

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All recreations are done with the approval of the OCM.

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceed the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-35835
 - Class Q Military
 - Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)
- Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OEM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

8-Bit Shift Registers

The SN74LS166 is an 8-Bit Shift Register. Designed with all inputs buffered, the drive requirements are lowered to one 74LS standard load. By utilizing input clamping diodes, switching transients are minimized and system design simplified.

The LS166 is a parallel-in or serial-in, serial-out shift register and has a complexity of 77 equivalent gates with gated clock inputs and an overriding clear input. The shift/load input establishes the parallel-in or serial-in mode. When high, this input enables the serial data input and couples the eight flip-flops for serial shifting with each clock pulse. Synchronous loading occurs on the next clock pulse when this is low and the parallel data inputs are enabled. Serial data flow is inhibited during parallel loading. Clocking is done on the low-to-high level edge of the clock pulse via a two input positive NOR gate, which permits one input to be used as a clock enable or clock inhibit function. Clocking is inhibited when either of the clock inputs are held high, holding either input low enables the other clock input. This will allow Max Unit 5.25 V the system clock to be free running and the register stopped on command with the other clock input. A change from low-to-high on the clock inhibit input should only be done when the clock input is high. A buffered direct clear input overrides all other inputs, including the clock, and sets all flip-flops to zero.

- · Synchronous Load
- Direct Overriding Clear
- Parallel to Serial Conversion

GUARANTEED OPERATING RANGES

Symbol	Parameter	Min	Тур	Max	Unit	
V _{CC}	Supply Voltage	4.75	5.0	5.25	V	
T _A	Operating Ambient Temperature Range	0	25	70	°C	
I _{OH}	Output Current - High) c	-0.4	mA	
I _{OL}	Output Current - Low	4		8.0	mA	
PLEASERRA						

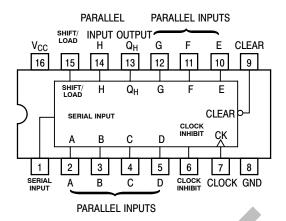
ON Semiconductor™

http://onsemi.com

LOW **POWER** SCHOTTKY

CASE 648

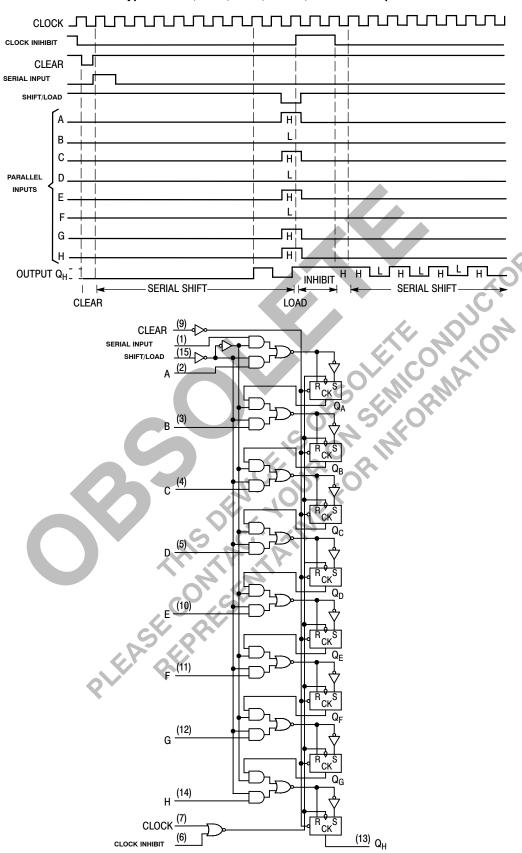
SOIC **D SUFFIX CASE 751B**



SOEIAJ M SUFFIX CASE 966

ORDERING INFORMATION

Device	Package	Shipping	
SN74LS166N	16 Pin DIP	2000 Units/Box	
SN74LS166D	SOIC-16	38 Units/Rail	
SN74LS166DR2	SOIC-16	2500/Tape & Reel	
SN74LS166M	SOEIAJ-16	See Note 1	
SN74LS166MEL	SOEIAJ-16	See Note 1	

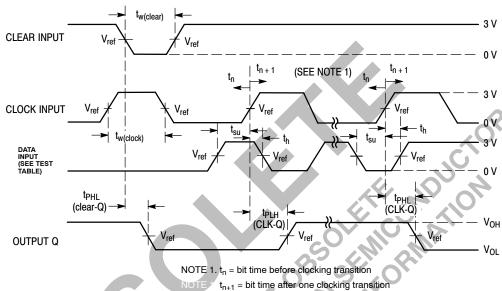

1. For ordering information on the EIAJ version of the SOIC package, please contact your local ON Semiconductor representative.

