National Semiconductor is now part of Texas Instruments.

Search http://www.ti.com/ for the latest technical information and details on our current products and services.

LM10

Operational Amplifier and Voltage Reference

General Description

The LM10 series are monolithic linear ICs consisting of a precision reference, an adjustable reference buffer and an independent, high quality op amp.

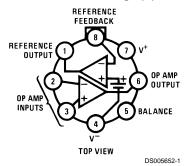
The unit can operate from a total supply voltage as low as 1.1V or as high as 40V, drawing only 270 μ A. A complementary output stage swings within 15 mV of the supply terminals or will deliver ± 20 mA output current with ± 0.4 V saturation. Reference output can be as low as 200 mV.

The circuit is recommended for portable equipment and is completely specified for operation from a single power cell. In contrast, high output-drive capability, both voltage and current, along with thermal overload protection, suggest it in demanding general-purpose applications.

The device is capable of operating in a floating mode, independent of fixed supplies. It can function as a remote comparator, signal conditioner, SCR controller or transmitter for

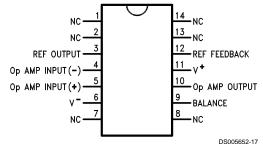
analog signals, delivering the processed signal on the same line used to supply power. It is also suited for operation in a wide range of voltage- and current-regulator applications, from low voltages to several hundred volts, providing greater precision than existing ICs.

This series is available in the three standard temperature ranges, with the commercial part having relaxed limits. In addition, a low-voltage specification (suffix "L") is available in the limited temperature ranges at a cost savings.

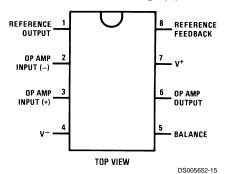

Features

■ input offset voltage: 2.0 mV (max)
 ■ input offset current: 0.7 nA (max)
 ■ input bias current: 20 nA (max)
 ■ reference regulation: 0.1% (max)
 ■ offset voltage drift: 2µV/°C

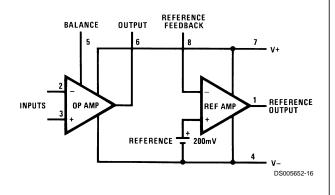
■ reference drift: 0.002%/°C


Connection and Functional Diagrams

Metal Can Package (H)


Order Number LM10BH, LM10CH, LM10CLH or LM10H/883 available per SMA# 5962-8760401 See NS Package Number H08A

Small Outline Package (WM)



Order Number LM10CWM or LM10CWMX See NS Package Number M14B

Dual-In-Line Package (N)

Order Number LM10CN or LM10CLN See NS Package Number N08E

Absolute Maximum Ratings (Notes 1, 8)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

	LM10/LM10B/ LM10C	LM10BL/ LM10CL			
Total Supply Voltage	45V	7V			
Differential Input Voltage (Note 2)	±40V	±7V			
Power Dissipation (Note 3)	internally I	imited			
Output Short-circuit Duration (Note 4)	continuous				
Storage-Temp. Range	-55°C to +150°C				
Lead Temp. (Soldering, 10 seconds)					
Metal Can	300°C				
Lead Temp. (Soldering, 10 seconds) DIP	260°C				
Vapor Phase (60 seconds)	215°C				
Infrared (15 seconds)	220°C				

See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.

ESD rating is to be determined.

Maximum Junction Temperature

 $\begin{array}{ccc} \text{LM10} & & 150 ^{\circ}\text{C} \\ \text{LM10B} & & 100 ^{\circ}\text{C} \\ \text{LM10C} & & 85 ^{\circ}\text{C} \\ \end{array}$

Operating Ratings

Package Thermal Resistance

 θ_{JA}

H Package 150°C/W N Package 87°C/W WM Package 90°C/W

 θ_{IC}

H Package 45°C/W

Electrical Characteristics

 $T_J=25$ °C, $T_{MIN} \le T_J \le T_{MAX}$ (Boldface type refers to limits over temperature range) (Note 5)

Parameter	Conditions	ı	LM10/LM1	0B		LM10C		Units
		Min	Тур	Max	Min	Тур	Max	
Input offset voltage			0.3	2.0		0.5	4.0	mV
				3.0			5.0	mV
Input offset current			0.25	0.7		0.4	2.0	nA
(Note 6)				1.5			3.0	nA
Input bias current			10	20		12	30	nA
				30			40	nA
Input resistance		250	500		150	400		kΩ
		150			115			kΩ
Large signal voltage	$V_S=\pm 20V$, $I_{OUT}=0$	120	400		80	400		V/mV
gain	V _{OUT} =±19.95V	80			50			V/mV
	$V_S=\pm 20V$, $V_{OUT}=\pm 19.4V$	50	130		25	130		V/mV
	I _{OUT} =±20 mA (±15 mA)	20			15			V/mV
	$V_S = \pm 0.6 V$ (0.65V), $I_{OUT} = \pm 2 \text{ mA}$	1.5	3.0		1.0	3.0		V/mV
	$V_{OUT} = \pm 0.4 V$ (±0.3V), $V_{CM} = -0.4 V$	0.5			0.75			V/mV
Shunt gain (Note 7)	1.2V (1.3V) ≤V _{OUT} ≤40V,	14	33		10	33		V/mV
	$R_L=1.1 \text{ k}\Omega$							
	0.1 mA≤l _{OUT} ≤5 mA	6			6			V/mV
	1.5V≤V ⁺ ≤40V, R _L =250Ω	8	25		6	25		V/mV
	0.1 mA≤l _{OUT} ≤20 mA	4			4			V/mV
Common-mode	-20V≤V _{CM} ≤19.15V (19V)	93	102		90	102		dB
rejection	V _S =±20V	87			87			dB
Supply-voltage	-0.2V≥V⁻≥-39V	90	96		87	96		dB
rejection	V ⁺ =1.0V (1.1V)	84			84			dB
	1.0V (1.1V) ≤V ⁺ ≤39.8V	96	106		93	106		dB
	V ⁻ =-0.2V	90			90			dB
Offset voltage drift			2.0			5.0		μV/°C
Offset current drift			2.0			5.0		pA/°C
Bias current drift T _C <100°C			60			90		pA/°C
Line regulation	1.2V (1.3V) ≤V _S ≤40V		0.001	0.003		0.001	0.008	%/V
	0≤I _{REF} ≤1.0 mA, V _{REF} =200 mV			0.006			0.01	%/V

Electrical Characteristics (Continued)

 $T_J = 25^{\circ}C, \, T_{\text{MIN}} \leq T_J \leq T_{\text{MAX}} \, \, \text{(Boldface type refers to limits over temperature range)} \, \, (\text{Note 5})$

Parameter	Conditions		LM10/LM1	0B		LM10C		Units
		Min	Тур	Max	Min	Тур	Max	
Load regulation	0≤I _{REF} ≤1.0 mA		0.01	0.1		0.01	0.15	%
	V ⁺ –V _{REF} ≥1.0V (1.1V)			0.15			0.2	%
Amplifier gain	0.2V≤V _{REF} ≤35V	50	75		25	70		V/mV
		23			15			V/mV
Feedback sense		195	200	205	190	200	210	mV
voltage		194		206	189		211	mV
Feedback current			20	50		22	75	nA
				65			90	nA
Reference drift			0.002			0.003		%/°C
Supply current			270	400		300	500	μA
				500			570	μA
Supply current change	1.2V (1.3V) ≤V _S ≤40V		15	75		15	75	μA

Electrical Characteristics

 $T_J=25^{\circ}C$, $T_{MIN}\le T_J\le T_{MAX}$ (Boldface type refers to limits over temperature range) (Note 5)

Parameter	Conditions		LM10BL			LM10CL		Units
		Min	Тур	Max	Min	Тур	Max	İ
Input offset voltage			0.3	2.0		0.5	4.0	mV
				3.0			5.0	mV
Input offset current			0.1	0.7		0.2	2.0	nA
(Note 6)				1.5			3.0	nA
Input bias current			10	20		12	30	nA
				30			40	nA
Input resistance		250	500		150	400		kΩ
		150			115			kΩ
Large signal voltage	V _S =±3.25V, I _{OUT} =0	60	300		40	300		V/mV
gain	V _{OUT} =±3.2V	40			25			V/mV
	$V_S=\pm 3.25V$, $I_{OUT}=10$ mA	10	25		5	25		V/mV
	V _{OUT} =±2.75 V	4			3			V/mV
	$V_S = \pm 0.6V$ (0.65V), $I_{OUT} = \pm 2$ mA	1.5	3.0		1.0	3.0		V/mV
	$V_{OUT} = \pm 0.4 V$ (±0.3V), $V_{CM} = -0.4 V$	0.5			0.75			V/mV
Shunt gain (Note 7)	1.5V≤V ⁺ ≤6.5V, R _L =500Ω	8	30		6	30		V/mV
	0.1 mA≤l _{OUT} ≤10 mA	4			4			V/mV
Common-mode	-3.25V≤V _{CM} ≤2.4V (2.25V)	89	102		80	102		dB
rejection	V _S =±3.25V	83			74			dB
Supply-voltage	-0.2V≥V ⁻ ≥-5.4V	86	96		80	96		dB
rejection	V ⁺ =1.0V (1.2V)	80			74			dB
	1.0V (1.1V) ≤V ⁺ ≤6.3V	94	106		80	106		dB
	V ⁻ =0.2V	88			74			dB
Offset voltage drift			2.0			5.0		μV/°C
Offset current drift			2.0			5.0		pA/°C
Bias current drift			60			90		pA/°C
Line regulation	1.2V (1.3V) ≤V _S ≤6.5V		0.001	0.01		0.001	0.02	%/V
	0≤I _{REF} ≤0.5 mA, V _{REF} =200 mV			0.02			0.03	%/V
Load regulation	0≤I _{REF} ≤0.5 mA		0.01	0.1		0.01	0.15	%
	V ⁺ –V _{REF} ≥1.0V (1.1V)			0.15			0.2	%

Electrical Characteristics (Continued)

 $T_J=25^{\circ}C$, $T_{MIN} \le T_J \le T_{MAX}$ (Boldface type refers to limits over temperature range) (Note 5)

Parameter	Conditions	LM10BL				Units		
		Min	Тур	Max	Min	Тур	Max	
Amplifier gain	0.2V≤V _{REF} ≤5.5V	30	70		20	70		V/mV
		20			15			V/mV
Feedback sense voltage		195	200	205	190	200	210	mV
		194		206	189		211	mV
Feedback current			20	50		22	75	nA
				65			90	nA
Reference drift			0.002			0.003		%/°C
Supply current			260	400		280	500	μA
				500			570	μA

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits.

