National Semiconductor

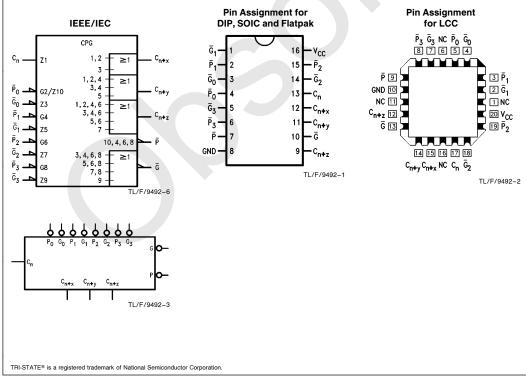
54F/74F182 Carry Lookahead Generator

General Description

The 'F182 is a high-speed carry lookahead generator. It is generally used with the 'F181 or 'F381 4-bit arithmetic logic units to provide high-speed lookahead over word lengths of more than four bits.

Features

- Provides lookahead carries across a group of four ALUs
 Multi-level lookahead high-speed arithmetic operation
 - over long word lengths
- Guaranteed 4000V minimum ESD protection


Commercial	Military	Package Number	Package Description	
74F182PC		N16E	16-Lead (0.300" Wide) Molded Dual-In-Line	
	54F182DM (Note 2)	J16A	16-Lead Ceramic Dual-In-Line	
74F182SJ (Note 1)		M16D	16-Lead (0.300" Wide) Molded Small Outline, EIAJ	
	54F182FM (Note 2)	W16A	16-Lead Cerpack	
	54F182LM (Note 2)	E20A	20-Lead Ceramic Leadless Chip Carrier, Type C	

Note 1: Devices also available in 13" reel. Use suffix = SCX and SJX.

Note 2: Military grade device with environmental and burn-in processing. Use suffix = DMQB, FMQB and LMQB

Logic Symbols

Connection Diagrams

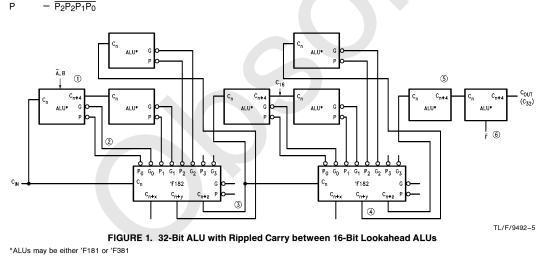
© 1995 National Semiconductor Corporation TL/F/9492

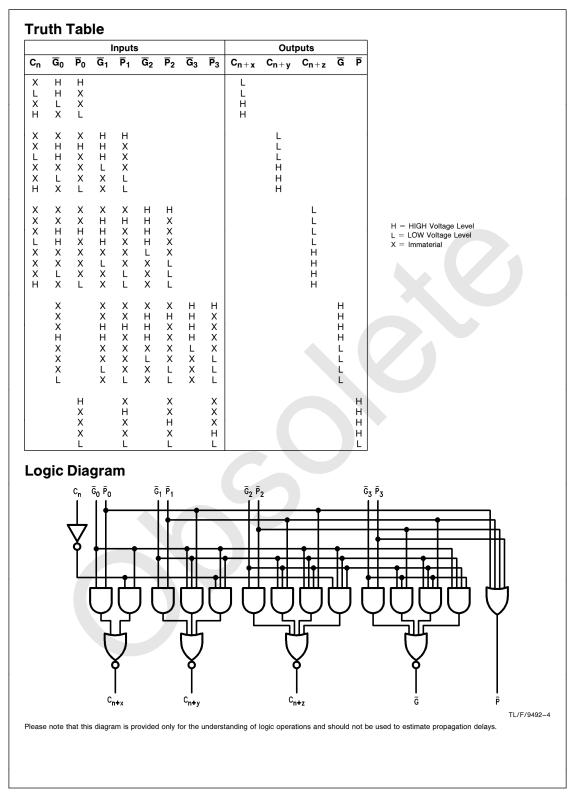
RRD-B30M105/Printed in U. S. A.

54F/74F182 Carry Lookahead Generator

December 1994

Unit Loading/Fan Out


		54F/74F				
Pin Names	Description	U.L. HIGH/LOW	Input I _{IH} /I _{IL} Output I _{OH} /I _{OL}			
Cn	Carry Input	1.0/2.0	20 μA/−1.2 mA			
$\overline{G}_0, \overline{G}_2$	Carry Generate Inputs (Active LOW)	1.0/14.0	20 µA/−8.4 mA			
G ₁	Carry Generate Input (Active LOW)	1.0/16.0	20 µA/−9.6 mA			
G ₃	Carry Generate Input (Active LOW)	1.0/8.0	20 µA/−4.8 mA			
$\overline{P}_0, \overline{P}_1$	Carry Propagate Inputs (Active LOW)	1.0/8.0	20 µA/−4.8 mA			
P ₂	Carry Propagate Input (Active LOW)	1.0/6.0	20 µA/ −3.6 mA			
P ₃	Carry Propagate Input (Active LOW)	1.0/4.0	20 µA/ −2.4 mA			
$C_{n+x}-C_{n+z}$	Carry Outputs	50/33.3	-1 mA/20 mA			
G	Carry Generate Output (Active LOW)	50/33.3	-1 mA/20 mA			
P	Carry Propagate Output (Active LOW)	50/33.3	-1 mA/20 mA			


Functional Description

The 'F182 carry lookahead generator accepts up to four pairs of Active LOW Carry Propagate $(\overline{P}_0-\overline{P}_3)$ and Carry Generate $(\overline{G}_0-\overline{G}_3)$ signals and an Active HIGH Carry input (C_n) and provides anticipated Active HIGH carries (C_n+x,C_{n+y},C_{n+z}) across four groups of binary adders. The 'F182 also has Active LOW Carry Propagate (\overline{P}) and Carry Generate (\overline{G}) outputs which may be used for further levels of lookahead. The logic equations provided at the outputs are:

C _{n+x}	$= G_0 + P_0C_n$
C _{n+y}	$= G_1 + P_1G_0 + P_1P_0C_n$
C_{n+z}	$= G_2 + P_2G_1 + P_2P_1G_0 + P_2P_1P_0C_n$
G	$=\overline{G_3+P_3G_2+P_3P_2G_1+P_3P_2P_1G_0}$
Р	$=\overline{P_2P_2P_1P_0}$

Also, the 'F182 can be used with binary ALUs in an active LOW or active HIGH input operand mode. The connections (*Figure 1*) to and from the ALU to the carry lookahead generator are identical in both cases. Carries are rippled between lookahead blocks. The critical speed path follows the circled numbers. There are several possible arrangements for the carry interconnects, but all achieve about the same speed. A 28-bit ALU is formed by dropping the last 'F181 or 'F381.

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Storage Temperature	-65°C to +150°C
Ambient Temperature under Bias	-55°C to +125°C
Junction Temperature under Bias	-55°C to +175°C
Plastic	-55°C to +150°C
V _{CC} Pin Potential to	
Ground Pin	-0.5V to +7.0V
Input Voltage (Note 2)	-0.5V to +7.0V
Input Current (Note 2)	-30 mA to $+5.0$ mA
Voltage Applied to Output	
in HIGH State (with $V_{CC} = 0V$)	
Standard Output	-0.5V to V _{CC}
TRI-STATE [®] Output	-0.5V to +5.5V
Current Applied to Output	
in LOW State (Max)	twice the rated I _{OL} (mA)
ESD Last Passing Voltage (Min)	4000V
Note 1: Absolute maximum ratings are value be damaged or have its useful life impair these conditions is not implied.	

Recommended Operating Conditions

Free Air Ambient Temperature

Military	-55°C to +125°C
Commercial	0°C to +70°C
Supply Voltage	
Military	+4.5V to +5.5V
Commercial	+4.5V to +5.5V

Note 2: Either voltage limit or current limit is sufficient to protect inputs.

DC Electrical Characteristics

Symbol	Parameter		54F/74F		Units	v _{cc}	Conditions	
Cymbol			Min	Тур	Max	Units	VCC	Conditions
V _{IH}	Input HIGH Voltage	2.0			V		Recognized as a HIGH Signal	
V _{IL}	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
V _{CD}	Input Clamp Diode Vo	oltage			-1.2	v	Min	$I_{IN} = -18 \text{ mA}$
V _{OH}	Output HIGH Voltage	54F 10% V _{CC} 74F 10% V _{CC} 74F 5% V _{CC}	2.5 2.5 2.7			v	Min	$I_{OH} = -1 \text{ mA}$ $I_{OH} = -1 \text{ mA}$ $I_{OH} = -1 \text{ mA}$
V _{OL}	Output LOW Voltage	54F 10% V _{CC} 74F 10% V _{CC}			0.5 0.5	v	Min	$I_{OL} = 20 \text{ mA}$ $I_{OL} = 20 \text{ mA}$
IIH	Input HIGH Current	54F 74F			20.0 5.0	μΑ	Max	$V_{IN} = 2.7V$
I _{BVI}	Input HIGH Current Breakdown Test	54F 74F			100 7.0	μΑ	Max	V _{IN} = 7.0V
I _{CEX}	Output HIGH Leakage Current	54F 74F			250 50	μΑ	Max	$V_{OUT} = V_{CC}$
V_{ID}	Input Leakage Test	74F	4.75			V	0.0	$I_{ID} = 1.9 \mu A$ All Other Pins Grounded
I _{OD}	Output Leakage Circuit Current	74F			3.75	μΑ	0.0	V _{IOD} = 150 mV All Other Pins Grounded
Ι _{ΙL}	Input LOW Current				-1.2 -2.4 -3.6 -4.8 -8.4 -9.6	mA	Max	$\begin{array}{l} V_{IN} = 0.5V\left(C_{n}\right) \\ V_{IN} = 0.5V\left(\overline{P}_{3}\right) \\ V_{IN} = 0.5V\left(\overline{P}_{2}\right) \\ V_{IN} = 0.5V\left(\overline{G}_{3},\overline{P}_{0},\overline{P}_{1}\right) \\ V_{IN} = 0.5V\left(\overline{G}_{0},\overline{G}_{2}\right) \\ V_{IN} = 0.5V\left(\overline{G}_{1}\right) \end{array}$
I _{OS}	Output Short-Circuit Current		-60		-150	mA	Max	$V_{OUT} = 0V$
Іссн	Power Supply Current			18.4	28.0	mA	Max	V _O = HIGH
ICCL	Power Supply Curren	t		23.5	36.0	mA	Max	V _O = LOW

Symbol		74F			54F		74F		
	Parameter	v	$\Gamma_A = +25^{\circ}$ $C_{CC} = +5.0$ $C_L = 50 \text{pF}$	v		_C = Mil 50 pF	T _A , V _{CC} = Com C _L = 50 pF		Units
		Min	Тур	Max	Min	Max	Min	Мах	1
t _{PLH} t _{PHL}	Propagation Delay C_n to C_{n+x} , C_{n+y} , C_{n+z}	3.0 3.0	6.6 6.8	8.5 9.0	3.0 3.0	12.0 11.0	3.0 3.0	9.5 10.0	ns
t _{PLH} t _{PHL}	Propagation Delay $\overline{P}_0, \overline{P}_1, \text{ or } \overline{P}_2 \text{ to}$ $C_{n+x}, C_{n+y}, \text{ or } C_{n+z}$	2.5 1.5	6.2 3.7	8.0 5.0	2.5 1.0	11.0 7.0	2.5 1.5	9.0 6.0	ns
t _{PLH} t _{PHL}	Propagation Delay $\overline{G}_0, \overline{G}_1, \text{ or } \overline{G}_2 \text{ to}$ $C_{n+x}, C_{n+y}, \text{ or } C_{n+z}$	2.5 1.5	6.5 3.9	8.5 5.2	2.5 1.0	11.0 7.0	2.5 1.5	9.5 6.0	ns
t _{PLH} t _{PHL}	Propagation Delay $\overline{P}_1, \overline{P}_2, \text{ or } \overline{P}_3$ to \overline{G}	3.0 3.0	7.9 6.0	10.0 8.0	3.0 2.5	12.0 10.0	3.0 3.0	11.0 9.0	ns
t _{PLH} t _{PHL}	Propagation Delay \overline{G}_n to \overline{G}	3.0 3.0	8.3 5.7	10.5 7.5	3.0 2.5	12.0 10.0	3.0 3.0	11.5 8.5	ns
t _{PLH} t _{PHL}	Propagation Delay \overline{P}_n to \overline{P}	3.0 2.5	5.7 4.1	7.5 5.5	2.5 2.5	10.0 8.0	3.0 2.5	8.5 6.5	ns

Ordering Information

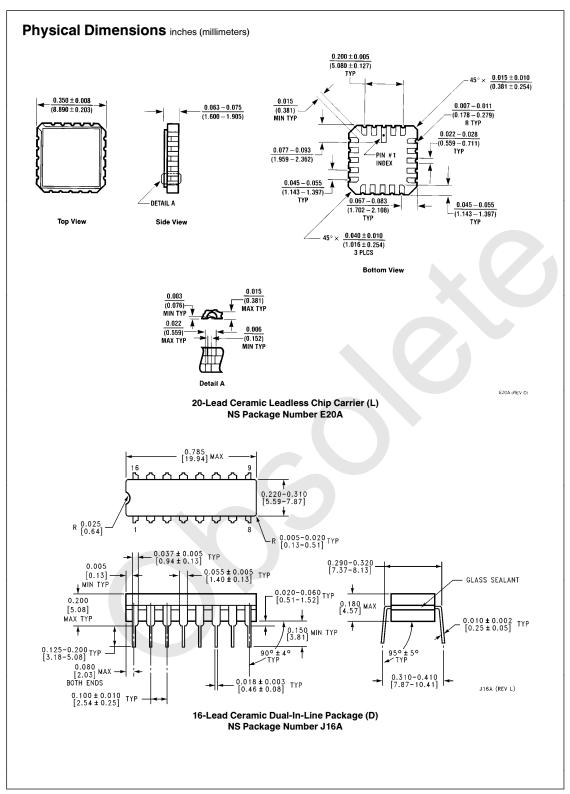
The device number is used to form part of a simplified purchasing code where the package type and temperature range are defined as follows:

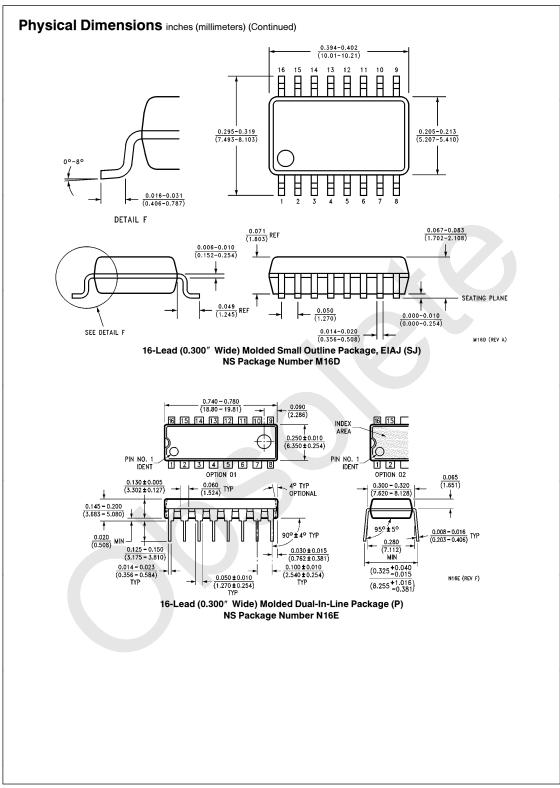
QB

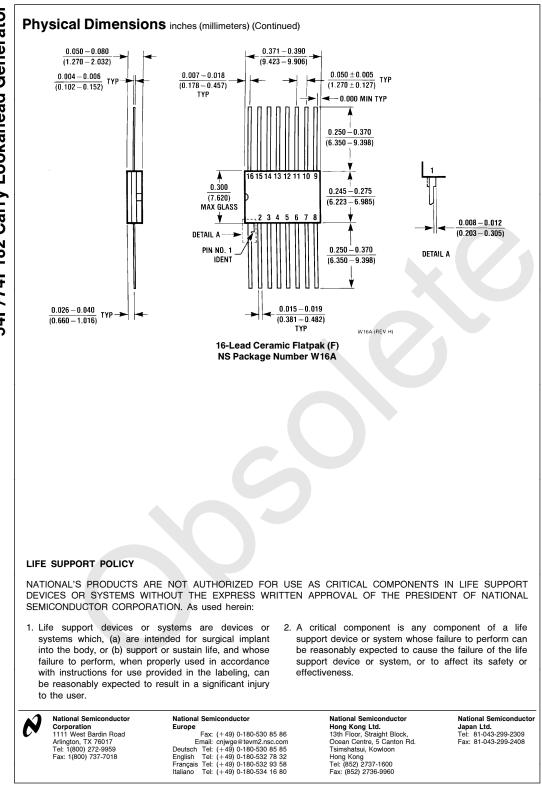
С

<u>74F</u> <u>182</u> Ρ Temperature Range Family 74F = Commercial54F = Military

Special Variations QB = Military grade with environmental and burn-in processing shipped in tubes


Temperature Range


 $C = Commercial (0^{\circ}C to + 70^{\circ}C)$ $M = Military (-55^{\circ}C to + 125^{\circ}C)$


Package Code -

Device Type

- P = Plastic DIPD = Ceramic DIP
- F = Flatpak
- L = Leadless Chip Carrier (LCC)SJ = Small Outline SOIC EIAJ

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications