CDC913 PC MOTHERBOARD CLOCK GENERATOR WITH DUAL 1-TO-4 BUFFERS AND 3-STATE OUTPUTS

SCAS502C - APRIL 1995 - REVISED MAY 1996

- Generates Programmable CPU Clock Output (50 MHz, 60 MHz, or 66 MHz)
- Generates 33-MHz Clock for Asynchronous PCI
- One 14.318-MHz Reference Clock Output
- All Output Clock Frequencies Derived From a Single 14.31818-MHz Crystal Input
- LVTTL-Compatible Inputs and Outputs
- Internal Loop Filters for Phase-Lock Loops Eliminate the Need for External Components
- Operates at 3.3-V V_{CC}
- Package Options Include Plastic Small-Outline (DW) and Shrink Small-Outline (DB) Packages

(TOP VIEW) 24 🛮 A_{VCC} X1 [X2 🛮 2 23 REFCLK AGND []₃ 22 OE V_{CC} 4 21 II VCC 1Y1 **[**] 5 20 2Y1 1Y2 **[**] 6 19**∏** 2Y2 1Y3 **∏** 7 18 2Y3 1Y4 **1**8 17 2Y4 GND ∏9 16 GND 1A 🛮 10 15 2A CPUCLK [] 11 14 PCICLK SEL0 [] 13 SEL1

DB OR DW PACKAGE

description

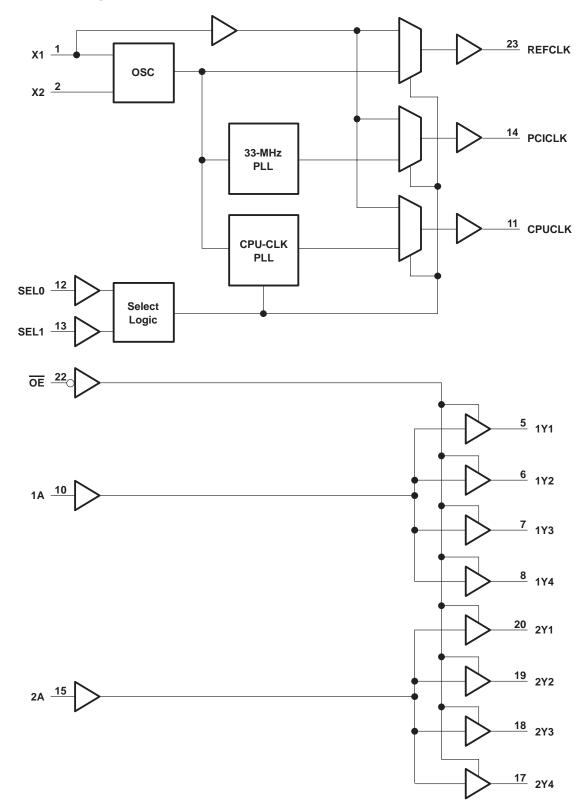
The CDC913 is a high-performance clock generator with integrated dual 1-to-4 buffers, which simplifies clock system design for PC motherboards. The CDC913 consists of a crystal oscillator, two phase-locked loops (PLL), and two 1-to-4 buffers. The CDC913 generates all frequencies using a single 14.318-MHz crystal.

The CPUCLK output is programmable to one of three frequencies (50 MHz, 60 MHz, or 66 MHz) via the SEL0 and SEL1 inputs. PCICLK outputs a 33-MHz clock, independent of the CPUCLK frequency. REFCLK provides a buffered copy of the 14.318-MHz reference. The oscillator and PLLs in the CDC913 are bypassed when in the TEST mode, i.e., SEL1 = SEL0 = H. When in the TEST mode, a test clock can be driven over the X1 input and buffered out from the PCICLK, CPUCLK, and REFCLK outputs.

Outputs 1Yn and 2Yn are 3-state outputs and are enabled via \overline{OE} . When \overline{OE} is high, the outputs are in the high-impedance state. When \overline{OE} is low, the outputs are enabled.

Since the CDC913 is based on PLL circuitry, it requires a stabilization time to achieve phase lock of the PLL. This stabilization time is required following power up and application of a fixed-frequency, fixed-phase signal at the X1 input, and following any changes to the SELn inputs.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.


Function Tables

SEL0	SEL1	X1	CPUCLK	PCICLK	REFCLK
L	L	14.318 MHz	50 MHz	33 MHz	14.318 MHz
Н	L	14.318 MHz	60 MHz	33 MHz	14.318 MHz
L	Н	14.318 MHz	66 MHz	33 MHz	14.318 MHz
Н	Н	TCLK†	TCLK [†]	TCLK†	TCLK†

[†] Test clock (TCLK) is driven over X1 when the CDC913 is in the TEST mode; i.e., $SEL1 = \overrightarrow{SEL0} = \overrightarrow{H}$.