Note 2: The Input voltage can exceed the supply voltages provided that the voltage from the input to any other terminal does not exceed the maximum differential input voltage and excess dissipation is accounted for when $V_{IN} < V^-$.

Note 3: The maximum, operating-junction temperature is 150°C for the LM10, 100°C for the LM10B(L) and 85°C for the LM10C(L). At elevated temperatures, devices must be derated based on package thermal resistance.

Note 4: Internal thermal limiting prevents excessive heating that could result in sudden failure, but the IC can be subjected to accelerated stress with a shorted output and worst-case conditions.

Note 5: These specifications apply for $V^- \le V_{CM} \le V^+ - 0.85V$ (1.0V), 1.2V (1.3V) $< V_S \le V_{MAX}$, $V_{REF} = 0.2V$ and $0 \le I_{REF} \le 1.0$ mA, unless otherwise specified: $V_{MAX} = 40V$ for the standard part and 6.5V for the low voltage part. Normal typeface indicates 25°C limits. **Boldface type indicates limits and altered test conditions for full-temperature-range operation**; this is -55°C to 125°C for the LM10, -25°C to 85°C for the LM10B(L) and 0°C to 70°C for the LM10C(L). The specifications do not include the effects of thermal gradients ($\tau_1 = 20$ ms), die heating ($\tau_2 = 0.2$ s) or package heating. Gradient effects are small and tend to offset the electrical error (see curves).

Note 6: For T_J>90°C, I_{OS} may exceed 1.5 nA for $V_{CM}=V^-$. With T_J=125°C and $V^- \le V_{CM} \le V^- + 0.1 V$, I_{OS} ≤ 5 nA.

Note 7: This defines operation in floating applications such as the bootstrapped regulator or two-wire transmitter. Output is connected to the V⁺ terminal of the IC and input common mode is referred to V⁻ (see typical applications). Effect of larger output-voltage swings with higher load resistance can be accounted for by adding the positive-supply rejection error.

Note 8: Refer to RETS10X for LM10H military specifications.

Definition of Terms

Input offset voltage: That voltage which must be applied between the input terminals to bias the unloaded output in the linear region.

Input offset current: The difference in the currents at the input terminals when the unloaded output is in the linear region.

Input bias current: The absolute value of the average of the two input currents.

Input resistance: The ratio of the change in input voltage to the change in input current on either input with the other grounded

Large signal voltage gain: The ratio of the specified output voltage swing to the change in differential input voltage required to produce it.

Shunt gain: The ratio of the specified output voltage swing to the change in differential input voltage required to produce it with the output tied to the V $^+$ terminal of the IC. The load and power source are connected between the V $^+$ and V $^-$ terminals, and input common-mode is referred to the V $^-$ terminal.

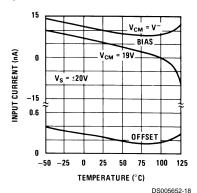
Common-mode rejection: The ratio of the input voltage range to the change in offset voltage between the extremes.

Supply-voltage rejection: The ratio of the specified supply-voltage change to the change in offset voltage between the extremes.

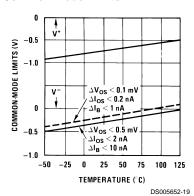
Line regulation: The average change in reference output voltage over the specified supply voltage range.

Load regulation: The change in reference output voltage from no load to that load specified.

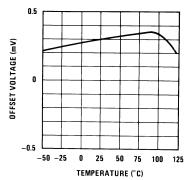
Feedback sense voltage: The voltage, referred to V^- , on the reference feedback terminal while operating in regulation.


Reference amplifier gain: The ratio of the specified reference output change to the change in feedback sense voltage required to produce it.

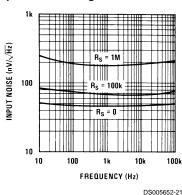
Feedback current: The absolute value of the current at the feedback terminal when operating in regulation.


Supply current: The current required from the power source to operate the amplifier and reference with their outputs unloaded and operating in the linear range.

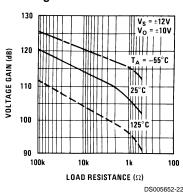
Typical Performance Characteristics (Op Amp)


Input Current

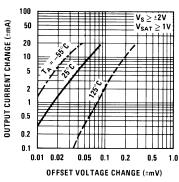
Common Mode Limits



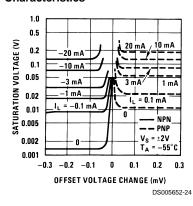
Output Voltage Drift



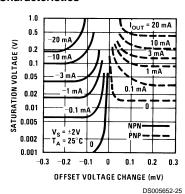
DS005652-20


Input Noise Voltage

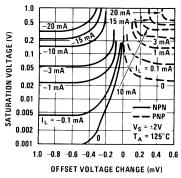
DC Voltage Gain



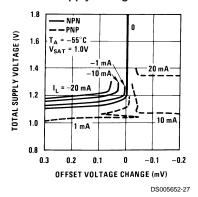
Transconductance

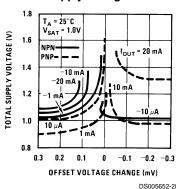


DS005652-23

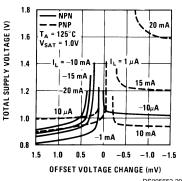

Output Saturation Characteristics

Output Saturation Characteristics

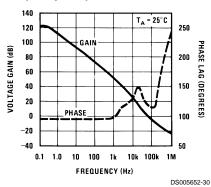

Output Saturation Characteristics


DS005652-26

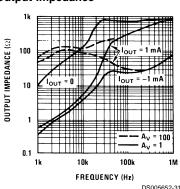
Typical Performance Characteristics (Op Amp) (Continued)


Minimum Supply Voltage

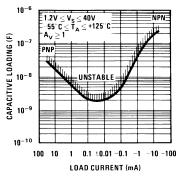
Minimum Supply Voltage



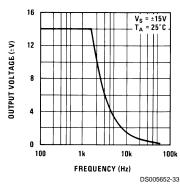
Minimum Supply Voltage



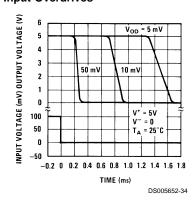
DS005652-29


Frequency Response

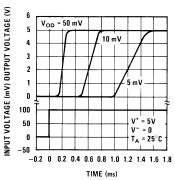
Output Impedance



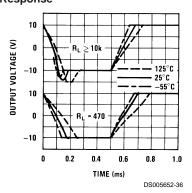
Typical Stability Range

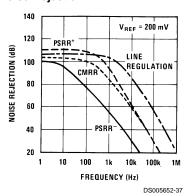


DS005652-32

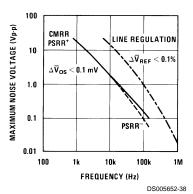

Large Signal Response

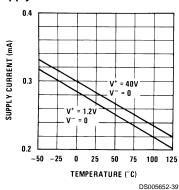
Comparator Response Time For Various Input Overdrives

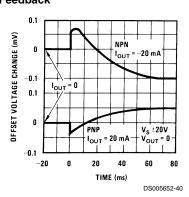

Comparator Response Time For Various Input Overdrives

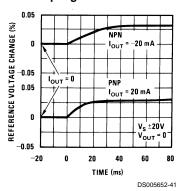

DS005652-35

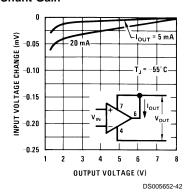
Typical Performance Characteristics (Op Amp) (Continued)

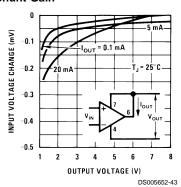

Follower Pulse Response

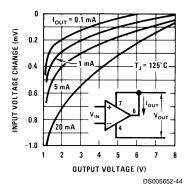

Noise Rejection


Rejection Slew Limiting

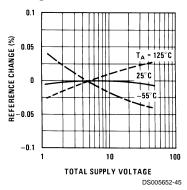

Supply Current


Thermal Gradient Feedback

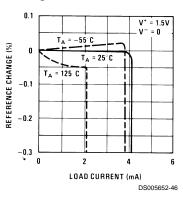

Thermal Gradient Cross-coupling


Shunt Gain

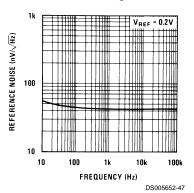
Shunt Gain

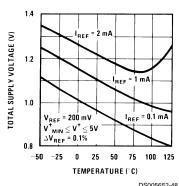


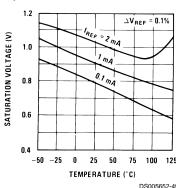
Shunt Gain

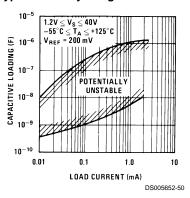


Typical Performance Characteristics (Reference)

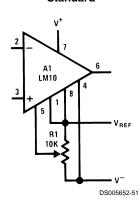

Line Regulation

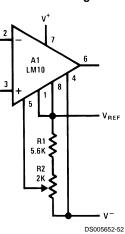

Load Regulation


Reference Noise Voltage

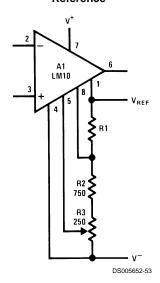

Minimum Supply Voltage

Output Saturation

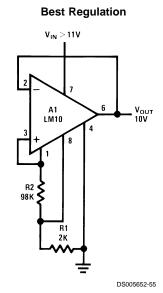

Typical Stability Range

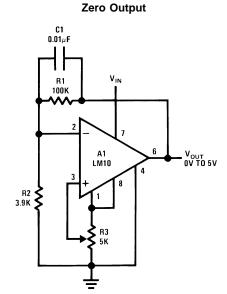

Typical Applications (Note 10) (Pin numbers are for devices in 8-pin packages)

Op Amp Offset Adjustment


Standard

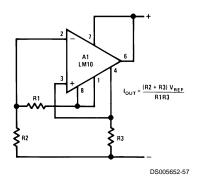
Limited Range

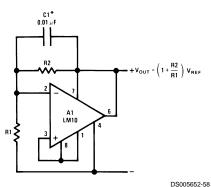



Limited Range With Boosted Reference

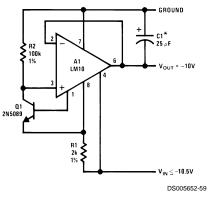
Positive Regulators (Note 9)

C1 0.01;/F R1 28K V_{IN} > 3.2V A1 LM10 B2 CSO05652-54

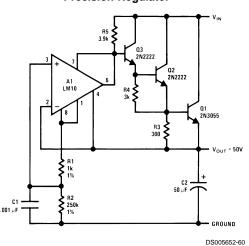



DS005652-56

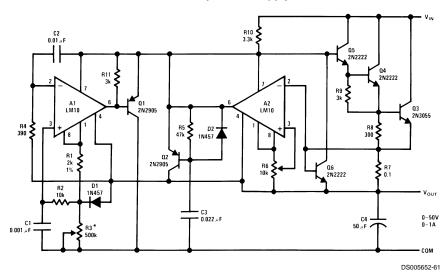
Note 9: Use only electrolytic output capacitors.



Shunt Regulator

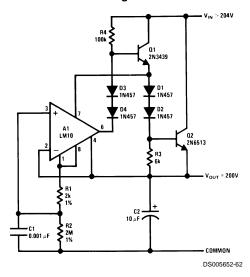

Required For Capacitive Loading

Negative Regulator

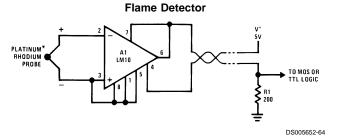


*Electrolytic

Precision Regulator

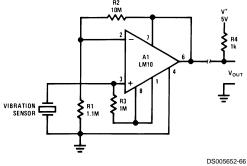


Laboratory Power Supply

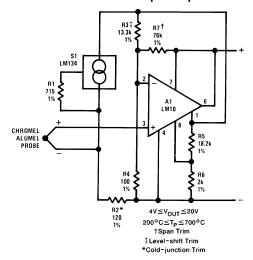

*V_{OUT}=10⁻⁴ R3

HV Regulator

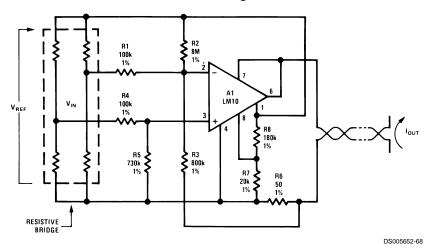
$$V_{OUT} = \frac{R2}{R1} V_{REF}$$
DS005652-8


Protected HV Regulator Q4 2N2222 V_{OUT} = 250V 5 mA \leq $I_{OUT} \leq$ 150 mA C2 1000 pF DS005652-63

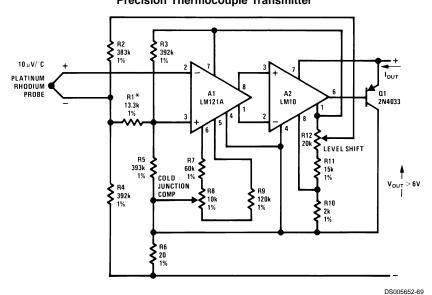
$^*800^{\circ}\text{C}$ Threshold Is Established By Connecting Balance To $\text{V}_{\text{REF}}.$


Light Level Sensor DS005652-65

*Provides Hysteresis


Remote Amplifier

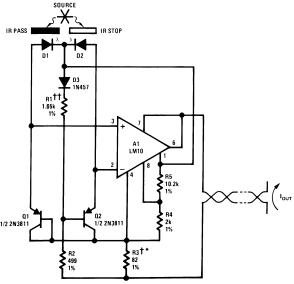
Remote Thermocouple Amplifier



DS005652-67

Transmitter for Bridge Sensor

Precision Thermocouple Transmitter

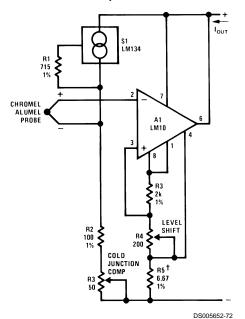


10 mA \leq l $_{OUT}\leq$ 50 mA 500°C \leq T $_{P}\leq$ 1500°C *Gain Trim

Resistance Thermometer Transmitter

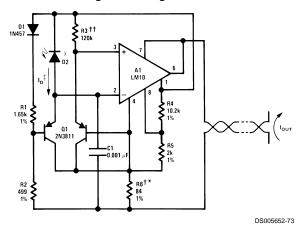
DS005652-70

Optical Pyrometer

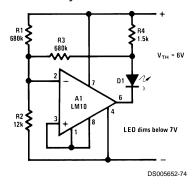


DS005652-71

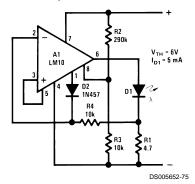
- ††Level-shift Trim
- *Scale Factor Trim
- †Copper Wire Wound
- 1 mA \leq I $_{OUT}\leq$ 5 mA


