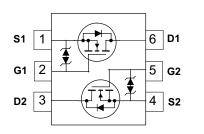


FDMA1028NZ

Dual N-Channel PowerTrench[®] MOSFET

General Description


This device is designed specifically as a single package solution for dual switching requirements in cellular handset and other ultra-portable applications. It features two independent N-Channel MOSFETs with low on-state resistance for minimum conduction losses. The MicroFET 2x2 package offers exceptional thermal performance for its physical size and is well suited to linear mode applications.

Features

■ 3.7 A, 20V. $R_{DS(ON)} = 68 \text{ m}\Omega @ V_{GS} = 4.5V$ $R_{DS(ON)} = 86 \text{ m}\Omega @ V_{GS} = 2.5V$

- Low profile 0.8 mm maximum in the new package MicroFET 2x2 mm
- HBM ESD protection level > 2kV (Note 3)
- RoHS Compliant
- Free from halogenated compounds and antimony oxides

Absolute Maximum Ratings T_A=25°C unless otherwise noted

Symbol	Parameter		Ratings	Units
V _{DS}	Drain-Source Voltage		20	V
V _{GS}	Gate-Source Voltage		±12	V
	Drain Current – Continuous	(Note 1a)	3.7	A
I _D	– Pulsed		6	
PD	Power Dissipation for Single Operation	(Note 1a)	1.4	W
		(Note 1b)	0.7	
TJ, T _{STG}	Operating and Storage Junction Temperature Range		-55 to +150	°C

$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient	(Note 1a)	86 (Single Operation)	
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient	(Note 1b)	173 (Single Operation)	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient	(Note 1c)	69 (Dual Operation)	
$R_{ ext{ heta}JA}$	Thermal Resistance, Junction-to-Ambient	(Note 1d)	151 (Dual Operation)	

Package Marking and Ordering Information

028 FDMA1028NZ 7" 8mm 3000 unit	Device Marking	Device	Device Reel Size Tape width		Quantity	
	028	FDMA1028NZ	7"	8mm	3000 units	

©20F3 Fairchild Semiconductor Corporation

FDMA1028NZ Rev B7

July 2014

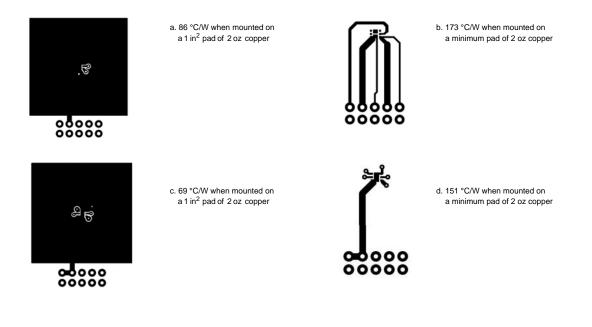
Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Char	acteristics		•			
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 V$, $I_D = 250 \mu A$	20			V
<u>ΔBV_{DSS}</u> ΔT _J	Breakdown Voltage Temperature Coefficient	I_D = 250 µA, Referenced to 25°C		15		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 16 V$, $V_{GS} = 0 V$			1	μA
I _{GSS}	Gate–Body Leakage	$V_{GS} = \pm 12 V$, $V_{DS} = 0 V$			±10	μA
	acteristics (Note 2) Gate Threshold Voltage		0.6	1.0	1.5	V
V _{GS(th)}	ů	$V_{DS} = V_{GS}$, $I_D = 250 \ \mu A$	0.6	1.0	1.5	
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate Threshold Voltage Temperature Coefficient	I_D = 250 µA, Referenced to 25°C		-4		mV/°C
R _{DS(on)}	Static Drain–Source	$V_{GS} = 4.5 V$, $I_D = 3.7 A$		37	68	mΩ
	On–Resistance	$V_{GS} = 2.5 V$, $I_D = 3.3 A$		50	86	
		V _{GS} = 4.5 V, I _D = 3.7 A, T _J =125°C		53	90	
g fs	Forward Transconductance	$V_{DS} = 10 V$, $I_{D} = 3.7 A$		16		S
Dynamic	Characteristics					
Ciss	Input Capacitance	$V_{DS} = 10 V$, $V_{GS} = 0 V$,		340		pF
Coss	Output Capacitance	f = 1.0 MHz		80		pF
C _{rss}	Reverse Transfer Capacitance	1		60		pF
Rg	Gate Resistance				25	Ω

Switching Characteristics (Note 2)

t _{d(on)}	Turn–On Delay Time	V _{DD} = 10 V,		8	16	ns
t _r	Turn–On Rise Time	V _{GS} = 4.5 V,	R_{GEN} = 6 Ω	8	16	ns
t _{d(off)}	Turn–Off Delay Time	-		14	26	ns
t _f	Turn–Off Fall Time	-		3	6	ns
Qg	Total Gate Charge	V _{DS} = 10 V,	I _D = 3.7 A,	4	6	nC
Q _{gs}	Gate-Source Charge	V _{GS} = 4.5 V		0.7		nC
Q_{gd}	Gate-Drain Charge			1.1		nC

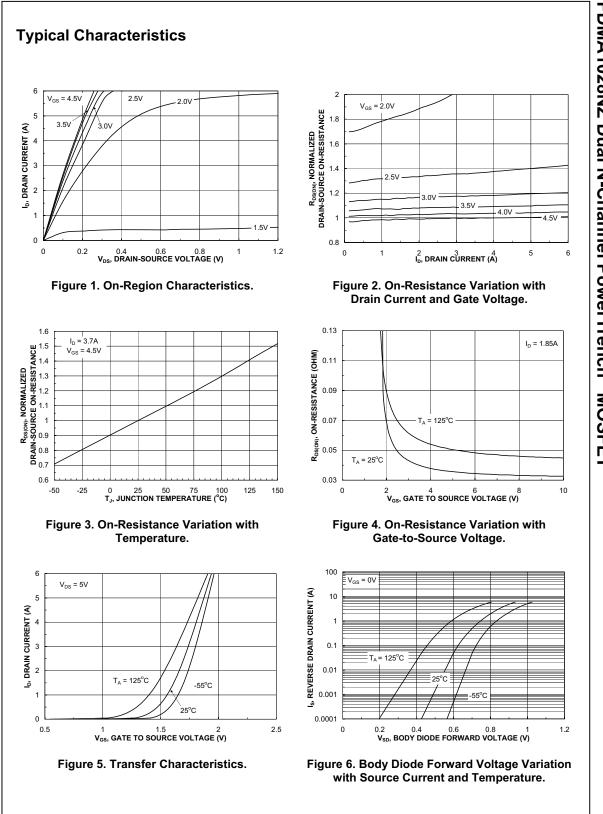
FDMA1028NZ Dual N-Channel PowerTrench[®] MOSFET

FDMA1028NZ Rev B7

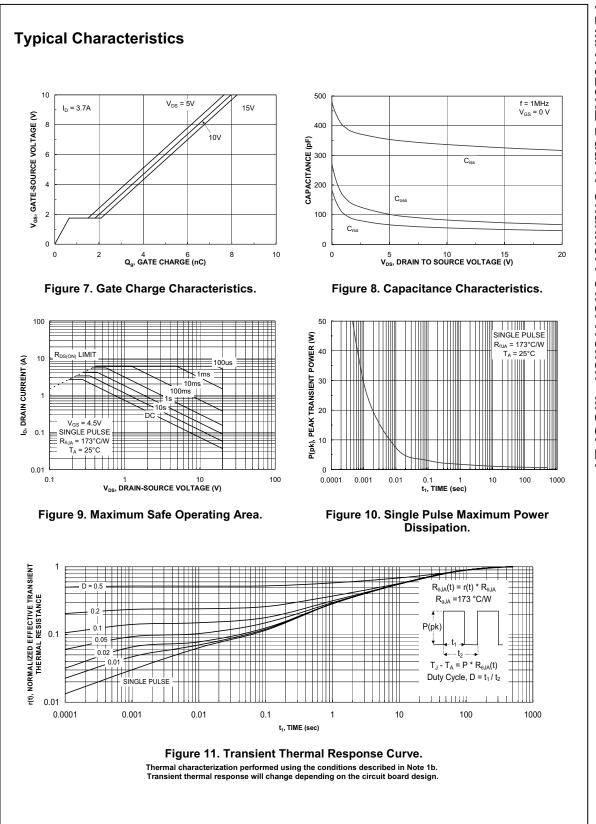

FDMA1028NZ Dual N-Channel PowerTrench[®] MOSFET

Electrical Characteristics $T_J = 25 \degree C$ unless otherwise noted

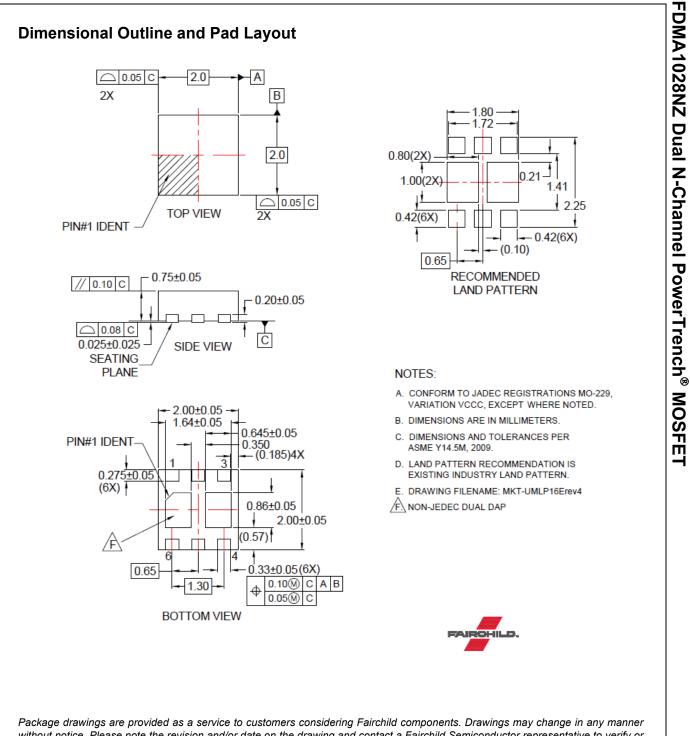
Notes:


1. R_{8JA} is determined with the device mounted on a 1 in² oz. copper pad on a 1.5 x 1.5 in. board of FR-4 material. R_{8JA} is guaranteed by design while R_{8JA} is determined by the user's board design. (a) $R_{0JA} = 86 \text{ °C/W}$ when mounted on a 1 in² pad of 2 oz copper, 1.5 " x 1.5 " x 0.062 " thick PCB. For single operation.

- (b) R_{BJA} = 173 °C/W when mounted on a minimum pad of 2 oz copper. For single operation.
- (c) $R_{0JA} = 69 \text{ °C/W}$ when mounted on a 1 in² pad of 2 oz copper, 1.5 " x 1.5 " x 0.062 " thick PCB. For dual operation.
- (d) $R_{\theta JA}$ = 151 $^{o}\text{C/W}$ when mounted on a minimum pad of 2 oz copper. For dual operation.


2. Pulse Test : Pulse Width < 300 us, Duty Cycle < 2.0%

3. The diode connected between the gate and source serves only as protection against ESD. No gate overvoltage rating is implied.


FDMA1028NZ Dual N-Channel PowerTrench[®] MOSFET

FDMA1028NZ Rev B7

FDMA1028NZ Dual N-Channel PowerTrench[®] MOSFET

FDMA1028NZ Rev B7

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings:

http://www.fairchildsemi.com/package/packageDetails.html?id=PN_MLDEB-X06

Semiconductor. The datasheet is for reference information only.