OE	1A	2A	1Yn	2Yn
Н	Х	Х	Hi-Z	Hi-Z
L	L	L	L	L
L	L	Н	L	Н
L	Н	L	Н	L
L	Н	Н	Н	Н

functional block diagram

CDC913 PC MOTHERBOARD CLOCK GENERATOR WITH DUAL 1-TO-4 BUFFERS AND 3-STATE OUTPUTS

SCAS502C - APRIL 1995 - REVISED MAY 1996

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{CC} –0.5 V to 4.6 V
Input voltage range, V _I (see Note 1)
Voltage range applied to any output in the high state or power-off state, V_O 0.5 V to V_{CC} + 0.5 V
Current into any output in the low state, $I_{\mbox{O}}$
Input clamp current, I_{IK} ($V_I < 0$)
Output clamp current, I_{OK} ($V_O < 0$) –50 mA
Maximum power dissipation at T _A = 55°C (in still air) (see Note 2): DB package
DW package 1.7 W
Storage temperature range, T _{stg}

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

recommended operating conditions (see Note 3)

			MIN	MAX	UNIT
Vcc	Supply voltage		3.135	3.6	V
VIH	High-level input voltage		2		V
V _{IL}	Low-level input voltage			0.8	V
٧ı	Input voltage		0	Vcc	V
		REFCLK		-12	
		PCICLK		-6	
IOH	High-level output current	CPUCLK		-6	mA
		1Yn		-12	
		2Yn		-12	
		REFCLK		12	
		PCICLK	Τ	6	
lOL	Low-level output current	CPUCLK	T	6	mA
		1Yn		12	
			12		
TA	Operating free-air temperature	•	0	70	°C

NOTE 3: Unused inputs must be held high or low to prevent them from floating.

^{2.} The maximum package power dissipation is calculated using a junction temperature of 150°C and a board trace length of 750 mils. For more information, refer to the *Package Thermal Considerations* application note in the *ABT Advanced BiCMOS Technology Data Book*, literature number SCBD002.

SCAS502C - APRIL 1995 - REVISED MAY 1996

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

DADAMETER	TEST CONDITIONS			Т	A = 25°C	;	MIN	TYP	MAX	UNIT	
PARAMETER				MIN	TYP†	MAX					
VIK	$V_{CC} = 3.135 \text{ V},$	I _I = -18 mA				-1.2			-1.2	V	
		$I_{OH} = -12 \text{ mA}$	REFCLK	2.5			2.4				
		$I_{OH} = -6 \text{ mA}$	PCICLK	2.5			2.4				
Voн	V _{CC} = 3.135 V	$I_{OH} = -6 \text{ mA}$	CPUCLK	2.5			2.4			V	
		$I_{OH} = -12 \text{ mA}$	1Yn	2.5			2.4				
		I _{OH} = -12 mA	2Yn	2.5			2.4				
	V _{CC} = 3.135 V	I _{OL} = 12 mA	REFCLK			0.4			0.5	V	
		I _{OL} = 6 mA	PCICLK			0.4			0.5		
VOL		$I_{OL} = 6 \text{ mA}$	CPUCLK			0.4			0.5		
		I _{OL} = 12 mA	1Yn			0.4			0.5		
		I _{OL} = 12 mA	2Yn			0.4			0.5		
ΙΙ	$V_{CC} = 3.6 \text{ V},$	$V_I = V_{CC}$ or GND	•			±1			±1	μΑ	
loz	$V_{CC} = 3.6 \text{ V},$	VO = 3 V or 0				±1			±1	μΑ	
									1	mA	
ICC	$V_{CC} = 3.6 \text{ V},$ $I_{O} = 0,$ $V_{I} = V_{CC} \text{ or GND}$		Outputs low						1		
			Outputs disabled						1		
C _i	V _I = 3.135 V or 0							6		pF	
Co	V _I = 3.135 V or 0							6		pF	

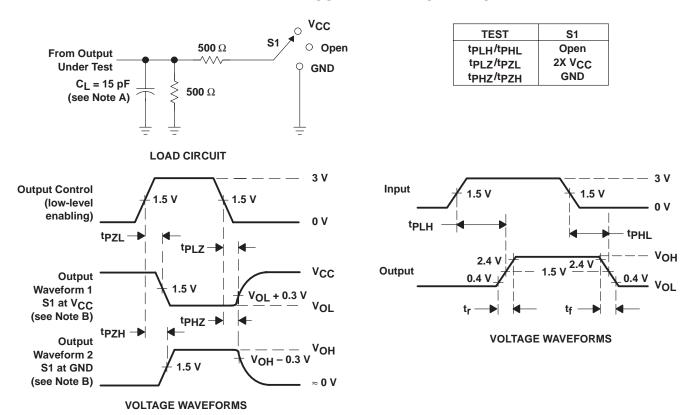
 $[\]dagger$ All typical values are at V_{CC} = 3.3 V, T_A = 25°C.

timing requirements over recommended ranges of supply voltage and operating free-air temperature

		MIN	MAX	UNIT
Ctobilization time †	After SEL1, SEL0		5	mo
Stabilization time‡	After power up		5	ms

[‡] Time required for the integrated PLL circuit to obtain phase lock of its feedback signal to its reference signal. For phase lock to be obtained, a fixed-frequency, fixed-phase reference signal must be present at X1. Until phase lock is obtained, the specifications for propagation delay and skew parameters given in the switching characteristics table are not applicable.

CDC913 PC MOTHERBOARD CLOCK GENERATOR WITH DUAL 1-TO-4 BUFFERS AND 3-STATE OUTPUTS SCAS502C - APRIL 1995 - REVISED MAY 1996

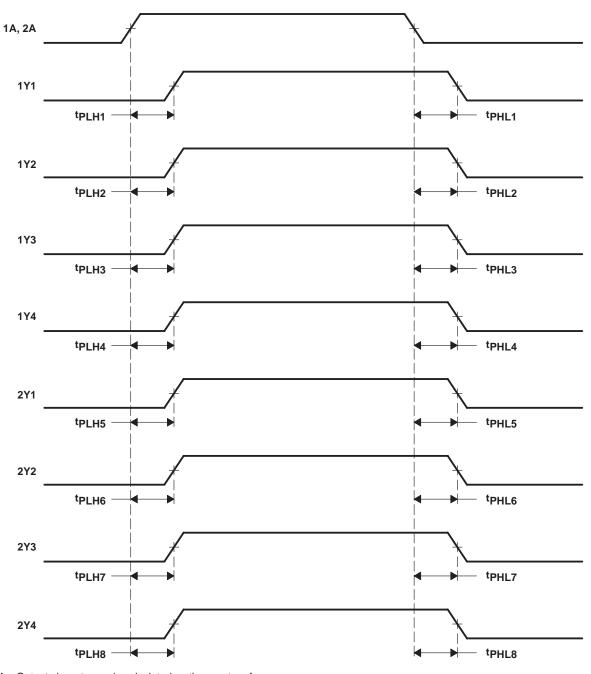

switching characteristics (see Figures 1 and 2)

PARAMETER	FROM (INPUT)	TO (OUTPUT)		V _{CC} = 3.3 V, T _A = 25°C			V _{CC} = 3.135 V to 3.6 V, T _A = 0°C to 70°C		UNIT
	(INPOT)	(001	FU1)	MIN	TYP I	MAX	MIN	MAX	
4	1A	1Yn		1.5		3.5	1.2	3.8	20
tPLH	2A	2Yn		1.5		3.5	1.2	3.8	ns
4	1A	1	′ n	1.5		3.5	1.2	3.8	
^t PHL	2A	2`	′ n	1.5		3.5	1.2	3.8	ns
t	ŌĒ	1	′ n	2.5		7	2	7.5	ns
^t PZH	OE	2\	ſη	2.5		7	2	7.5	115
^t PZL	ŌĒ		′ n	2.5		7	2	7.5	ns
'PZL	OE	2\	′ n	2.5		7	2	7.5	110
t _{PHZ}	ŌĒ		ſn	2.5		7	2	7.5	ns
,PПZ	OL .		′ n	2.5		7	2	7.5	110
t _{PLZ}	ŌĒ	1Yn		2.5		7	2	7.5	ns
1 6		2Yn		2.5		7	2	7.5	
		1Yn				350		350	!
^t sk(o)			′ n			350		350	ps
		An				500		500	
^t sk(p)		1Yn ar	nd 2Yn			1		1	ns
littor, , , , †		CPUCLK PCICLK						±250	ne
Jitter _(pk-pk) †							±350		ps
		PCICLK					30		
			SEL0 = L, SEL1 = L				20		
^t c(period) [†]		CPUCLK	SEL0 = H, SEL1 = L				16.7		ns
			SEL0 = L, SEL1 = H				15		
D. (+		CPU	CPUCLK				45%	55%	
Duty cycle†		PCI	CLK				45%	55%	
t _r ‡								2	ns
t _f ‡		1						2	ns

[†] Specifications are applicable only after the PLL stabilization time has elapsed. ‡ Rise and fall times are characterized using the load circuits shown in Figure 1.

SCAS502C - APRIL 1995 - REVISED MAY 1996

PARAMETER MEASUREMENT INFORMATION


NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , t_f \leq 2.5 ns, t_f \leq 2.5 ns.
- $\label{eq:defD} \textbf{D.} \quad \text{The outputs are measured one at a time with one transition per measurement.}$

Figure 1. Load Circuit and Voltage Waveforms

SCAS502C - APRIL 1995 - REVISED MAY 1996

PARAMETER MEASUREMENT INFORMATION

NOTE A: Output skew, $t_{Sk(0)}$, is calculated as the greater of: The difference between the fastest and slowest of t_{PLHn} (n = 1, 2, . . . , 8).

The difference between the fastest and slowest of t_{PHLn} (n = 1, 2, ..., 8). Pulse skew, t_{PHLn} (n = 1, 2, ..., 8).

Figure 2. Waveforms for Calculation of $t_{sk(0)}$ and $t_{sk(p)}$

ti.com 24-Jun-2005

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins Package Qty	Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
CDC913DW	OBSOLETE	SOIC	DW	24	TBD	Call TI	Call TI

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2005, Texas Instruments Incorporated