0	$\mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA}$		0.4	
			$\mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA}$		0.55	
I_{1}	Input Leakage Current	2.3-3.6	$0 \leq \mathrm{V}_{1} \leq 5.5 \mathrm{~V}$		± 5.0	$\mu \mathrm{A}$
IOFF	Power-Off Leakage Current	0	V_{1} or $\mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V}$		10	$\mu \mathrm{A}$
I_{CC}	Quiescent Supply Current	2.3-3.6	$\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}$ or GND		10	$\mu \mathrm{A}$
			$3.6 \mathrm{~V} \leq \mathrm{V}_{1} \leq 5.5 \mathrm{~V}$		± 10	
$\Delta_{\text {CC }}$	Increase in $\mathrm{I}_{\text {CC }}$ per Input	2.3-3.6	$\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V}$		500	$\mu \mathrm{A}$

AC Electrical Characteristics

Symbol	Parameter	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=500 \Omega$						Units
		$\begin{gathered} \mathrm{V}_{\mathrm{Cc}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		$\begin{aligned} & \hline \mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$		$\begin{gathered} \mathrm{V}_{\mathrm{Cc}}=2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}, \\ \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF} \end{gathered}$		
		Min.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{t}_{\text {PHL }}$, tPLH	Propagation Delay	1.5	5.2	1.5	6.0	1.5	6.2	ns
$\mathrm{t}_{\text {OSHL, }}$ tosLh	Output to Output Skew ${ }^{(4)}$		1.0					ns

Note:

4. Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW ($\mathrm{t}_{\mathrm{OSHL}}$) or LOW-to-HIGH ($\mathrm{t}_{\mathrm{OSLH}}$).

Dynamic Switching Characteristics

Symbol	Parameter	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	Conditions	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	Unit
				Typical	
$V_{\text {OLP }}$	Quiet Output Dynamic Peak VoL	3.3	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{IH}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V}$	0.8	V
		2.5	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{V}_{\mathrm{IH}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V}$	0.6	
Volv	Quiet Output Dynamic Valley V_{OL}	3.3	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{H}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V}$	-0.8	V
		2.5	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{V}_{\mathrm{H}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V}$	-0.6	

Capacitance

Symbol	Parameter	Conditions	Typical	Units
C_{IN}	Input Capacitance	$\mathrm{V}_{\mathrm{CC}}=$ Open, $\mathrm{V}_{1}=0 \mathrm{~V}$ or V_{CC}	7	pF
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}	8	pF
C_{PD}	Power Dissipation Capacitance	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{CC}}, \mathrm{f}=10 \mathrm{MHz}$	25	pF

AC Loading and Waveforms (Generic for LCX Family)

Test	Switch
$\mathrm{t}_{\text {PLH }}, \mathrm{t}_{\text {PHL }}$	Open
$\mathrm{t}_{\text {PZL }}, \mathrm{t}_{\text {PLZ }}$	6 V at $\mathrm{V}_{\mathrm{CC}}=3.3 \pm 0.3 \mathrm{~V}$ $\mathrm{~V}_{\mathrm{CC}} \times 2$ at $\mathrm{V}_{\mathrm{CC}}=2.5 \pm 0.2 \mathrm{~V}$
$\mathrm{t}_{\text {PZH }}, \mathrm{t}_{\text {PHZ }}$	GND

Figure 1. AC Test Circuit (C_{L} includes probe and jig capacitance)

Waveform for Inverting and Non-Inverting Functions

Propagation Delay. Pulse Width and $\mathrm{t}_{\mathrm{rec}}$ Waveforms

3-STATE Output High Enable and Disable Times for Logic

Setup Time, Hold Time and Recovery Time for Logic

3-STATE Output Low Enable and Disable Times for Logic

$t_{\text {rise }}$ and $t_{\text {fall }}$

	$\mathbf{V}_{\mathbf{C C}}$		
Symbol	$\mathbf{3 . 3 V} \pm \mathbf{0 . 3 V}$	$\mathbf{2 . 7 V}$	$\mathbf{2 . 5 V} \pm \mathbf{0 . 2 V}$
V_{mi}	1.5 V	1.5 V	$\mathrm{~V}_{\mathrm{CC}} / 2$
$\mathrm{~V}_{\mathrm{mo}}$	1.5 V	1.5 V	$\mathrm{~V}_{\mathrm{CC}} / 2$
$\mathrm{~V}_{\mathrm{x}}$	$\mathrm{V}_{\mathrm{OL}}+0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OL}}+0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OL}}+0.15 \mathrm{~V}$
$\mathrm{~V}_{\mathrm{y}}$	$\mathrm{V}_{\mathrm{OH}}-0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OH}}-0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OH}}-0.15 \mathrm{~V}$

Figure 2. Waveforms (Input Characteristics; $f=1 \mathrm{MHz}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns}$)

Tape and Reel Specification

Tape Format for DQFN

Package Designator	Tape Section	Number of Cavities	Cavity Status	Cover Tape Status
BQX	Leader (Start End)	125 (Typ.)	Empty	Sealed
	Carrier	3000	Filled	Sealed
	Trailer (Hub End)	75 (Typ.)	Empty	Sealed

Tape Dimensions inches (millimeters)

NOTES: unless otherwise specified

1. Cummulative pitch for feeding holes and cavities (chip pockets) not to exceed $0.008[0.20]$ over 10 pitch span.
2. Smallest allowable bending radius.
3. Thru hole inside cavity is centered within cavity.
4. Tolerance is $\pm 0.002[0.05]$ for these dimensions on all 12 mm tapes.

5 . Ao and Bo measured on a plane $0.120[0.30$] above the bottom of the pocket.
6. Ko measured from a plane on the inside bottom of the pocket to the top surface of the carrier.
7. Pocket position relative to sprocket hole measured as true position of pocket. Not pocket hole.
8. Controlling dimension is millimeter. Diemension in inches rounded.

Reel Dimensions inches (millimeters)

Tape Size	A	B	C	D	N	W1	W2
12 mm	$13.0(330.0)$	$0.059(1.50)$	$0.512(13.00)$	$0.795(20.20)$	$2.165(55.00)$	$0.488(12.4)$	$0.724(18.4)$

Physical Dimensions

Figure 3. 14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings:
http://www.fairchildsemi.com/packaging/

Physical Dimensions (Continued)

Figure 4. 14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings:
http://www.fairchildsemi.com/packaging/

Physical Dimensions (Continued)

BOTTOM VIEW

NOTES:
A. CONFORMS TO JEDEC REGISTRATION MO-241, VARIATION AA
B. DIMENSIONS ARE IN MILLIMETERS.
C. DIMENSIONS AND TOLERANCES PER

ASME Y14.5M, 1994
MLP14ArevA
Figure 5. 14-Terminal Depopulated Quad Very-Thin Flat Pack No Leads (DQFN), JEDEC MO-241, $2.5 \times 3.0 \mathrm{~mm}$
Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision andlor date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings:
http://www.fairchildsemi.com/packagingl

Physical Dimensions (Continued)

NOTES:
A. CONFORMS TO JEDEC REGISTRATION MO-153, VARIATION AB, REF NOTE 6
B. DIMENSIONS ARE IN MILLIMETERS

C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS
D. DIMENSIONING AND TOLERANCES PER ANSI Y14.5M, 1982
E. LANDPATTERN STANDARD: SOP65P640X110-14M
F. DRAWING FILE NAME: MTC14REV6

Figure 6. 14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision andlor date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings:
http://www.fairchildsemi.com/packaging/

FAIRCHILD

SEMICONDUCTOR*

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPower ${ }^{\text {TM }}$	F-PFS ${ }^{\text {TM }}$		Sync-Lock ${ }^{\text {TM }}$
AX-CAP ${ }^{\text {® }}$	FRFET ${ }^{\text {® }}$	®	- SYSTEM
BitSiC ${ }^{\text {™ }}$	Global Power Resource ${ }^{\text {SM }}$	PowerTrench ${ }^{\text {® }}$	\checkmark GENERAL ${ }^{\text {®* }}$
Build it Now ${ }^{\text {TM }}$	GreenBridge ${ }^{\text {TM }}$	PowerXS ${ }^{\text {TM }}$	TinyBoost ${ }^{\text {® }}$
CorePLUS ${ }^{\text {™ }}$	Green FPS ${ }^{\text {™ }}$	Programmable Active Droop ${ }^{\text {™ }}$	TinyBuck ${ }^{\text {® }}$
CorePOWER ${ }^{\text {TM }}$	Green FPS ${ }^{\text {TM }}$ e-Series ${ }^{\text {TM }}$	QFET ${ }^{\text {® }}$	TinyCalc ${ }^{\text {™ }}$
CROSSVOLT ${ }^{\text {M }}$	Gmax ${ }^{\text {TM }}$	QS ${ }^{\text {TM }}$	TinyLogic ${ }^{\text {® }}$
CTL'M	GTO ${ }^{\text {™ }}$	Quiet Series ${ }^{\text {TM }}$	TINYOPTO ${ }^{\text {TM }}$
Current Transfer Logic ${ }^{\text {TM }}$	IntelliMAX ${ }^{\text {TM }}$	RapidConfigure ${ }^{\text {TM }}$	TinyPower ${ }^{\text {TM }}$
DEUXPEED ${ }^{\text {® }}$	ISOPLANAR ${ }^{\text {TM }}$	$)^{\text {TM }}$	TinyPWM ${ }^{\text {™ }}$
Dual Cool ${ }^{\text {TM }}$	Making Small Speakers Sound Louder)	TinyWire ${ }^{\text {TM }}$
EcoSPARK ${ }^{\text {® }}$	and Better ${ }^{\text {TM }}$	Saving our world, $1 \mathrm{~mW} / \mathrm{W} / \mathrm{kW}$ at a time ${ }^{\text {TM }}$	TranSic ${ }^{\text {™ }}$
EfficientMax ${ }^{\text {TM }}$	MegaBuck ${ }^{\text {™ }}$	SignalWise ${ }^{\text {TM }}$	TriFault Detect ${ }^{\text {TM }}$
ESBC ${ }^{\text {™ }}$	MICROCOUPLER ${ }^{\text {TM }}$	SmartMax ${ }^{\text {TM }}$	TRUECURRENT ${ }^{\text {® * }}$
Γ^{\circledR}	MicroFET ${ }^{\text {m }}$	SMART START ${ }^{\text {TM }}$	μ SerDes $^{\text {TM }}$
	MicroPak ${ }^{\text {TM }}$	Solutions for Your Success ${ }^{\text {TM }}$	
Fairchild ${ }^{\text {® }}$ Fairchild ${ }^{\text {a }}$ Semiconductor ${ }^{\text {® }}$	MicroPak2 ${ }^{\text {™ }}$	$\mathrm{SPM}^{\circledast}$	SerDes"
Fairchild Semiconductor ${ }^{\text {® }}$	MillerDrive ${ }^{\text {™ }}$	STEALTH SuperFET	$\mathrm{UHC}^{\circledR 1}$
FACT Quiet Series ${ }^{\text {TM }}$ FACT ${ }^{\text {® }}$	MotionMax ${ }^{\text {™ }}$	SuperFET ${ }^{\text {® }}$ SuperSOT	Ultra FRFET ${ }^{\text {TM }}$
FAST ${ }^{\text {® }}$	mWSaver ${ }^{\text {OptohiTm }}$	SuperSOT ${ }^{\text {TM }}$-6	UniFET ${ }^{\text {V/M }}$
FastvCore ${ }^{\text {TM }}$	OPTOLOGIC ${ }^{\text {® }}$	SuperSOT ${ }^{\text {TM }}$ - 8	VisualMax ${ }^{\text {™ }}$
FETBench ${ }^{\text {TM }}$	OPTOPLANAR ${ }^{\text {® }}$	SupreMOS ${ }^{\text {® }}$	
FPS ${ }^{\text {™ }}$	OPTOPLANAR	SyncFET ${ }^{\text {TM }}$	VoltagePlus ${ }^{T M}$ $X S^{T M}$

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.
Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Rev. 166

