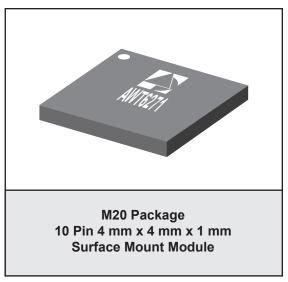
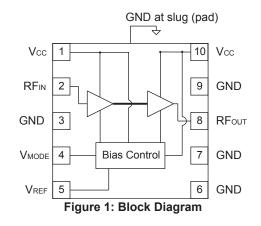


FEATURES

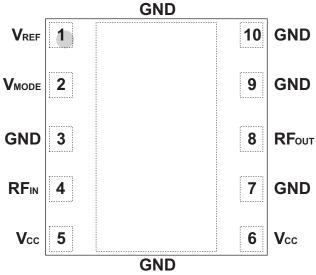

- InGaP HBT Technology
- High Efficiency:
 - 45 % @ Pout = +28 dBm
 - 20 % @ Pout = +16 dBm
 - 15 % @ Pout = +7 dBm
- Low Quiescent Current: 16 mA
- Low Leakage Current in Shutdown Mode: <1 μA
- V_{REF} = +2.85 V (+2.75 V min over temp)
- Optimized for a 50 Ω System
- Low Profile Miniature Surface Mount Package
- RoHS Compliant Package, 250 °C MSL-3
- HSDPA Capable

APPLICATIONS


- Dual Band WCDMA Wireless Handsets
- Dual Mode 3GPP Wireless Handsets

PRODUCT DESCRIPTION

The AWT6271 meets the increasing demands for higher output power in UMTS handsets. The PA module is optimized for V_{REF} = +2.85 V, a requirement for compatibility with the Qualcomm® 6250 chipset. The device is manufactured on an advanced InGaP HBT


MMIC technology offering state-of-the-art reliability, temperature stability, and ruggedness. Selectable bias modes that optimize efficiency for different output power levels, and a shutdown mode with low leakage current, increase handset talk and standby time. The self-contained 4 mm x 4 mm x 1 mm surface mount package incorporates matching networks optimized for output power, efficiency, and linearity in a 50 Ω system.



05/2008

AWT6271

HELP[™] Cellular/WCDMA 3.4V/28dBm Linear Power Amplifier Module DATA SHEET - Rev 2.0

Table 1: Pin Description					
PIN	NAME DESCRIPTION				
1	Vref	Reference Voltage			
2	VMODE	Mode Control			
3	GND	Ground			
4	RFℕ	RF Input			
5	Vcc	Supply Voltage			
6	Vcc	Supply Voltage			
7	GND	Ground			
8	RFout	RF Output			
9	GND	Ground			
10	GND	Ground			

Table 1: Pin Description

ELECTRICAL CHARACTERISTICS

Table 2. Absolute Minimum and Maximum Ratings						
PARAMETER	MIN	MAX	UNIT			
Supply Voltage (Vcc)	0	+5	V			
Mode Control Voltage (V _{MODE})	0	+3.5	V			
Reference Voltage (VREF)	0	+3.5	V			
RF Input Power (Pℕ)	-	+10	dBm			
Case Operating Temperature	-30	+110	°C			
Storage Temperature (Tstg)	-40	+150	°C			

Table 2: Absolute Minimum and Maximum Ratings

Stresses in excess of the absolute ratings may cause permanent damage. Functional operation is not implied under these conditions. Exposure to absolute ratings for extended periods of time may adversely affect reliability.

PARAMETER	MIN	TYP	MAX	UNIT	COMMENTS
Operating Frequency (f)	824	-	849	MHz	
Supply Voltage (Vcc)	+3.2	+3.4 +1.5	+4.2	V	Pouт
Reference Voltage (VREF)	+2.75 0	+2.85 -	+2.95 +0.5	V	PA "on" PA "shut down"
Mode Control Voltage (V _{MODE})	+2.5 0	+2.8 -	+3.1 +0.5	V	Low Bias Mode High Bias Mode
RF Output Power (Pout)	+27.5 (1)	+28	-	dBm	
Case Temperature (Tc)	-20	-	+110 (2)	°C	

Table 3: Operating Ranges

The device may be operated safely over these conditions; however, parametric performance is guaranteed only over the conditions defined in the electrical specifications.

Notes:

(1) For operation at Vcc = +3.2 V, Pout is derated by 0.5 dB.

(2) For operation at 110 °C (Tc), Pout is derated by 1.0 dB.

AWT6271

$(T_c = +25 \text{ °C}, V_{cc} = +3.4 \text{ V}, V_{REF} = +2.85 \text{ V}, 50 \Omega \text{ system})$						
PARAMETER	MIN	ТҮР	MAX	UNIT	COMMENTS	
Gain	25 14 13	27 16 15	29 18 17	dB	$\begin{array}{l} P_{\text{OUT}} = +28 \ dBm, \ V_{\text{MODE}} = 0 \ V \\ P_{\text{OUT}} = +16 \ dBm, \ V_{\text{MODE}} = +2.85 \ V \\ P_{\text{OUT}} = +7 \ dBm, \ V_{\text{CC}} = 1.5 \ V, \\ V_{\text{MODE}} = +2.85 \ V \end{array}$	
ACLR1 at 5 MHz offset ⁽¹⁾		-41 -46 -44	-38 -38 -38	dBc	$\begin{array}{l} P_{\text{OUT}} = +28 \ dBm, \ V_{\text{MODE}} = 0 \ V \\ P_{\text{OUT}} = +16 \ dBm, \ V_{\text{MODE}} = +2.85 \ V \\ P_{\text{OUT}} = +7 \ dBm, \ V_{\text{CC}} = 1.5 \ V, \\ V_{\text{MODE}} = +2.85 \ V \end{array}$	
ACLR2 at 10 MHz offset		-57 -55 -58	-48 -48 -48	dBc	$\begin{array}{l} {P_{\text{OUT}}=+28 \ dBm, \ V_{\text{MODE}}=0 \ V} \\ {P_{\text{OUT}}=+16 \ dBm, \ V_{\text{MODE}}=+2.85 \ V} \\ {P_{\text{OUT}}=+7 \ dBm, \ V_{\text{CC}}=1.5 \ V,} \\ {V_{\text{MODE}}=+2.85 \ V} \end{array}$	
Power-Added Efficiency ⁽¹⁾	41 17 12	45 20 14.5		%	$\begin{array}{l} P_{\text{OUT}} = +28 \ dBm, \ V_{\text{MODE}} = 0 \ V \\ P_{\text{OUT}} = +16 \ dBm, \ V_{\text{MODE}} = +2.85 \ V \\ P_{\text{OUT}} = +7 \ dBm, \ V_{\text{CC}} = 1.5 \ V, \\ V_{\text{MODE}} = +2.85 \ V \end{array}$	
Quiescent Current (lcq)	-	16	22	mA	V_{MODE} = +2.85 V, V _{CC} = 1.5 V	
Reference Current	-	3.8	5	mA	through V _{REF} pin	
Mode Control Current	-	0.6	1	mA	through V_{MODE} pin, V_{MODE} = +2.85 V	
Leakage Current	-	<1	5	μA	V_{CC} = +4.2 V, V_{REF} = 0 V, V_{MODE} = 0 V	
Noise in Receive Band	-	-135 -142	-133 -139	dBm/Hz	869 MHz to 894 MHz Pout = +27.5 dBm, V _{MODE} = 0 V 869 MHz to 894 MHz Pout = +16 dBm, V _{MODE} = +2.85 V	
Harmonics 2fo 3fo, 4fo	-	-42 -50	-30 -30	dBc		
Input Impedance	-	-	2:1	VSWR		
Spurious Output Level (all spurious outputs)	-	-	-70	dBc	Pout <u><</u> +28 dBm In-band load VSWR < 5:1 Out-of-band load VSWR < 10:1 Applies over all operating conditions	
Load mismatch stress with no permanent degradation or failure	10:1	-	-	VSWR	Applies over full operating range	

Table 4: Electrical Specifications				
$(T_c = +25 \text{ °C}, V_{cc} = +3.4 \text{ V}, V_{REF} = +2.85 \text{ V}, 50 \Omega \text{ system})$				

Notes:

(1) ACLR and Efficiency measured at 836.5 MHz.

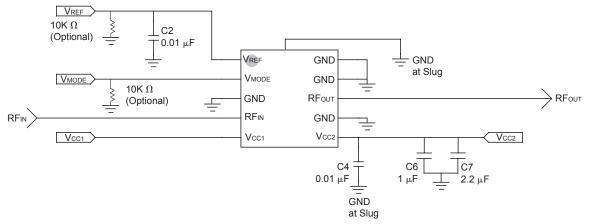
APPLICATION INFORMATION

To ensure proper performance, refer to all related Application Notes on the ANADIGICS web site: http://www.anadigics.com

Shutdown Mode

The power amplifier may be placed in a shutdown mode by applying logic low levels (see Operating Ranges table) to both the V_{REF} and V_{MODE} voltages.

Bias Modes


The power amplifier may be placed in either a Low Bias mode or a High Bias mode by applying the appropriate

logic level (see Operating Ranges table) to the V_{MODE} voltage. The Bias Control table lists the recommended modes of operation for various applications.

Three operating modes are recommended to optimize current consumption. High Bias/High Vcc operating mode is for Pout levels \geq 16 dBm. At ~16dBm - 7 dBm, the PA should be "Mode Switched" to Low Bias Mode. For Pout levels \leq ~7 dBm, the Vcc can be switched to 1.5 V (Low Bias Mode is also used for this Pout range).

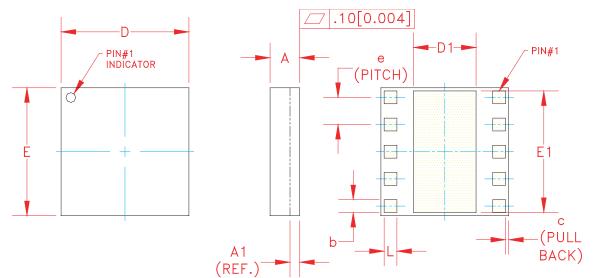
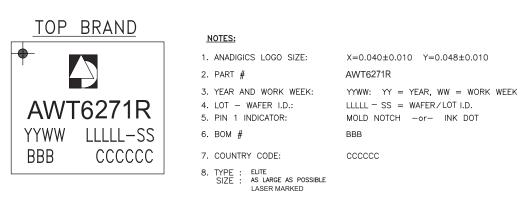

APPLICATION	Pout LEVELS	BIAS MODE	VREF	VMODE	Vcc
WCDMA - low power	<u><</u> +7 dBm	Low	+2.85 V	+2.85 V	<u>></u> +1.5
WCDMA - med power	7 <u><</u> Pout <u><</u> +16 dBm	Low	+2.85 V	+2.85 V	+3.4
WCDMA - high power	>+16 dBm	High	+2.85 V	0 V	+3.4
Shutdown	-	Shutdown	0 V	0 V	-

Table 5: Bias Control

Figure 3: Application Schematic

AWT6271



54	MILLIMETERS				NOTE		
<u></u>	MN.	NOM.	MAX.	MIN.	NOM	MAX.	
A	0.88	0.98	1.08	0.034	0.038	0.042	-
A1	0.	0.32 (REF.)			125 (R	F.)	-
Ь	0.35	-	0.60	0.013	-	0.024	3
С	-	0.10	-	-	0.004	-	-
D	3.88	4.00	4.12	0.152	0.157	0.162	-
D1	1.90	-	2.25	0.075	-	0.088	-
E	3.88	4.00	4.12	0.152	0.157	0.162	-
E1	3.75	-	3.85	0.148	-	0.152	-
8		0.85			0.033		3
L.	0.35	-	0.60	0.013	-	0.024	3

NOTES:

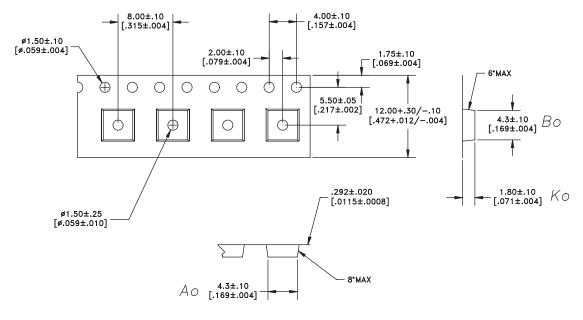

- 1. CONTROLLING DIMENSIONS: MILLIMETERS 2. UNLESS SPECIFIED TOLERANCE=±0.076[0.003]. 3. PADS (INCLUDING CENTER) SHOWN UNIFORM SIZE FOR REFERENCE ONLY. ACTUAL PAD SIZE AND LOCATION WILL VARY WITHIN, MIN. AND, MAX., DIMENSIONS.

Figure 4: M20 Package Outline - 10 Pin 4 mm x 4 mm x 1 mm Surface Mount Module

Figure 5: Branding Specification - M20 Package

COMPONENT PACKAGING

DIMENSIONS ARE IN MILLIMETERS [INCHES] STANDARD TOLERANCES

Table 6	: Tape	& Reel	Dimensions
---------	--------	--------	------------

PACKAGE TYPE	TAPE WIDTH	POCKET PITCH	REEL CAPACITY	MAX REEL DIA
4 mm x 4 mm x 1 mm	12 mm	8 mm	2500	13"

ORDERING INFORMATION

ORDER NUMBER	TEMPERATURE RANGE	PACKAGE DESCRIPTION	COMPONENT PACKAGING
AWT6271RM20P8	-20 °C to +100 °C	RoHS Compliant 10 Pin 4 mm x 4 mm x 1 mm Surface Mount Module	Tape and Reel, 2500 pieces per Reel
AWT6271RM20P9	-20 °C to +100 °C	RoHS Compliant 10 Pin 4 mm x 4 mm x 1 mm Surface Mount Module	Partial Tape and Reel

ANADIGICS, Inc.

141 Mount Bethel Road Warren, New Jersey 07059, U.S.A. Tel: +1 (908) 668-5000 Fax: +1 (908) 668-5132

URL: http://www.anadigics.com E-mail: Mktg@anadigics.com

IMPORTANT NOTICE

ANADIGICS, Inc. reserves the right to make changes to its products or to discontinue any product at any time without notice. The product specifications contained in Advanced Product Information sheets and Preliminary Data Sheets are subject to change prior to a product's formal introduction. Information in Data Sheets have been carefully checked and are assumed to be reliable; however, ANADIGICS assumes no responsibilities for inaccuracies. ANADIGICS strongly urges customers to verify that the information they are using is current before placing orders.

WARNING

ANADIGICS products are not intended for use in life support appliances, devices or systems. Use of an ANADIGICS product in any such application without written consent is prohibited.