$$0.01 \le \frac{I_{D2}}{I_{D1}} \le 100$$

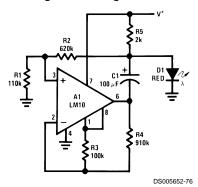
Thermocouple Transmitter

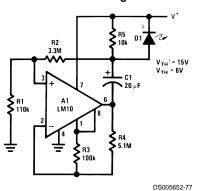

 $200^{\circ}C{\le}T_p{\le}700^{\circ}C$ 1 mA≤l_{OUT}≤5 mA †Gain Trim

Logarithmic Light Sensor

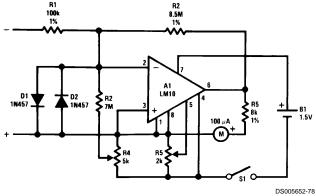


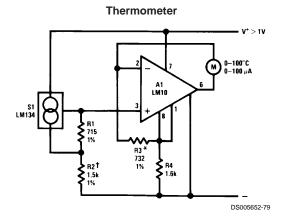
- 1 mA \leq l $_{OUT}\leq$ 5 mA \ddagger 50 μ A \leq l $_{D}\leq$ 500 μ A
- ††Center Scale Trim
- †Scale Factor Trim
- *Copper Wire Wound


Battery-level Indicator

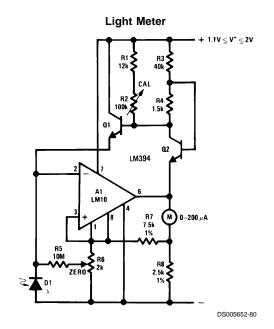

Battery-threshold Indicator

Single-cell Voltage Monitor

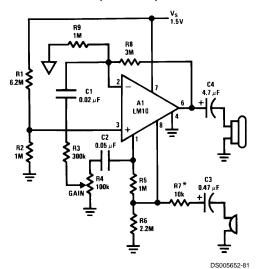

Double-ended Voltage Monitor


Flashes Above 1.2V Rate Increases With Voltage

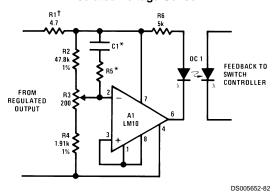
Flash Rate Increases Above 6V and Below 15V


Meter Amplifier

INPUT 10 mV, 100nA FULL-SCALE



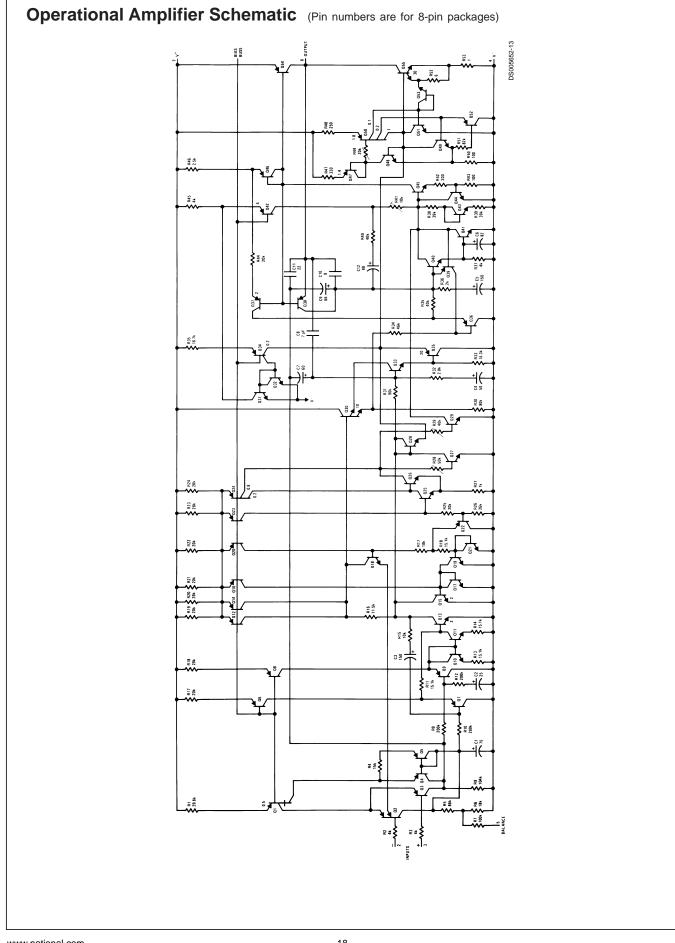
*Trim For Span †Trim For Zero


 $1 \le \lambda/\lambda_0 \le 10^5$

Microphone Amplifier

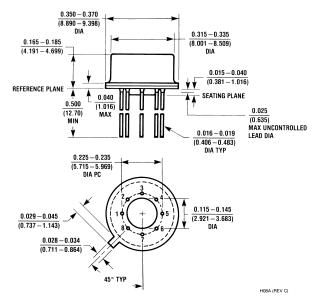
 Z_{OUT} -680 Ω @ 5 kHz $A_V \le 1$ k f_1 -100 Hz f_2 -5 kHz $R_L \sim 500$ *Max Gain Trim

Isolated Voltage Sensor

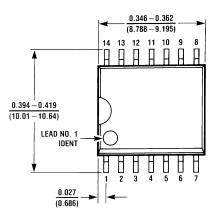

†Controls "Loop Gain"
*Optional Frequency Shaping

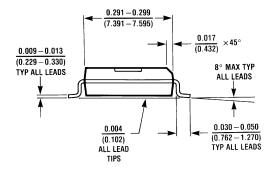
Light-level Controller R5 10k 2W R1 10k 1% R2 22k 10 µF 100 115 V_{AC} 115 V_{AC} 115 V_{AC} 116 µF 100 116 µF 100 117 µF 100 118 µF 119 µF 1100 115 V_{AC} 11

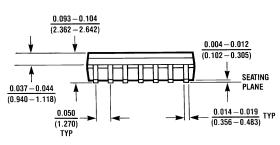
Note 10: Circuit descriptions available in application note AN-211.


Application Hints

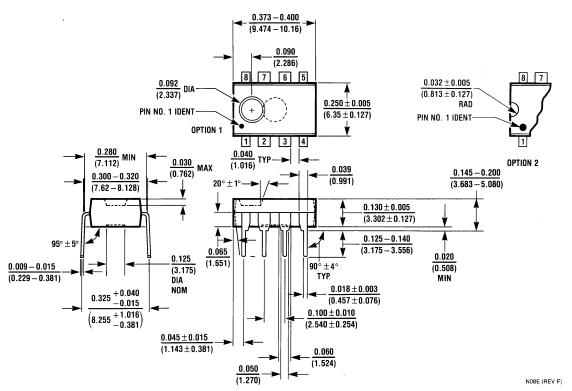
With heavy amplifier loading to V^- , resistance drops in the V^- lead can adversely affect reference regulation. Lead resistance can approach 1Ω . Therefore, the common to the reference circuitry should be connected as close as possible to the package.




Reference and Internal Regulator (Pin numbers are for 8-pin packages) ž Š R78 150k R72 20k R67 15.6k R64 82.4k R66 2.5k \$ ≈ \$ 86 8 **§** C12 5 R57 20k BIAS BUSS


Physical Dimensions inches (millimeters) unless otherwise noted

Metal Can Package (H)
Order Number LM10BH, LM10CH, LM10CLH or LM10H/883
NS Package Number H08A



M14B (REV D)

S.O. Package (WM)
Order Number LM10CWM or LM10CWMX
NS Package Number M14B

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

Dual-In-Line Package (N)
Order Number LM10CN or LM10CLN
NS Package Number N08E

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation Americas

Tel: 1-800-272-9959 Fax: 1-800-737-7018 Email: support@nsc.com

www.national.com

National Semiconductor

Europe

Fax: +49 (0) 180-530 85 86 Email: europe.support@nsc.com Deutsch Tel: +49 (0) 69 9508 6208 English Tel: +44 (0) 870 24 0 2171

Français Tel: +33 (0) 1 41 91 8790

National Semiconductor Asia Pacific Customer Response Group Tel: 65-2544466

Fax: 65-2504466 Email: ap.support@nsc.com National Semiconductor Japan Ltd. Tel: 81-3-5639-7560 Fax: 81-3-5639-7507

Application

<u>Products</u> > <u>Analog - Amplifiers</u> > <u>Operational Amplifiers</u> > <u>Low Power</u> > LM10

LM10 Product Folder

Operational Amplifier and Voltage Reference

<u>Description</u> <u>Features</u>	<u>Datasheet</u>	& Models	& Pricing	Tools	Notes				
Parametric Table		Parametric	Table						
Channels (Channels)	1	Maximum	Maximum Supply Voltage (Volt)						
Input Output Type	Vcm to V-, R-R Out	Offset Volt	age, Max (mV)	4, 2					
Bandwidth, typ (MHz)	.09, .05	Input Bias	Current, Temp N	Max (nA)	40, 30				
Slew Rate, typ (Volts/usec)	.20	Output Cui	rrent, typ (mA)		20				
Supply Current per Channel, typ (mA)	.30, .28, .27	Voltage No	oise, typ (nV/Hz)		50				
Minimum Supply Voltage (Volt)	1.10	Shut down		No					
<u>-</u>	7	Special Fea	atures		w/Reference				

Package

Samples

Datasheet

General

Title	Size in Kbytes	IIIATA	View Online	Download	Receive via Email
LM10 Operational Amplifier and Voltage Reference	687 Kbytes	22- Aug- 00	View Online	Download	Receive via Email
LM10 Operational Amplifier and Voltage Reference (JAPANESE)	655 Kbytes		View Online	Download	Receive via
LM10 Mil-Aero Datasheet MNLM10-X	12 Kbytes		View Online	Download	Receive via Email

If you have trouble printing or viewing PDF file(s), see Printing Problems.

Package Availability, Models, Samples & Pricing

Part Number	Package		i achage Models		Samples & Electronic			Std Pack	Package Marking		
Number	Туре	Pins	MSL		SPICE	IBIS	Orders	Qty	\$US each	Size	Marking
	SOIC		MCI	Full	27/4	37/4	24 Hour	4 77		rail	[logo]¢U¢Z¢2¢T
	WIDE	14	MSL	production	N/A	N/A	Buy Now	1K+	\$1.6500	of 50	LM10CWM

							,				
LM10CWMX	SOIC WIDE	14	MSL	Full production	N/A	N/A	Buy Now	1K+	\$1.6500	reel of 1000	[logo]¢U¢Z¢2¢T LM10CWM
LM10CLN	MDIP	8	MSL	Full production	N/A	N/A	Buy Now	1K+	\$1.3000	rail of 40	[logo]¢U¢Z¢2¢T LM10CLN
LM10CN	MDIP	8	MSL	Full production	N/A	N/A	Buy Now	1K+	\$1.6500	rail of 40	[logo]¢U¢Z¢2¢T LM 10CN
LM10BH	<u>TO-5</u>	8	MSL	Full production	N/A	N/A	Buy Now	250+	\$11.8000	box of 500	[logo]¢Z¢2¢T LM10BH
LM10CH	<u>TO-5</u>	8	MSL	Full production	N/A	N/A	Buy Now	1K+	\$3.0400	box of 500	[logo]¢Z¢2¢T LM10CH
LM10CLH	<u>TO-5</u>	8	MSL	Full production	N/A	N/A	Buy Now	1K+	\$3.1200	box of 500	[logo]¢Z¢2¢T LM10CLH
5962- 8760401GA	<u>TO-5</u>	8	MSL	Full production	N/A	N/A	Buy Now	50+	\$37.5000	tray of 20	[logo] ¢Z¢S¢4¢A LM10H/883Q¢M 5962-8760401GA \$E
LM10CL MDC		<u>Die</u>		Full production	N/A	N/A	Samples			tray of N/A	-
LM10CL MWC	<u>v</u>	<u>Vafer</u>		Full production	N/A	N/A				wafer jar of N/A	-
LM10 MD8		<u>Die</u>		Full production	N/A	N/A	Samples			tray of N/A	-
LM10 MW8	v	<u>Vafer</u>		Full production	N/A	N/A				wafer jar of N/A	-

General Description

The LM10 series are monolithic linear ICs consisting of a precision reference, an adjustable reference buffer and an independent, high quality op amp.

The unit can operate from a total supply voltage as low as 1.1V or as high as 40V, drawing only 270 μ A. A complementary output stage swings within 15 mV of the supply terminals or will deliver ± 20 mA output current with ± 0.4 V saturation. Reference output can be as low as 200 mV.

The circuit is recommended for portable equipment and is completely specified for operation from a single power cell. In contrast, high output-drive capability, both voltage and current, along with thermal overload protection, suggest it in demanding general-purpose applications.

The device is capable of operating in a floating mode, independent of fixed supplies. It can function as a remote comparator, signal conditioner, SCR controller or transmitter for analog signals, delivering the processed signal on the same line used to supply power. It is also suited for operation in a wide range of voltage- and current-regulator applications, from low voltages to several hundred volts, providing greater precision than existing ICs.

This series is available in the three standard temperature ranges, with the commercial part having relaxed

limits. In addition, a low-voltage specification (suffix "L") is available in the limited temperature ranges at a cost savings.

Features

• input offset voltage: 2.0 mV (max) • input offset current: 0.7 nA (max) • input bias current: 20 nA (max) • reference regulation: 0.1% (max) • offset voltage drift: $2\mu V/^{\circ}C$ • reference drift: $0.002\%/^{\circ}C$

Design Tools

Title	Size in Kbytes	Date	View Online	Download	Receive via Email
Amplifiers Selection Guide software for Windows	7 Kbytes	12-Jun-2002	<u>View</u>		

If you have trouble printing or viewing PDF file(s), see Printing Problems.

Application Notes

Title	Size in Kbytes	Date	View Online	Download	Receive via Email
AN-211: New Op Amp Ideas	296 Kbytes	4- Nov- 95	View Online	Download	Receive via Email
AN-242: Applying a New Precision Op Amp	267 Kbytes	4- Nov- 95	View Online	Download	Receive via Email
AN-247: Using the ADC0808/ADC0809 8-Bit MicroP Compatible A/D Converters with 8-Channel Analog Multiplexer	287 Kbytes	4- Nov- 95	View Online	Download	Receive via Email
AN-288: Application Note 288 System-Oriented DC-DC Conversion Techniques	405 Kbytes	1- May- 98	View Online	Download	Receive via Email
AN-298: Isolation Techniques for Signal Conditioning	197 Kbytes	4- Nov- 95	View Online	Download	Receive via Email
AN-299: Application Note 299 Audio Applications of Linear Integrated Circuits	232 Kbytes	24- Feb- 99	View Online	Download	Receive via Email
AN-300: Simple Circuit Detects Loss of 4-20 mA Signal	105 Kbytes	4- Nov- 95	View Online	Download	Receive via Email
AN-460: LM34/LM35 Precision Monolithic Temperature Sensors	190 Kbytes	4- Nov- 95	View Online	Download	Receive via Email

LM34/LM35 Precision Monolithic Temperature Sensors (JAPANESE)	322 Kbytes		View Online	Download	Receive via	
TB-02: Digital Noise Reduction Techniques for COMBO II	69 Kbytes	4- Nov- 95	View Online	Download	Receive via Email	

If you have trouble printing or viewing PDF file(s), see $\underline{Printing\ Problems}$.

[Information as of 5-Aug-2002]

<u>Design</u> <u>Purchasing</u> <u>Quality</u> <u>Company</u> <u>Homo</u>	Search	<u>Design</u>	Purchasing	Quality	Company	Home
---	--------	---------------	-------------------	----------------	----------------	-------------

About Languages . Website Guide . About "Cookies" . National is QS 9000 Certified . Privacy/Security Statement .

Contact Us . Site Terms & Conditions of Use . Copyright 2002 © National Semiconductor Corporation . My Preferences .

Feedback