FUNCTION TABLE

	INPUTS			INTE	RNAL	6		
CLEAR	SHIFT/	CLOCK	CLOCK	SERIAL	PARALLEL	OUTF		OUTPUT Q _H
022 ,	LOAD	INHIBIT	ozook	02.00	AH	Q _A	Q_B	
L	X	X	X	X	X	L	L	L
H H	X L	L L	L ↑	X X	ah	Q _{A0} a	Q _{B0}	Q _{H0} h
Н	Н	L	1	Н	Х	H	Q_{An}	Q _{Gn}
H H	Н Х	H	1	X	X	Q _{AQ}	$egin{array}{c} Q_{An} \ Q_{B0} \end{array}$	Q _{Gn} Q _{H0}
	PLE	C ASE	ONT		ah X X X			

Typical Clear, Shift, Load, Inhibit, and Shift Sequences

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)


		Limits						
Symbol	Parameter	Min	Тур	Max	Unit	Tes	t Conditions	
V _{IH}	Input HIGH Voltage	2.0			V	Guaranteed Inpu All Inputs	Guaranteed Input HIGH Voltage for All Inputs	
V _{IL}	Input LOW Voltage			0.8	٧	Guaranteed Inpu All Inputs	Guaranteed Input LOW Voltage for All Inputs	
V _{IK}	Input Clamp Diode Voltage		-0.65	-1.5	V	V _{CC} = MIN, I _{IN} = –18 mA		
V _{OH}	Output HIGH Voltage	2.7	3.5		V	V_{CC} = MIN, I_{OH} = MAX, V_{IN} = V_{IH} or V_{IL} per Truth Table		
.,	0		0.25	0.4	V		V _{CC} = V _{CC} MIN,	
V _{OL}	Output LOW Voltage		0.35	0.5	V	I _{OL} = 8.0 mA	$V_{IN} = V_{IL}$ or V_{IH} per Truth Table	
	land HICH Correct			20	μΑ	$V_{CC} = MAX, V_{IN}$	= 2.7 V	
l IIH	Input HIGH Current			0.1	mA	V _{CC} = MAX, V _{IN} = 7.0 V		
I _{IL}	Input LOW Current			-0.4	mA	V _{CC} = MAX, V _{IN} = 0.4 V		
Ios	Short Circuit Current (Note 2)	-20		-100	mA	V _{CC} = MAX		
I _{CC}	Power Supply Current			38	mA	V _{CC} = MAX	(0	

^{2.} Not more than one output should be shorted at a time, nor for more than 1 second.

TEST TABLE FOR SYNCHRONOUS INPUTS

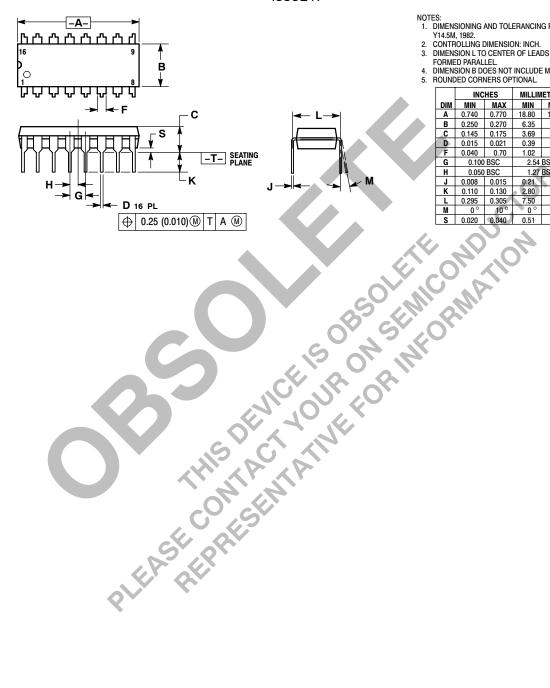
DATA INPUT FOR TEST	SHIFT/LOAD	OUTPUT TESTED
Н	0 V	Q _H at t _{n+1}
Serial Input	4.5 V	Q _H at t _{n+8}

AC WAVEFORMS

 t_{n+8} = bit time after eight clocking transition

LS166 $V_{ref} = 1.3 V.$

AC CHARACTERISTICS (T_A = 25°C)

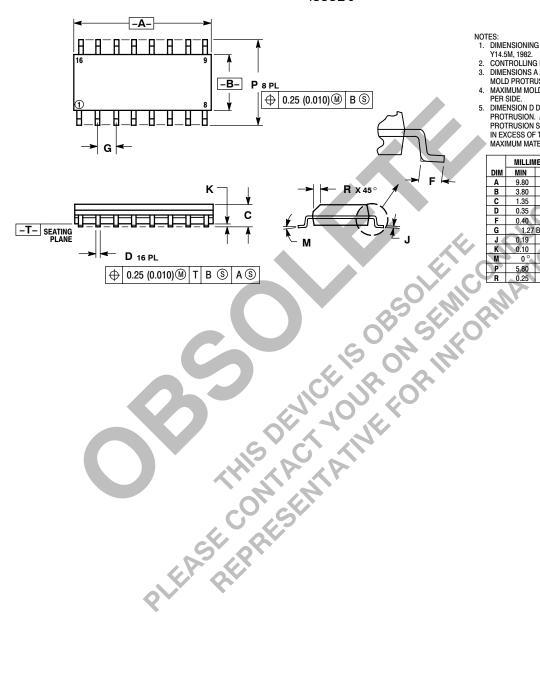

		, C	Limits				
Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions	
f _{MAX}	Maximum Clock Frequency	25	35		MHz		
t _{PHL}	Clear to Output	·G	19	30	ns	V _{CC} = 5.0 V C _L = 15 pF	
t _{PLH} t _{PHL}	Clock to Output		23 24	35 35	ns	C _L = 15 pF	

AC SETUP REQUIREMENTS (TA = 25°C)

		Limits					
Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions	
t _W	Clock Clear Pulse Width	30			ns		
ts	Mode Control Setup Time	30			ns	V 50V	
t _s	Data Setup Time	20			ns	V _{CC} = 5.0 V	
t _h	Hold Time, Any Input	15			ns		

PACKAGE DIMENSIONS

N SUFFIX PLASTIC PACKAGE CASE 648-08 **ISSUE R**


- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI
 - Y14.5M, 1982. CONTROLLING DIMENSION: INCH.
- DIMENSION L TO CENTER OF LEADS WHEN
- FORMED PARALLEL.
 DIMENSION B DOES NOT INCLUDE MOLD FLASH.
 ROUNDED CORNERS OPTIONAL.

	INC	HES	MILLIN	IETERS	
DIM	MIN	MAX	MIN	MAX	
Α	0.740	0.770	18.80	19.55	
В	0.250	0.270	6.35	6.85	
Ç	0.145	0.175	3.69	4.44	
Ê	0.015	0.021	0.39	0.53	
F	0.040	0.70	1.02	1.77	
G	0.100	BSC	2.54 BSC		
Н	0.050	BSC	1.27	BSC	
7	0.008	0.015	0.21	0.38	
K	0.110	0.130	2.80	3.30	
L	0.295	0.305	7.50	7.74	
M	0°	10°	0 °	10°	
S	0.020	0.040	0.51	1.01	

PACKAGE DIMENSIONS

D SUFFIX

PLASTIC SOIC PACKAGE CASE 751B-05 **ISSUE J**

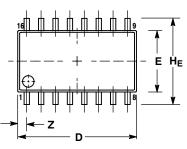
NOTES:

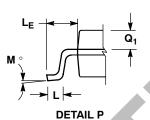
- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- Y14.5M, 1982.

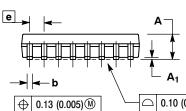
 CONTROLLING DIMENSION: MILLIMETER.

 DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION.

 MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.


 DIMENSION D DOES NOT INCLUDE DAMBAR
- DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.


	MILLIN	IETERS	INC	HES	
DIM	MIN	MAX	MIN	MAX	
Α	9.80	10.00	0.386	0.393	
В	3.80	4.00	0.150	0.157	
С	1.35	1.75	0.054	0.068	
D	0.35	0.49	0.014	0.019	
F	0.40	1.25	0.016	0.049	
G	1.27	BSC	0.050 BSC		
J∢	0.19	0.25	0.008	0.009	
K	0.10	0.25	0.004	0.009	
M	0°	7°	0°	7°	
P	5.80	6.20	0.229	0.244	
R	0.25	0.50	0.010	0.019	


PACKAGE DIMENSIONS

M SUFFIX

SOEIAJ PACKAGE CASE 966-01 ISSUE O

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: MILLIMETER
- 3. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS AND ARE MEASURED AT THE PARTING LINE. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
- 4. TERMINAL NUMBERS ARE SHOWN FOR
- REFERENCE ONLY.

 5. THE LEAD WIDTH DIMENSION (b) DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE LEAD WIDTH DIMENSION AT MAXIMUM MATERIAL CONDITION. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. MINIMUM SPACE BETWEEN PROTRUSIONS AND ADJACENT LEAD TO BE 0.46 (0.018).

	MILLIN	IETERS	INC	HES		
DIM	MIN	MAX	MIN	MAX		
Α		2.05	-1	0.081		
Α1	0.05	0.20	0.002	0.008		
ь	0.35	0.50	0.014	0.020		
C	0.18	0.27	0.007	0.011		
D	9.90	10.50	0.390	0.413		
E	5.10	5.45	0.201	0.215		
e	1.27	BSC	0.050 BSC			
ΗE	7.40	8.20	0.291	0.323		
L	0.50	0.85	0.020	0.033		
LΕ	1.10	1.50	0.043	0.059		
M	0 °	10°	0 °	10°		
Q_1	0.70	0.90	0.028	0.035		
Z		0.78		0.031		

ON Semiconductor and were registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81–3–5773–3850 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative