

MICROCIRCUIT DATA SHEET

Original Creation Date: 08/29/95 Last Update Date: 05/22/00

Last Major Revision Date: 08/29/95

SIMPLE SWITCHER (TM) 1A STEP-DOWN VOLTAGE REGULATOR

General Description

MNLM1575-15-X REV 0D1

The LM1575 regulator is a monolithic integrated circuit that provides all the active functions for a step-down (buck) switching regulator, capable of driving a 1A load with excellent line and load regulation.

Requiring a minimum number of external components, this regulator is simple to use and includes internal frequency compensation and a fixed-frequency oscillator.

The LM1575 offers a high-efficiency replacement for popular three-terminal linear regulators. It substantially reduces the size of the heat sink, and in many cases no heat sink is required.

A standard series of inductors optimized for use with the LM1575 are available from several different manufacturers. This feature greatly simplifies the design of switch-mode power supplies.

Other features include a guaranteed $\pm 4\%$ tolerance on output voltage within specified input voltage and output load conditions, and $\pm 10\%$ on the oscillator frequency. External shutdown is included, featuring 50uA (typical) standby current. The output switch includes cycle-by-cycle current limiting, as well as thermal shutdown for full protection under fault conditions.

Industry Part Number

NS Part Numbers

LM1575-15

LM1575J-15-QML LM1575K-15-QML LM1575WG-15-OML

Prime Die

LM1575-15

Controlling Document

SEE FEATURES SECTION

Processing	Subgrp	Description	Temp ($^{\circ}$ C)
MIL-STD-883, Method 5004	1 2	Static tests at Static tests at	+25 +125
	3	Static tests at	-55
Quality Conformance Inspection	4	Dynamic tests at	+25
	5	Dynamic tests at	+125
MIL-STD-883, Method 5005	6	Dynamic tests at	-55
MIL DID 003, Meeliod 3003	7	Functional tests at	+25
	8A	Functional tests at	+125
	8B	Functional tests at	-55
	9	Switching tests at	+25
	10	Switching tests at	+125

11

Switching tests at

Features

- Adjustable version output voltage range, 1.23V to 37V $\pm 4\%$ max over line and load conditions
- Guaranteed 1A output current
- Requires only 4 external components
- 52KHz fixed frequency internal oscillator
- TTL shutdown capability, low power standby mode
- High efficiency
- Uses readily available standard inductors
- Thermal shutdown and current limit protection

CONTROLLING DOCUMENTS:

LM1575J-15-QML 5962-9167401QEA LM1575K-15-QML 5962-9167401QXA LM1575WG-15-QML 5962-9167401QZA

Applications

- Simple high-efficiency step-down (buck) regulator
- Efficient pre-regulator for linear regulators
- On-card switching regulators
- Positive to negative converted (Buck-Boost)

(Absolute Maximum Ratings)

Note 1)

Maximum Supply Voltage	45V
ŌN/OFF Pin Input Voltage	-0.3V <u><</u> V≤ +Vin
Output Voltage to Ground (Steady State)	-1v
Power Dissipation (Note 2, 3)	Tubounalla Timibad
Storage Temperature Range	Internally Limited -65 C ≤ Ta ≤ +150 C
Lead Temperature (Soldering, 10 seconds) METAL CAN CERDIP CERAMIC SOIC	300 C 260 C 260 C
Maximum Junction Temperature	150 C
Thermal Resistance ThetaJA METAL CAN (Still Air) (500LF/Min Air Flow) CERDIP (Still Air) (500LF/Min Air Flow) CERAMIC SOIC (Still Air) (500LF/Min Air Flow)	45 C/W 10 C/W 70 C/W 33 C/W 121 C/W 73 C/W
Theta JC (Note 3) METAL CAN CERDIP CERAMIC SOIC	3.3 C/W 2.0 C/W 3.0 C/W
Package Weight (Typical) METAL CAN CERDIP CERAMIC SOIC	TBD TBD TBD
ESD Tolerance (Note 4)	3000V

- Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.

