FAIRCHILD

SEMICONDUCTOR

CD40174BC Hex D-Type Flip-Flop

General Description

The CD40174BC consists of six positive-edge triggered Dtype flip-flops; the true outputs from each flip-flop are externally available.

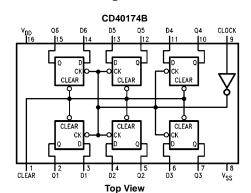
All flip-flops are controlled by a common clock and a common clear. Information at the D inputs meeting the set-up time requirements is transferred to the Q outputs on the positive-going edge of the clock pulse. The clearing operation, enabled by a negative pulse at Clear input, clears all Q outputs to logical "0".

All inputs are protected from static discharge by diode clamps to V_{DD} and $V_{SS}.$

Features

■ Wide supply voltage range: 3V to 15V

October 1987


Revised January 2004

- High noise immunity: 0.45 V_{DD} (typ.)
- Low power TTL compatibility:
- fan out of 2 driving 74L or 1 driving 74 LS ■ Equivalent to MC14174B
- Equivalent to MM74C174

Ordering Code:

Order Number	Package Number	Package Description
CD40174BCM	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
CD40174BCN	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide

Connection Diagram

Truth Table

Inputs			Out	puts
Clear	Clock	D	Q	Q
L	Х	Х	L	Н
н	Ŷ	н	н	L
Н	↑	L	L	н
Н	н	х	NC	NC
н	L	х	NC	NC

H = HIGH Level L = LOW Level

X = Irrelevant

 \uparrow = Transition from LOW-to-HIGH level NC = No change

© 2004 Fairchild Semiconductor Corporation DS005987

Absolute Maximum Ratings(Note 1) (Note 2)

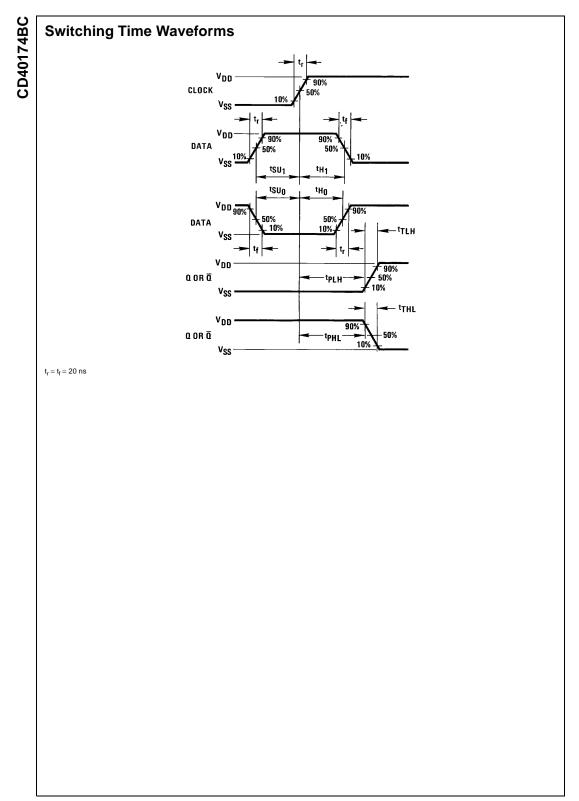
,	
DC Supply Voltage (V _{DD})	-0.5V to +18V
Input Voltage (V _{IN})	–0.5V to V_DD +0.5 V_DC
Storage Temperature Range (T_S)	-65°C to +150°C
Power Dissipation (P _D)	
Dual-In-Line	700 mW
Small Outline	500 mW
Lead Temperature (TL)	
(Soldering, 10 seconds)	260°C

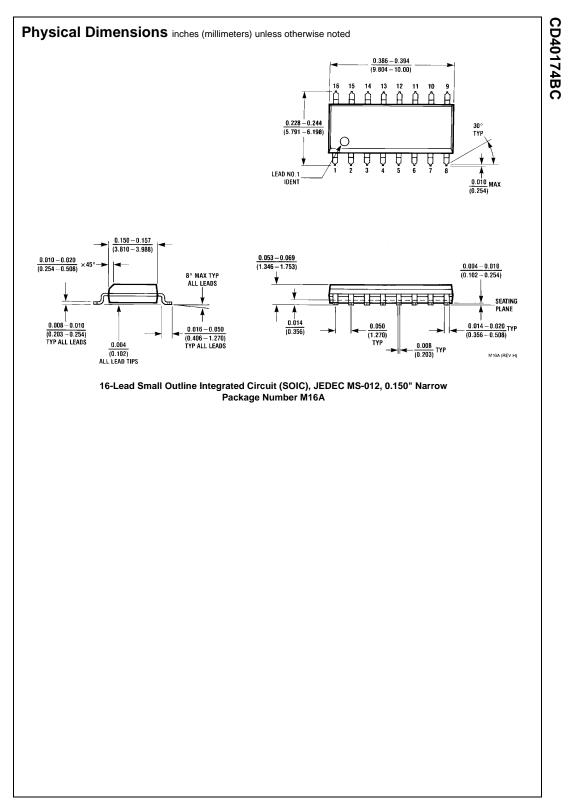
Recommended Operating Conditions (Note 2)

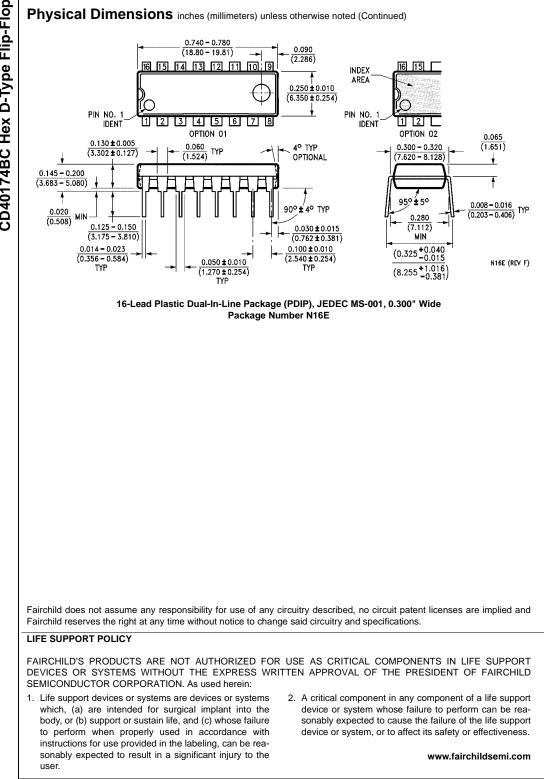
DC Supply Voltage (V_{DD}) Input Voltage (V_{IN}) 3V to 15 V_{DC} 0V to $V_{DD} V_{DC}$

Note 2: $V_{SS} = 0V$ unless otherwise specified.

DC Electrical Characteristics (Note 2)


Symbol	Parameter	Conditions	–55°C			+25°C			+125°C	
	Parameter	Conditions	Min	Max	Min	Тур	Max	Min	Max	Units
I _{DD}	Quiescent Device	$V_{DD} = 5V, V_{IN} = V_{DD} \text{ or } V_{SS}$		1.0			1.0		30	
	Current	$V_{DD} = 10V$, $V_{IN} = V_{DD}$ or V_{SS}		2.0			2.0		60	μΑ
		V_{DD} = 15V, V_{IN} = V_{DD} or V_{SS}		4.0			4.0		120	
V _{OL}	LOW Level Output	$V_{DD} = 5V$		0.05			0.05		0.05	
	Voltage	$V_{DD} = 10V \qquad \qquad I_0 < 1 \ \mu A$		0.05			0.05		0.05	V
		$V_{DD} = 15V$		0.05			0.05		0.05	
V _{OH}	HIGH Level Output	$V_{DD} = 5V$	4.95		4.95	5		4.95		
	Voltage	$V_{DD} = 10V \qquad \qquad I_O < 1 \mu A$	9.95		9.95	10		9.95		V
		$V_{DD} = 15V$	14.95		14.95	15		14.95		
V _{IL}	LOW Level Input	$V_{DD} = 5V, V_{O} = 0.5V \text{ or } 4.5V$		1.5			1.5		1.5	
	Voltage	$V_{DD} = 10V$, $V_{O} = 1V$ or $9V$		3.0			3.0		3.0	V
		$V_{DD} = 15V, V_{O} = 1.5V \text{ or } 13.5V$		4.0			4.0		4.0	
VIH	HIGH Level Input	$V_{DD} = 5V, V_{O} = 0.5V \text{ or } 4.5V$	3.5		3.5			3.5		
	Voltage	$V_{DD} = 10V$, $V_{O} = 1V$ or $9V$	7.0		7.0			7.0		V
		$V_{DD} = 15V, V_{O} = 1.5V \text{ or } 13.5V$	11.0		11.0			11.0		
I _{OL}	LOW Level Output	$V_{DD} = 5V, V_{O} = 0.4V$	0.64		0.51	0.88		0.36		
	Current (Note 3)	$V_{DD} = 10V, V_{O} = 0.5V$	1.6		1.3	2.25		0.9		mA
		$V_{DD} = 15V, V_{O} = 1.5V$	4.2		3.4	8.8		2.4		
I _{OH}	HIGH Level Output	$V_{DD} = 5V, V_{O} = 4.6V$	-0.64		-0.51	-0.88		-0.36		
	Current (Note 3)	$V_{DD} = 10V, V_{O} = 9.5V$	-1.6		-1.3	-2.25		-0.9		mA
		$V_{DD} = 15V, V_{O} = 13.5V$	-4.2		-3.4	-8.8		-2.4		
I _{IN}	Input Current	$V_{DD} = 15V, V_{IN} = 0V$		0.1		-10 ⁻⁵	0.1		-1.0	μA
		$V_{DD} = 15V, V_{IN} = 15V$		-0.1		10 ⁻⁵	-0.1		1.0	μΑ


Note 3: I_{OH} and I_{OL} are tested one output at a time.


Symbol	Parameter	Conditions	Min	Тур	Max	Units
t _{PHL} , t _{PLH}	Propagation Delay Time to a	$V_{DD} = 5V$		190	300	
	Logical "0" or Logical "1" from	$V_{DD} = 10V$		75	110	ns
	Clock to Q or \overline{Q}	V _{DD} = 15V		60	90	
t _{PHL}	Propagation Delay Time to a	$V_{DD} = 5V$		180	300	
	Logical "0" from Clear to Q	$V_{DD} = 10V$		70	110	ns
		$V_{DD} = 15V$		60	90	
t _{PLH}	Propagation Delay Time to a Logical	$V_{DD} = 5V$		230	400	
	"1" from Clear to Q	$V_{DD} = 10V$		90	150	ns
		$V_{DD} = 15V$		75	120	
t _{SU}	Time Prior to Clock Pulse that	$V_{DD} = 5V$		45	100	
	Data must be Present	$V_{DD} = 10V$		15	40	ns
		$V_{DD} = 15V$		13	35	
t _H	Time after Clock Pulse that	$V_{DD} = 5V$		-11	0	
	Data Must be Held	$V_{DD} = 10V$		-4	0	ns
		$V_{DD} = 15V$		-3	0	
t _{THL} , t _{TLH}	Transition Time	$V_{DD} = 5V$		100	200	
		$V_{DD} = 10V$		50	100	ns
		$V_{DD} = 15V$		40	80	
t _{WH} , t _{WL}	Minimum Clock Pulse Width	$V_{DD} = 5V$		130	250	
		$V_{DD} = 10V$		45	100	ns
		$V_{DD} = 15V$		40	80	
t _{WL}	Minimum Clear Pulse Width	$V_{DD} = 5V$		120	250	
		$V_{DD} = 10V$		45	100	ns
		$V_{DD} = 15V$		40	80	
t _{RCL}	Maximum Clock Rise Time	$V_{DD} = 5V$	15			
		$V_{DD} = 10V$	5.0			μs
		$V_{DD} = 15V$	5.0			
t _{fCL}	Maximum Clock Fall Time	$V_{DD} = 5V$	15	50		
		$V_{DD} = 10V$	5.0	50		μs
		$V_{DD} = 15V$	5.0	50		
f _{CL}	Maximum Clock Frequency	$V_{DD} = 5V$	2.0	3.5		
		$V_{DD} = 10V$	5.0	10		MHz
		$V_{DD} = 15V$	6.0	12		
C _{IN}	Input Capacitance	Clear Input		10	15	pF
		Other Input		5.0	7.5	PL.
C _{PD}	Power Dissipation	Per Package (Note 5)		130		pF

Note 4: AC Parameters are guaranteed by DC correlated testing. Note 5: C_{PD} determines the no load AC power consumption of any CMOS device. For complete explanation, see 74C Family Characteristics application note, AN-90.

CD40174BC

CD40174BC Hex D-Type Flip-Flop