Datasheet

74S195

Four-Bit High Speed Shift Registers

The Am54S/74S194 and Am54S/74S195 are 4-bit registers that exhibit fully synchronous operation in all operating modes. The Am54S/74S195 can either parallel load all four register bits via the parallel inputs (A, B, C, D) or shift each of the four register bits right one place. The shifting or parallel loading is under control of the shift/load input (S/L). When the shift/load input is LOW, data is loaded from the parallel data inputs; when the shift/load input is HIGH, data is loaded from the register bits on the left. The first bit, Q_{A}, is loaded via the J and \bar{K} inputs in the shift mode.

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All re-creations are done with the approval of the Original Component Manufacturer (OCM).

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-35835
- Class Q Military
- Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)
- Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OCM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

FOR REFERENCE ONLY

Am54S/74S194•Am54S/74S195

Four-Bit High-Speed Shift Registers

Distinctive Characteristics

- Parallel load or shift right with $\sqrt{\bar{K}}$ inputs on Am54S/74S195
- Shift left, right, parallel load or do nothing on Am54S/74S 194
- Fully synchronous shifting and parallel loading
- Buffered common clock
- Buffered common active-LOW clear
- 100\% reliability assurance testing in compliance witt MIL-STD-883

FUNCTIONAL DESCRIPTION

The Am54S/74S194 and Am54S/74S195 are 4-bit registers that exhibit fully synchronous operation in all operating modes. The Am54S/74S195 can either parallel load all four register bits via the parallel inputs (A, B, C, D) or shift each of the four register bits right one place. The shifting or parallel loading is under control of the shift/load input (S / L). When the shift/load input is LOW, data is loaded from the parallel data inputs; when the shift/load input is HIGH, data is loaded from the register bits on the left. The first bit, QA, is loaded via the J and $\overline{\mathrm{K}}$ inputs in the shift mode.
The Am54S/74S194 operates in four modes under control of the two select inputs, S_{0} and S_{1}. The four modes are parallel load (data comes from the parallel inputs), shift right (data comes from the flip-flop to the left, with the Q_{A} bit input from R),
shift left (data comes from the flip-flop to the right, with the O_{D} input from L), and hold or do nothing (each flip-flop receives data from its own output).
For both devices the outputs change state synchronously following a LOW-to-HIGH transition on the clock input, CP. Both devices have an active-LOW asynchronous clear (CLR) which forces all outputs to the LOW state ($\overline{Q_{D}} \mathrm{HIGH}$) independent of any other inputs. All control inputs are buffered to present onty one Schottky TTL load to the system, and all outputs can drive 10 Schottky loads in the LOW state and 20 in the HIGH state. Because all the flip-flops are D-type they do not catch 0's or 1 's, and the only requirements on any inputs is that they meet the short set-up and hold time intervals with respect to the clock LOW-to-HIGH transition.

$V_{C C}=\operatorname{Pin} 16$
GND $=\operatorname{Pin} 8$

CONNECTION DIAGRAMS
Top Views

ORDERING INFORMATION

		Am54S/ $74 S 194$	Am54S/ $74 S 195$ Package Type
Temperature	Range	Order	Order
Number	Number		
Molded DIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	SN74S194N	SN74S195N
Hermetic DIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	SN74S194J	SN74S195J
Dice	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	SN74S194X	SN74S195X
Hermetic DIP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	SN54S194J	SN54S195J
Hermetic Flat Pak	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	SN54S194W	SN54S195W
Dice	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	SN54S194X	SN54S195X

LOGIC DIAGRAMS

Am54S/74S194

Am54S/74S 195

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential (Pin 16 to Pin 8) Continuous	-0.5 V to +7 V
DC Voltage Applied to Outputs for HIGH Output State	-0.5 V to $+\mathrm{V}_{\text {cc }}$ max.
$\overline{\text { DC Input Voltage }}$	$-\overline{0.5 V}$ to +5.5V
DC Output Current, Into Outputs	30 mA
DC Input Current	-30 mA to +5.0 mA

ELECTRICAL CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (Unless Otherwise Noted)
Am74S194, Am74S 195
Am54S 194, Am54S 195
Parameters

arameters	Description	Test	硣		,			
V_{OH}	Output HIGH Voltage	$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{MiN}_{1,} \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{~V}_{I N}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$		Am74	2.7	3.4		Volts
				Am54	2.5	3.4		
V_{OL}	Output LOW Voltage	$\begin{aligned} & V_{C C}=M I N ., I_{O L}=20 \mathrm{~mA} \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$					0.5	Volts
$V_{1 H}$	Input High Level	Guaranteed input logical HIGH voltage for all inputs			2			Volts
$V_{\text {IL }}$	Input LOW Level	Guaranteed input logical LOW voltage for all inputs					0.8	Volts
V_{1}	Input Clamp Voltage	$V_{C C}=$ MIN., 1 IN $=-18 \mathrm{~mA}$					-1.2	Volts
IIL (Nate 3)	Unit Load Input LOW Current	$V_{C C}=$ MAX., $V_{1 N}=0.5 \mathrm{~V}$					-2	mA
${ }_{1}{ }_{1}$ (Note 3)	Unit Load Input HIGH Current	$\mathrm{V}_{C C}=\mathrm{MAX} ., \mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$					50	$\mu \mathrm{A}$
1	Input HIGH Current	$V_{C C}=M A X ., V_{1 N}=5.5 \mathrm{~V}$					1	mA
Isc	Output Short Circuit Current (Note 4)	$V_{C C}=$ MAX			-40		-100	mA
${ }^{1} \mathrm{CC}$	Power Supply Current	$V_{C C}=$ MAX.	S194 (No	5 \& 71		85	135	mA
			$\begin{aligned} & 54 \mathrm{~S} 195 \\ & \text { (Nate 6) } \end{aligned}$			70	99	
			74S195 (Note 6)			70	109	

Notes: 1. For conditions shown as MIN. or MAX. use the appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$ ambient and maximum foading.
3. Actual input currents = Unit Laad Current x Input Load Factor (See Loading Rules).
4. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed ane second

Outputs open. Inputs A, B, C, D grounded. Inputs S_{0}, S_{1}, Clear, L, R, at 4.5 V . Measured after a momentary ground, then 4.5 V applied to clock.
6. Outputs open. S / L grounded. A, B, C, D, J, \bar{K} at 4.5 V . Measured after applying a momentary ground then 4.5 V to the clear followed by ground then 4.5 V to clock.
7. For $T_{A}=125^{\circ} \mathrm{C} ;{ }^{1} \mathrm{CC}$ MAX. $=110 \mathrm{~mA}$ for $\mathrm{Am54S} 194 \mathrm{~W}$.

Switching Characteristics ($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$)

Parameters	Description	Test Conditions	Min.	Typ.	Max.	Units
tPLH	Clock to Output	$V_{C C}=5.0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=280 \Omega$	4	8	12	ns
tPHL	Clock to Output		4	11	16.5	ns
tPHL	Clear to Output			12.5	18.5	ns
${ }^{\text {t }}$ pw	Clock Pulse Width		7			ns
${ }_{\text {t }}$ w	Clear Pulse Width		12			ns
$\mathrm{t}_{\text {s }}$	Mode Control Set-up Time		11			ns
t_{5}	Data Input Set-up Time		5			ns
t_{5}	Clear Recovery to Clock		9			ns
t^{\prime}	Data Hold Time		3			ns
${ }^{\text {t }} \mathrm{R}$	Shift/Load Release Time Am54S/74S195				6	ns
$f_{\text {MAX }}$.	Maximum Clock Frequency		70	105		MHz

DEFINITION OF FUNCTIONAL TERMS

J, \bar{K} The logic inputs used for controlling the Q_{A} flip-flop. of the Am54S/74S 195 register when S / L is HIGH.
CLR Clear. The asynchronous master reset input.
CP Clock pulse for the register. Enters data on the LOW-to-HIGH transition.
S/L Shift/Load. The input for selection of parallel or serial shifting for the AM54S/74S195 register. S/L LOW selects parallel entry.
$\mathbf{S}_{0}, \mathbf{S}_{1}$ The mode select inputs of the Am54S/74S194.
A, B, C, D The four parallel data inputs for the register.
R The serial input to the α_{A} flip-flop of the Am54S/ 74S194 in the right shift mode.
L The serial input to the Q_{D} flip-flop of the Am54S/ 74 S 194 in the left shift mode.
$\mathrm{O}_{\mathrm{A}}, \mathrm{Q}_{\mathrm{B}}, \mathrm{O}_{\mathrm{C}}, \mathrm{O}_{\mathrm{D}}$ The four true outputs of the register.
$\overline{\mathrm{O}}_{\mathrm{D}}$ The complement output of the Q_{D} flip-flop. (Am54S/ 74S195 only).

FUNCTION TABLE Am54S/74S 194

FUNCTION TABLE Am54S/74S 194											
INPUTS										OUTPUTS $a_{A} o_{B} o_{C} a_{D}$	
FUNCTION	Clear	$\begin{array}{\|l\|} \hline \text { Mode } \\ \hline s_{1} \mathrm{~s}_{0} \\ \hline \end{array}$	Clock	Serial		Parallal					
				Left	Right	A	B	c	D		
Clear	1	$\times \quad \times$	x	x	x	x	x	\times	\times	L L	L
No Change	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{array}{ll} x & x \\ x & x \end{array}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & x \\ & x \\ & x \end{aligned}$	$\begin{aligned} & \hline x \\ & x \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & \hline x \\ & x \end{aligned}$	NC NC NC NC	NC NC NC NC
Parallel Load	H	H H	\dagger	X	X	D_{0}	D_{1}	D_{2}	D_{3}	$D_{0} D_{1}$	$\mathrm{D}_{2} \mathrm{D}_{3}$
Shift Right	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \hline \end{aligned}$	$\left\|\begin{array}{ll} \mathrm{L} & \mathrm{H} \\ \mathrm{~L} & \mathrm{H} \end{array}\right\|$	$\begin{aligned} & \dagger \\ & \dagger \end{aligned}$	$\begin{aligned} & \hline x \\ & x \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & x \\ & x \\ & x \end{aligned}$	$\begin{gathered} \hline x \\ \mathrm{x} \\ \hline \end{gathered}$	$\begin{aligned} & \hline x \\ & x \end{aligned}$	$\begin{aligned} & L Q_{A} \\ & H Q_{A} \end{aligned}$	$\begin{array}{ll} \alpha_{B} & a_{C} \\ \alpha_{B} & a_{C} \end{array}$
Shift Left	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \hline \end{aligned}$	$\begin{array}{ll} \mathrm{H} & \mathrm{~L} \\ \mathrm{H} & \mathrm{~L} \end{array}$	\dagger	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{array}{r} \mathrm{x} \\ \mathrm{x} \\ \hline \end{array}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathbf{x} \\ & \mathbf{x} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathbf{x} \\ & \mathbf{x} \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline x \\ \mathrm{x} \\ \hline \end{array}$	$\begin{aligned} & a_{B} a_{c} \\ & a_{B} a_{c} \end{aligned}$	$\begin{aligned} & \mathrm{O}_{\mathrm{D}} \mathrm{~L} \\ & \mathrm{O}_{\mathrm{D}} \mathrm{H} \\ & \hline \end{aligned}$
Hold	H	L L	x	\times	x	\times	x	x	x	NC NC	NC NC
$\begin{aligned} H & =\text { HIGH } \\ \mathrm{L}= & \text { LOW } \\ \uparrow= & \text { LOW }- \text { to }- \text { HI } \\ \mathrm{D}_{\mathrm{i}}= & \text { May be a } \\ & \text { same state } \end{aligned}$	HIGH HIGH t.	ransition or a 10	$\begin{array}{r} X=1 \\ N C= \\ \text { N. }=1 \\ \text { OW and } \end{array}$	Don't No Ch the re	Care hange espectiv					ume the	

$H=H I G H$
L = LOW
$X=$ Don't Care
$\uparrow=$ LOW-to-HIGH iransition $\quad N C=$ No Change
$\mathrm{D}_{i}=$ May be a HIGH or a \mathcal{O} OW and the respective output will assume the same state.

LOADING RULES (In Unit Loads)

$\begin{gathered} \text { Am54S/ } \\ \text { 74S195 } \\ \text { Input/Output } \\ \hline \end{gathered}$	$\begin{gathered} \text { Am54S/ } \\ 745194 \\ \text { input/Output } \end{gathered}$	Pin No.'s	Input Unit Load	Output HIGH	-out Output LOW
CLR	CLR	1	1	-	-
J	R	2	1	-	-
$\overline{\mathbf{K}}$	A	3	1	-	-
A	B	4	1	-	-
B	c	5	1	-	-
c	0	6	1	-	-
D	L	7	1	-	-
GND	GND	8	-	-	-
Shift/Load	S_{0}	9	1	-	-
CP	S_{1}	10	1	-	-
$\overline{\mathbf{o}}_{\text {D }}$	-		-	20	10
-	CP	11	1	-	-
$\mathbf{a}_{\text {D }}$	$\mathbf{a}_{\text {D }}$	12	-	20	10
\mathbf{a}_{C}	\mathbf{O}_{C}	13	-	20	10
a_{B}	\mathbf{a}_{B}	14	-	20	10
a_{A}	$\mathbf{a}_{\text {A }}$	15	-	20	10
v_{cc}	v_{cc}	16	-	-	-

FUNCTION TABLE

Am54S/74S195

$H=H I G H \quad X=$ Don't Care
$L=$ LOW $\quad N C=$ No Change
$t=$ LOW-to-HIGH transition.
$D_{i}=$ May be a HIGH or a LOW and the respective output will assume the same state.
Notes: 1. If the J and $\overline{\mathrm{K}}$ inputs are tied together, the common line becomes a D-Type input to the first bit in the shift mode.
2. Linear feedback shift counters can be mede by connecting the Q_{D} and $\overline{\mathrm{a}}_{\mathrm{D}}$ outputs to the $\overline{\mathrm{K}}$ and J inputs, respectively.

SCHOTTKY INPUT/OUTPUT CURRENT INTERFACE CONDITIONS

Note: Actual current flow direction shown

APPLICATIONS

HIGH-SPEED MOD 15 LINEAR FEEDBACK SHIFT REGISTER

Sequence is $0,1,2,5,10,4,9,3,6,13,11,7,14,12,8,0$ (15 is non-self correcting; use clear to initialize)

12-BIT SHIFT-LEFT, SHIFT-RIGHT, PARALLEL-LOAD REGISTER

Metallization and Pad Layouts