 Note 2: The maximum power dissipation must be derated at elevated temperatures and is dictated by Tjmax (maximum junction temperature), ThetaJA (package junction to
- Note 2: The maximum power dissipation must be derated at elevated temperatures and is dictated by Tjmax (maximum junction temperature), ThetaJA (package junction to ambient thermal resistance), and TA (ambient temperature). The maximum allowable power dissipation at any temperature is Pdmax = (Tjmax TA)/ThetaJA or the number given in the Absolute Maximum Ratings, whichever is lower.

(Continued)

Note 3: The package material for these devices allows much improved heat transfer over our standard ceramic packages. In order to take full advantage of this improved heat transfer, heat sinking must be provided between the package base (directly beneath the die), and either metal traces on, or thermal vias through, the printed circuit board. Without this additional heat sinking, device power dissipation must be calculated using junction-to-ambient, rather than junction-to-case, thermal resistance. It must not be assumed that the device leads will provide substantial heat transfer out of the package, since the thermal resistance of the leadframe material is very poor, relative to the material of the package base. The stated junction-to-case thermal resistance is for the package material only, and does not account for the additional thermal resistance between the package base and the printed circuit board. The user must determine the value of the additional thermal resistance and must combine this with the stated value for the package, to calculate the total allowed power dissipation for the device.

Note 4: Human body model, 1.5k Ohms in series with 100pF.

Recommended Operating Conditions

Temperature Range

-55 C \leq Ta \leq +125 C

Supply Voltage

40V

Electrical Characteristics

ELECTRICAL CHARACTERISTICS: SYSTEM PARAMETERS

(The following conditions apply to all the following parameters, unless otherwise specified.) DC: Vin = 30V, and Iload = 200mA.

SYMBOL	PARAMETER	CONDITIONS	NOTES	PIN- NAME	MIN	MAX	UNIT	SUB- GROUPS
Vout	Output Voltage		1		14.85	15.15	V	1
		0.2A ≤ Iload ≤ 1A, 18V ≤ Vin ≤ 40V	1		14.55	15.45	V	1
			1		14.40	15.60	V	2, 3

ELECTRICAL CHARACTERISTICS: DEVICE PARAMETERS

(The following conditions apply to all the following parameters, unless otherwise specified.) DC: Vin = 30V, and Iload = 200mA.

Vsat	Saturation Voltage	Iout = 1A	2		1.2	V	1
	1010030		2		1.4	V	2, 3
Icl	Current Limit	Peak Current, tON ≤ 3uS	2	1.7	3.0	A	1
			2	1.3	3.2	A	2, 3
	Output Leakage Current	Vin = 35V, Output = 0V	4		2	mA	1
	Culture	Vin = 35V, Output = -1V	4		30	mA	1
Iq	Quiescent Current		4		10	mA	1
			4		12	mA	2, 3
Istby	Standby Quiescent Current	ON/OFF Pin = 5V (OFF)			200	uA	1
	Carrene				500	uA	2, 3

AC ELECTRICAL CHARACTERISTICS: DEVICE PARAMETERS

(The following conditions apply to all the following parameters, unless otherwise specified.) AC: Vin = 30V, and Iload = 200mA.

fo	fo Oscillator Frequency		47	58	KHz	4	
			43	62	KHz	5, 6	
Dc	Max Duty Cycle (ON)		3	93		જ	9

Electrical Characteristics

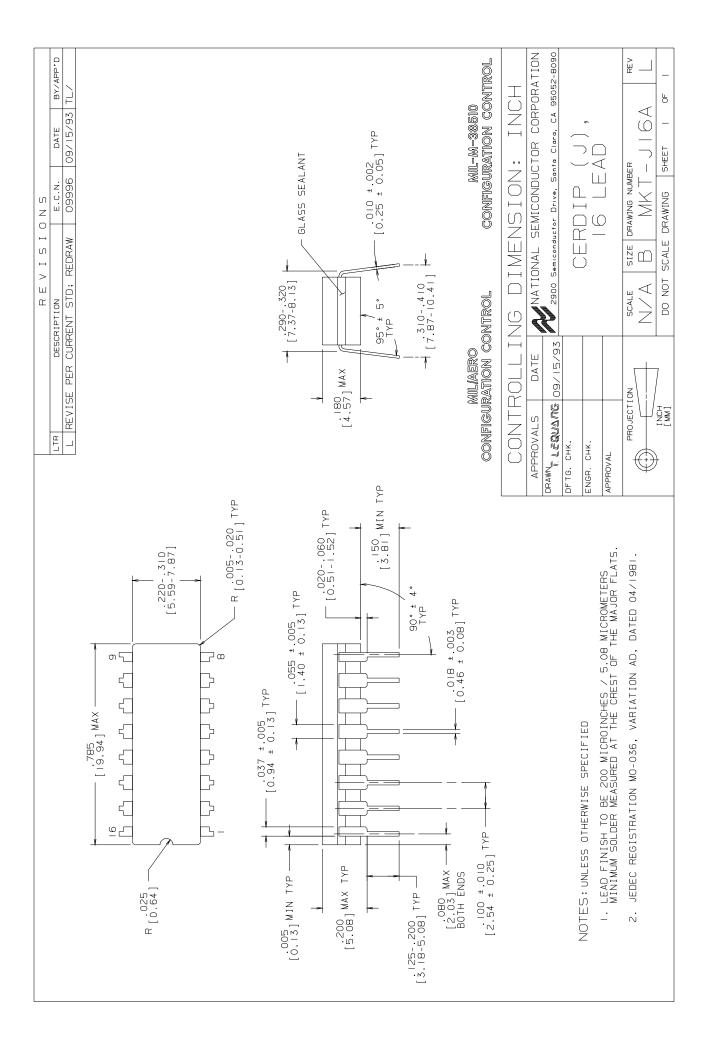
ELECTRICAL CHARACTERISTICS: ON/OFF CONTROL

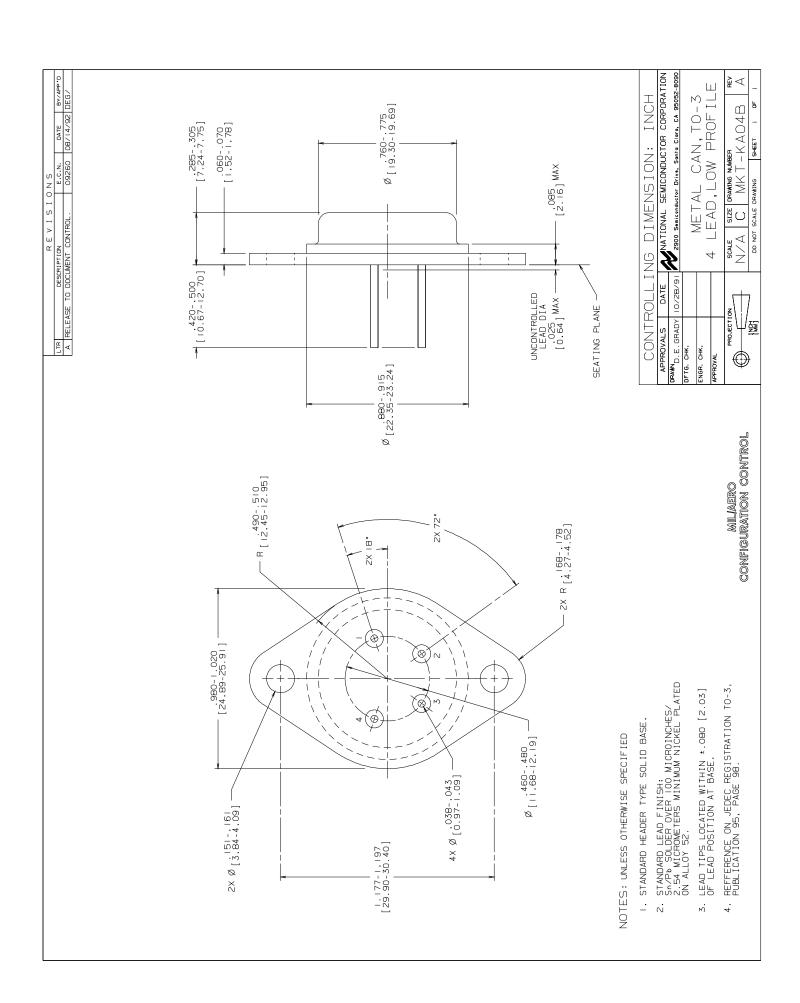
(The following conditions apply to all the following parameters, unless otherwise specified.) DC: Vin = 30V, and Iload = 200mA.

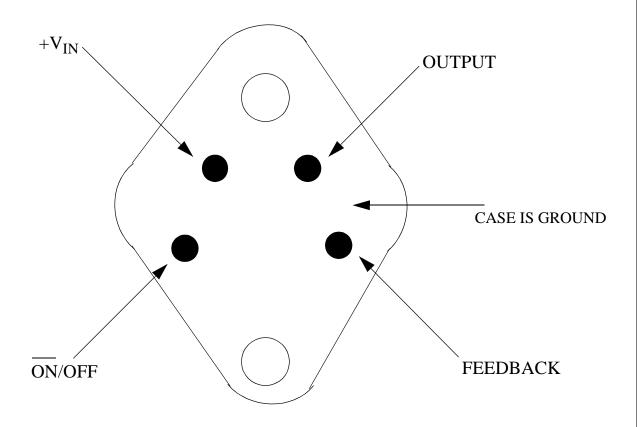
SYMBOL	PARAMETER	CONDITIONS	NOTES	PIN- NAME	MIN	MAX	UNIT	SUB- GROUPS
Vih	ON/OFF Pin Logic Input Level	Vout = 0V			2.2		V	1
Vih	ON/OFF Pin Logic Input Level	Vout = 0V			2.4		V	2, 3
Vil	ON/OFF Pin Logic Input Level	Vout = 15V				1.0	V	1
Vil	ON/OFF Pin Logic Input Level	Vout = 15V				0.8	V	2, 3
Iih	ON/OFF Pin Input Current	ON/OFF Pin = 5V (OFF)				30	uA	1
Iil	ON/OFF Pin Input Current	ŌN/OFF Pin = 0V (ON)				10	uA	1

Note 1: External components such as the catch diode, inductor, input and output capacitors can affect switching regulator system performance.

Note 2: Output sourcing current. No diode, inductor or capacitor connected to output.

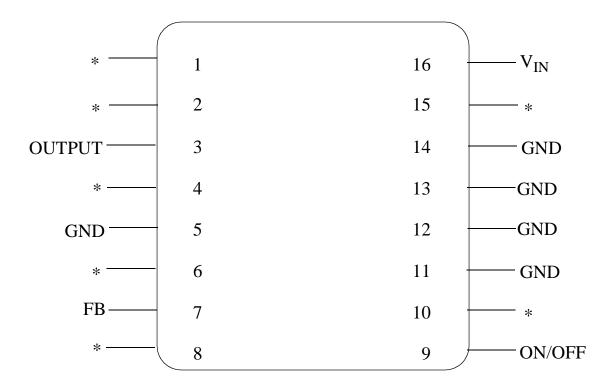

Note 3: Feedback removed from output and connected to 0V.


Note 4: Feedback removed from output and connected to 25V to force the output transistor OFF.

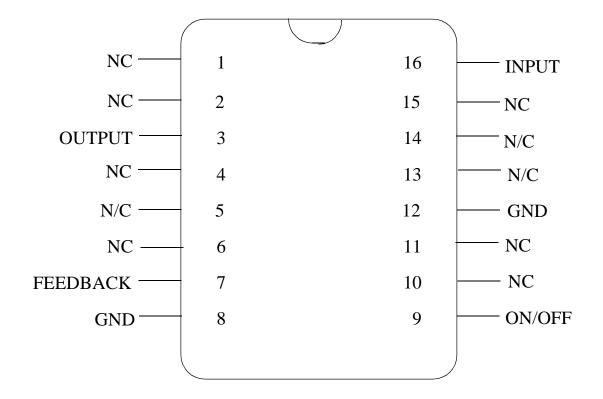

Graphics and Diagrams

GRAPHICS#	DESCRIPTION
06153HRA2	METAL CAN (KA), TO-3, 4LD, LOW PROFILE (B/I CKT)
06265HRB2	CERDIP (J), 16 LEAD (B/I CKT)
06379HRA1	CERAMIC SOIC (WG), 16 LEAD (B/I CKT)
J16ARL	CERDIP (J), 16 LEAD (P/P DWG)
KA04BRA	METAL CAN (KA), TO-3, 4 LEAD, LOW PROFILE(P/P DWG)
P000232A	METAL CAN (KA), TO-3, 4LD, LOW PROFILE (PINOUT)
P000371A	CERDIP (J), 16 LEAD (PINOUT)
P000464A	CERAMIC SOIC (WG), 16 LEAD (PIN OUT)
WG16ARC	CERAMIC SOIC (WG), 16 LEAD (P/P DWG)

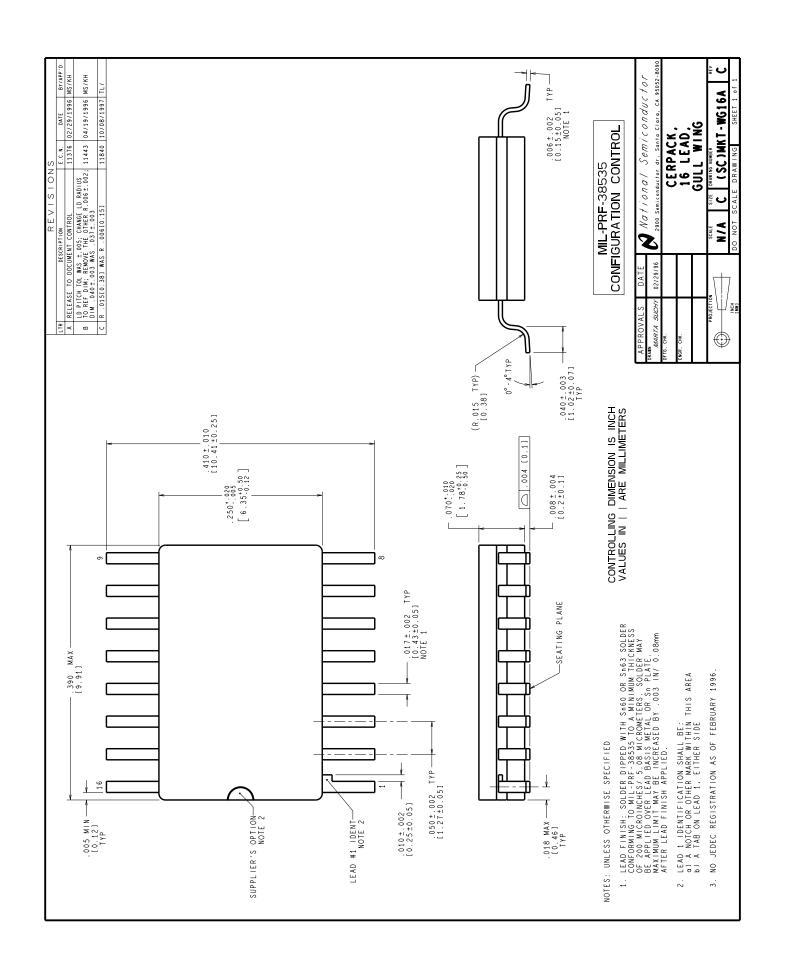
See attached graphics following this page.



LM1575K, LM1575HVK 4 - LEAD TO-3 CONNECTION DIAGRAM BOTTOM VIEW P000232A



^{*}No Internal Connection


LM1575J 16 - LEAD DIP CONNECTION DIAGRAM TOP VIEW P000371A

LM1575WG 16 - LEAD CERAMIC SOIC CONNECTION DIAGRAM TOP VIEW P000464A

Revision History

Rev	ECN #	Rel Date	Originator	Changes
000	M0001550	05/22/00	Barbara Lopez	Changed: MNLM1575-X-15 Rev. 0B0 to MNLM1575-15-X Rev. 0C0. Added power dissipation note for Aluminum Nitride package. Changed nomenclature.
OD1	M0003689	05/22/00	Rose Malone	Update MDS: MNLM1575-15-X, Rev. 0C0 to MNLM1575-15-X, Rev. 0D1. Added reference to WG package to Main Table, Market Dwg., B/I Ckt., Pin Out to Graphics Section and to Absolute Maximum Ratings Section. Moved Controlling Documents (SMD numbers) to Features Section. Corrected typo in Recommended Operating Conditions Section.