Introduction	1
ISDN Basic Access System Overview	2
Pin Descriptions	3
MCU Mode Register Description Reference	4
MCU Mode Device Functionality	5
MCU Mode Activation and Deactivation	6
MCU Mode Maintenance Channel Operation	7
GCI Mode Functional Description	8
MCU Mode Programming Suggestions	9
Electrical Specifications	10
Mechanical Data	11
Appendices	A-J

ISDN U-Interface Transceiver

$\begin{aligned} & \text { Bit Description Legen } \\ & \text { NIBBLE REGISTERS }\end{aligned}$
．．
$\begin{aligned} & \text { NRO：Reset and Power－Down Register } \\ & \text { NR1：Activation Status Register ．．．．．．．} \\ & \text { NR2：Activation Control Register ．．．．．．．}\end{aligned}$
REGISTER MAP
NOI 1 OीOOY 1 NI
$\begin{aligned} & \text { NR4：Interrupt Mask Register ．．．} \\ & \text { NR5：IDL2 Data Control Register } \\ & \text { R6：eoc Data Register ．．．．．．．．．．}\end{aligned}$
BLE REGISTERS ．．．．．．．．．．．．．．．．．
$\omega \omega \omega \omega \omega \omega \omega \omega \omega \omega$ $\omega \dot{\omega} \dot{\omega} \omega \dot{\omega} \dot{\omega} \dot{\omega} \dot{\omega}$

SNOl』dlyOSヨG NId

\＆NOI』つヨS

MCU MODE REGISTER DESCRIPTION REFERENCE SECTION 4

SECTION 3
PIN DESCRIPTIONS

NON－ISDN U－INTERFACE TRANSCEIVER APPLICATIONS U－INTERFACE TRANSCEIVER ISDN APPLICATIONS ISDN REFERENCE MODEL

MヨI＾પヨ＾O WヨSAS SSヨЭOV OIS甘G NQSI

NOILONOOYINI
L NOIIOヨS

N N N
$\overrightarrow{+} \vec{\omega}$ in $\overrightarrow{\mathbf{~}}$

REVISIONS

© $\infty+\infty+\infty+\underset{\infty}{+}+\underset{\infty}{+}+\underset{\infty}{+}+$ N̦ ヘ̃ ヘ̃ $\rightarrow \underset{\sim}{\square}$
ω Nー \rightarrow ஸ் -
 TABLE OF CONTENTS（continued）

 へ－

ararararara

 ADDITIONAL NOTES
 NT DEACTIVATION PROCEDURES AND WARM START
LT DEACTIVATION PROCEDURES ACTIVATIVATION OF U-INTERFACE BY LT
ACTI
ACTIVATION INDICATION
 ACTIVATION SIGNALS FOR LT MODE
ACTIVATION INITIATION ACTIVATION SIGNALS FOR NT MODE
ACTIVATION SIGNALS FOR LT MODE MCU MODE ACTIVATION AND DEACTIVATION

	＊6．01
	ع6．01
	て6．01
	1.601
అNIWI \perp YOd 7ヨNN甘HO－0	6.01
ソNIWI上 IO勺	801
	ャレOL
	E＇OL
	でしOL
	L＇OL
ソNIWI上 乙70I	$\angle \mathrm{OL}$
Nxy pue dxy su！d	て．901
$\cdots \mathrm{NX}$ • pue $\mathrm{dx}(\mathrm{suld}$	L901
SOI 1 SIપ્ヨ	9.01
SOI 1 SIUヨ	GOL
－ヨONVWYOヨપヨd	∇ OL
	EOL
	てOL
	LOL
OL NOI上OヨS	

$\infty \quad \infty \quad \infty \quad \infty \infty \infty \infty \infty \infty \infty \infty$
 ヘNヘN NN N－
iosion

N－

Freescale Semiconductor，Inc． TABLE OF CONTENTS（continued）
 Freescale Semiconductor，Inc． TABLE OF CONTENTS（continued）

Freescale Semiconductor，Inc．

戸 戸

 7V1S人4つ
륵 믹

Hardware $\ldots \ldots$ ．．．．．
Software ．．．．．．．
BLOCK DIAGRAM Hardware
INTRODUCTION ．
FEATURES ．．．．．．

SWITCHING CHARACTERISTICS FOR BAUD CLOCKS SWITCHING CHARACTERISTICS FOR CRYSTAL INPU
AND FREQREF SWITCHING CHARACTERISTICS FOR SCP INTERFACE
SWITCHING CHARACTERISTICS FOR SYSCLK AND EY
SWITCHING CHARACTERISTICS FOR CRYSTAL INPUT， Paralle Control Port Write Timing
Parallel Control Port Read Timing
SWITCHING CHARACTERISTICS FOR PARALLEL CONTROL PORT TIMING SFAX／SFAR Output Timing in IDL2（Master or Slave）Short Frame Mode
SFAX／SFAR Output Timing in IDL2（Master or Slave）Long Frame Mode

 SUPERFRAME TRANSMIT AND RECEIVE（SFAX／SFAR）TIMING

$\begin{array}{llllll}> & > & > & > & > \\ 1 & 1 & 1 & 1 & 1 & 1 \\ \omega & \omega & n & n & 1\end{array}$
عーレ
レーレレ
p
 ㅁ 0
0
0
0
0
0
0
 0
0
0
0

！＾－słuәłиo

T
$⿳ 亠 口 冋$

 $T \square$
\vdots
\vdots
0
0
0
0
$7!$
$\overline{0}$
$\stackrel{1}{0}$
0
0
0

 \begin{tabular}{l}
$7!$

\hline$⿳ 亠 口$

$7!$

$\overline{0}$

$\stackrel{1}{0}$

0

\hline
\end{tabular}

 \begin{tabular}{c}
$7!$

$\stackrel{1}{0}$

$\stackrel{1}{0}$

0

\hline

$7!$

$\stackrel{7}{6}$

$\stackrel{1}{0}$

0

\hline
\end{tabular}

 $\stackrel{T}{1}$ $\stackrel{n}{C}$

$7 \square$
$\stackrel{7}{6}$
$\stackrel{1}{1}$
\qquad umbering Timeslot Assigner Data Format Example，B2 Channel Not Enabled D Channel Port Timing，IDL2 GCI 2B＋D Frames
Timeslot Assigner Data Format Example ．．．．． D Channel Port Timing，IDL2 10－Bit Frames
D Channel Port Timing，IDL2 8－Bit Frames ．
 IDL2 Interface Timing in Long Frame，8－Bit Frames IDL2 Interface Timing in Short Frame Slave Mode，10－Bit Frames IDL2 Interface Timing in Short Frame Master Mode，10－Bit Frames
IDL2 Interface Timing in Short Frame Slave Mode，8－Bit Frames ． IDL2 Interface Timing in Short Frame Master Mode，8－Bit Frames PCP Byte Register Write Operation PCP Mode Nibble Register Write and Read Operations
PCP Register R6 Write and Read Operations MCU Mode with PCP Configuration SCP Byte Register Read Operation Using Single 16－Bit Transfer SCP Byte Register Write Operation Using Single 16－Bit Transfer SCP Byte Register Read Operation Using Double 8－Bit Transfer SCP Byte Register Write Operation Using Double 8－Bit Transfer ． SCP eoc Register R6 Read Operation Using Single 16－Bit Transfer SCP eoc Register R6 Write Operation Using Single 16－Bit Transfe SCP eoc Register R6 Read Operation Using Double 8－Bit Transfe SCP eoc Register R6 Write Operation Using Double 8－Bit Transfer SCP Nibble Registers $0-5$ ，Read Operation SCP Nibble Registers $0-5$ ，Write Operation MC145572 Functional Block Diagram
Mode with SCP Configuration ． IDL2 Interface Timing in 10－Bit Master Mode
MC145572 Functional Block Diagram ．．．．． IDL2 Interface Timing in 8－Bit Master Mode IDL2 Interface Loopback Logic Diagram IDL2 Interface Loopback Control Bits Method to Drive MC145572 with External Clock Pair Gain Application，Remote Terminal ．．．．． MC145572 Typical ISDN Applications ISDN Reference Model

6и！ш！\downarrow реәу	St－01 ann！y
6ииш！\perp ә！بıм	－tا－01 コn¢

$\stackrel{7}{0}$
$\stackrel{訁}{\overline{0}}$
$\stackrel{\rightharpoonup}{0}$
$\stackrel{1}{\omega}$
$\stackrel{\rightharpoonup}{\omega}$
 n
$\stackrel{7}{0}$
$\stackrel{1}{0}$
$\stackrel{\rightharpoonup}{0}$
$\stackrel{1}{د}$

$7!$
$\stackrel{7}{6}$
$\stackrel{1}{0}$
$\stackrel{\rightharpoonup}{0}$
6

 －L－01 ənn6！」 －9－01 ənn6！

10
\vdots
$\overline{0}$
0
0
0

 Figure 8－18．

 $7 \overline{1}$
$\stackrel{1}{7}$
$\stackrel{1}{0}$
0
0 $7!$
$\stackrel{1}{7}$
$\stackrel{1}{0}$
∞
∞
0_{0}
 Figure 8－5． $7!$
$\stackrel{0}{7}$
$\stackrel{1}{0}$
∞
+
+

$7!$
$\stackrel{7}{6}$
$\stackrel{0}{0}$
0

1
0
0
0
0
0

7	
0	
C	
$\overline{1}$	
0	
1	
1	

$\underline{\square}$
$\stackrel{\square}{C}$
$\stackrel{\rightharpoonup}{\bar{D}}$
$\stackrel{\rightharpoonup}{0}$
$\frac{1}{0}$

Figure
Figure
7π
$\stackrel{T}{C}$
\bar{D}
Typical Power Spectral Density Multi-Line U Line Card

 मems NOSI U-Terminal Two-Chip NT1 U-Interface Repeater Using MC145572FN and MC68HC05P9 Typical 2B1Q Line Interface Schematic
Transformer Model
Transmit Circuit Model. Line Interface Circuit Model
Manual and Automatic Eye Pattern Decoder Manual Eye Pattern Decoder 8-Bit Sample Window Positioned Over Bits D16:D9 MC145572 Printed Circuit Board Footprint Dimensions
MC145572 Suggested PCB Layout Schematic Reference for U-Interface Transformer Motorola Silicon Applications and the MC145572EVK
MC145572EVK Functional Block Diagram MC145572PB Mechanical Outline MC145572PB Pin Assignment MC145572FN Pin Assignment Tx Superframe Sync Pulse Alignment Baud Clock Timing SYSCLK and EYEDATA Timing SCP Interface Timing

(pepnjouog) S34n⿹1J JO ISI7

2B1Q Line Interface Component Values
ISDN Call Control Source Code Suppliers
Electrical Specification for the U-interface
U-Interface Transformer Vendors
C/I Channel Commands and Indications
Monitor Channel Interrupt Indication Messages
Monitor Channel Response Message
Monitor Channel Commands
Multiplexed GCI Frame Configuration .
GCI Master Mode Clock Rate Selection
Transmitted crc Configuration
NT Mode Activation Signals
$\begin{aligned} & \text { Maximum Number of Timeslots vs DCL Frequency } \\ & \text { FIFO Delays Through the MC145572 }\end{aligned}$
Timeslot Assigner Registers
IDL2 Interface Master Mode Clock Rate Selection
$\begin{aligned} & \text { Pin Function per Mode and MC14LC5472 Comparison } \\ & \text { IDL2 Interface Data Format Selection }\end{aligned}$
Mode Pin Breakout Summary and Comparison
$\begin{aligned} & \text { M4 Dual Consecutive Modes Example } \\ & \text { M5/M6 Control Modes }\end{aligned}$
M4 Control Modes
Automatic eoc Processor Functions
$\begin{aligned} & \text { Frame Control Modes } \\ & \text { eoc Control Modes }\end{aligned}$
M4 Bit Definitions . .
$\begin{aligned} & \text { Register Bit Locations Within the Superframe LT } \rightarrow \mathrm{NT} \\ & \text { Register Bit Locations Within the Superframe NT } \rightarrow \text { LT }\end{aligned}$
$\begin{aligned} & \text { Overlay Register Map (OR0 - OR13) } \\ & \text { Bit Read/Write Indicator }\end{aligned}$
$\begin{aligned} & \text { Byte Register Map (BR0 - BR15A) . } \\ & \text { Overlay Register Map (OR0 - OR13) }\end{aligned}$
Nibble Registers and R6 Map (NR0 - NR5; R6)
$\begin{aligned} & \text { Operation Mode as Indicated by Mode Input Pins } \\ & \text { GCI Timeslot Assignment as Set by S0 - S2 ... }\end{aligned}$
Phase Locked Loop and Clock Pins (See Section 3.3.6)
2B1Q Interface Pins (See Section 3.3.5)
$\begin{aligned} & \text { Time Division Multiplex Interface Pins (See Section 3.3.3) } \\ & \text { Digital Data Interface Pins (See Section 3.3.4) }\end{aligned}$
Power Supply and Mode Selection Pins (See Sections 3.3.1 and 3.3.2)
 ceivers as a repeater and how to connect MC14LC5540 ADPCM or MC14LC5480 PCM codecs for Appendix F, Applications, provides an example of how to configure two MC145572 U-interface transAppendix E, Line Interface Circuit Component Value Calculations, provides a design example
on how to calculate component values for the line interface circuit. Appendix D, Eye Pattern Generator, details design information to construct an eye pattern generator. Appendix D, Eye Pattern Generator, details design information to construct an eye pattern generator Appendix C, Printed Circuit Board Layout, provides recommendations for the printed circuit board
(PCB) layout. nents such as line interface transformers. Appendix B, Component Sourcing, lists specifications and potential sources for key external compothis inexpensive, but valuable tool. MC145572. All developers of MC145572-based products are strongly encouraged to make use of
 also contains several appendices:

In addition to descriptions of the ISDN network and basic MC145572 device functionality, this document

NOILVLNEWחOOd TVLNEWヨTddnS

The specifications for the pullable crystal have been relaxed 160 kbps data (80 Kbaud signalling) rate. 16 kbps D channel in each direction. Maintenance and framing overhead is also included for a total
 time division 2B+D data interface. A timeslot assigner is also provided on the MC145572. microprocessor interface. The PCP is a standard microprocessor bus port. The designer may choose
between using the General Circuit Interface (GCI) or the Motorola Interchip Digital Link (IDL)-type SCP conforms to the Motorola Serial Control Peripheral Interface standard, an industry standard serial via special purpose pins and the Serial Control Port (SCP) or the Parallel Control Port (PCP). The The MC145572 can operate in many different modes. The control of these various modes is provided may have to be changed. See Section 5.6 ment signals. Software that implements analog loopbacks or Superframer-to-Deframer loopbacks face features of the MC145572, such as the timeslot assigner and the availability of superframe alignminimal software and hardware changes. New designs can take advantage of enhanced digital interPLCC and TQFP packages.

The use of the latest process technologies permits the MC145572 to be made available in 44-lead enhanced to serve the needs of the growing ISDN (Integrated Services Digital Network) marketplace leading performance. The control and time division multiplex interfaces have been significantly nal signal processing algorithms are the same as for the original MC145472 to maintain its industry The MC145572 is a redesign of the MC145472 and MC14LC5472 U-interface transceivers. The inter tions, performs all necessary Layer 1 functions while utilizing 2B1Q line coding. The device, which can be configured for LT (Line Termination) or NT (Network Termination) applica The MC145572 U-interface transceiver is a single chip device for the Integrated Services Digital Net
work Basic Access Interface that conforms to the American National Standard ANSI T1.601-1992

INTRODUCTION

NOIIOnGO41NI

$+\vdash$
$+\vdash$ The following is a list of sections, figures, and tables with changes.
Sections:

SNOISINEY

$$
\text { - } 5 \text { V Power Supply }
$$

High Performance CMOS Process Technology - 8 kHz Reference Frequency in LT Mode - On-Chip 2.5 V Transmit Driver Meeting 1992 Requirement - Pin Selectable for LT or NT Applications Complete Set of Loopbacks for Both the IDL- and U-Reference Point Directions Automatic Internal Compliance with the Embedded Operations Channel (eoc) Protocol as Speci-
fied in the American National Standard Automatic Handling of Basic Maintenance Functions

$$
\begin{aligned}
& \text { Microprocessor Bus Compatible Parallel Port Available as Pin Selectable Option } \\
& \text { On-Chip Conformance with Activation and Deactivation as Specified in ANSI T1.601 }
\end{aligned}
$$ Timeslot Assigner

> 2B+D Customer Data Provided by the Industry Standard IDL GCI - On-Chip FIFOs for Transmit and Receive Directions - Supports Master, Slave, and Slave-Slave Timing Modes NT Synchronizes To and Operates With $80 \mathrm{kHz} \pm 32$ ppm Received Signal from LT Compliant to ETSI ETR 080
Warm Start Capability Specification), American National Standards Institute Interface for Use on Metalic Loops for Application on the Network Side of the NT (Layer 1 - Conforms to ANSI T1.601-1992, Integrated Services Digital Network (ISDN)-Basic Access - Single Chip 2B1Q Echo Cancelling Adaptively Equalized Transceiver Key features of the MC145572 U-interface transceiver include

face equipment designer will find the ANSI document to be a useful reference. ments such as ANSIT1.601-1992; and therefore, has not been included in this document. The U-inter Information regarding the generic 2B1Q U-interface requirement is readily available in standards docuyour local sales office or the factory applications staff if you require any further assistance Every effort has been made to make this a complete and easy to use document; however, contact Appendix J, Standards Bodies, gives a listing of major standards bodies, with contact information. publications concerned with Motorola Semiconductor Products for Communications. Appendix I, Glossary of Terms and Abbreviations, contains terms found in this and other Motorola mode, control of transmit signals, and characterization of the pullable crystal. Appendix H, Test and Debug, gives test and debug information on high impedance digital output Appendix G, Performance, shows graphs of typical line interface circuit performance

Freescale Semiconductor, Inc.

Deleted section Deleted figure; same as Figure 5-23 Added FREQREF reference宥

Remote Access Multi-Line Configuration No.
Multi-Line U Line Card Added FSX referenc Added resistor line -

Figure 2－1．ISDN Reference Model

N

ISDN REFERENCE MODEL

MヨI＾Yヨ＾O WヨISAS SSヨODV OISVg NGS

Freescale Semiconductor，Inc．

$$
\begin{aligned}
& \text { The NT1 converts the } 2-\text { wire U-interface to the } 4 \text {-wire S/T-interface as shown. By combining an } \\
& \text { MC145572 with a Motorola MC145574 S/T-interface transceiver, an NT1 can be readily implemented. } \\
& \text { Also shown is a highly integrated U-interface ISDN terminal, designated NT1/TE1, which implements } \\
& \text { a complete voice and data terminal with a U-interface for immediate and cost effective access to } \\
& \text { the ISDN. The MC145572 is shown interfaced to the M68000 core-based MC68302 Integrated Multi- } \\
& \text { protocol Processor (IMP), which handles layers } 2-7 \text { of the OSI reference model. Voice is supported } \\
& \text { with a conventional codec-filter device, such as the MC14LC5480. } \\
& \text { The network is completed with a TA and an S/T-interface ISDN terminal (TE1). Two different architec- } \\
& \text { tures are shown: the TA is implemented with the MC145488 Dual Data Link controller and a host } \\
& \text { MCU system, and the TE1 is shown implemented with the MC68302 IMP. }
\end{aligned}
$$

Freescale Semiconductor, Inc.

This chapter describes the MC145572 pins and their operation. Additionally, quick reference tables
are provided. These tables are organized by the three major modes of operation and by package
type.
PIN DESCRIPTION QUICK REFERENCE
The following tables (Tables 3-1 through 3-5) list the MC145572 pins in functional groups and provide
brief pin descriptions. For more detailed information, refer to the section indicated in the table title.

	62	て，	u！
＇әэセләґи！！	0ε	\＆	${ }^{100} 0$
	1ε	ャレ	$7 \bigcirc \bigcirc$
əәpou Іכ૭ u！pesn łou s！u！̣d s！̣। 	82	$1+$	XS」
－u！d łno ${ }^{\text {a }}$ әңъ ио рәи！	$\angle 乙$	01	OS－1／4S」
 	91	\＆t	S／W
uo！̣d！ıosəa u！d	037d	d -01	əmen uld
	＇on uld		

 	ε	0t	$\underline{\underline{y}} \mathrm{~J}$ S／4 $/ \mathrm{dd}$
	$\varepsilon \downarrow$	92	IOפ／now
	s	で	17／1N
	tr	け	1ㅋㅋy

	1	82	$\wedge \varepsilon d \forall \bigcirc$
	$9 \varepsilon \times \varepsilon$＇	61＇9	O／ISS＾
	$\angle \varepsilon ' \downarrow 乙$	$00^{\prime} \mathrm{L}$	O／l00＾
＇punoıб К｜｜еи！	OL＇t	$\angle \varepsilon^{\prime}\llcorner\varepsilon$	$x_{\perp} S^{\prime}{ }_{\wedge} \times x{ }^{\prime} S^{\prime} S_{\Lambda}$
	17 ＇ε	$88^{\prime} 0 \varepsilon$	
	乙て ‘乙	G＇62	SS＾
	カt	$\angle 乙$	－0，
uo！̣d！ıəsəa u！d	כงาd	ḋO1	əuren u！d
	＇ON U！d		

Table 3－1．Power Supply and Mode Selection Pins（See Sections 3．3．1 and 3．3．2）
Freescale Semiconductor，Inc．

Because of an order from the United States International Trade Commission，BGA－packaged product lines and part numbers indicated here currently are not available from Freescale for import or sale in the United States prior to September 2010：ZEUS

$\begin{aligned} & \infty \stackrel{\rightharpoonup}{\infty} \\ & \$> \\ & \times \infty \end{aligned}$								O	$\begin{gathered} \omega \\ \stackrel{\rightharpoonup}{\lambda} \\ \stackrel{1}{x} \end{gathered}$	$\begin{aligned} & \infty \\ & \substack{0 \\ 0 \\ \times 0} \end{aligned}$	$\begin{aligned} & 0 \\ & \underset{\sim}{0} \\ & \stackrel{\Gamma}{x} \end{aligned}$	$\begin{aligned} & 0 \\ & \stackrel{0}{0} \\ & \underset{z}{z} \end{aligned}$		
$\begin{aligned} & \infty \stackrel{\rightharpoonup}{\infty} \\ & \$ \\ & \infty \times \infty \end{aligned}$		믁	\%	\%	\%	$\stackrel{\square}{\omega}$	\bigcirc	汤	$\stackrel{\square}{\square}$	8	\sum	8		O
0	$\stackrel{0}{0}$	O ¢ cher Γ	T 召 $\stackrel{1}{¢}$	N	$\begin{aligned} & \hline \infty \\ & \stackrel{\infty}{\eta} \\ & \times \\ & \stackrel{\rightharpoonup}{\gtrless} \end{aligned}$			\|	$\begin{aligned} & \mathrm{O} \\ & \underset{N}{\prime} \end{aligned}$	$\stackrel{\bigcirc}{-1}$	\bar{N}	$\bar{\Sigma}$	증	
ω	∞	N	N	N	$\xrightarrow{\sim}$	$\stackrel{\rightharpoonup}{\infty}$	$\stackrel{\rightharpoonup}{*}$	A	N	\rightarrow	ω	+	$\begin{aligned} & -1 \\ & \mathbf{D} \\ & \hline \end{aligned}$	
N	N	\pm	*	${ }_{\bullet}$	¢	${ }_{\sim}^{\sim}$	$\stackrel{\sim}{+}$	$\stackrel{\rightharpoonup}{v}$	$\stackrel{\rightharpoonup}{\bullet}$	$\stackrel{\rightharpoonup}{\infty}$	N	\bigcirc		\bigcirc

	Pin Name	Pin No.		Pin Description
		TQFP	PLCC	
	TxP, TxN	36, 39	9, 12	Positive and negative outputs of the differential transmit driver.
	RxP, RxN	32, 33	5, 6	Positive and negative inputs to the differential receive circuit.
	$\mathrm{V}_{\text {ref }} \mathrm{P}$, $\mathrm{V}_{\text {ref }} \mathrm{N}$	35, 34	8, 7	Positive and negative signals for internal voltage reference. Connect a $0.1 \mu \mathrm{~F}$ to $1 \mu \mathrm{~F}$ ceramic capacitor between $\mathrm{V}_{\text {ref }} \mathrm{P}$ and $\mathrm{V}_{\text {ref }} \mathrm{N}$
	Table 3-5. Phase Locked Loop and Clock Pins (See Section 3.3.6)			
	Pin Name	Pin No.		Pin Description
		TQFP	PLCC	
	FREQREF	25	42	LT mode: 8 kHz reference clock input (Schmitt trigger input). NT mode: optional synchronized clock output, selected by control register in the MCU mode ($\mathrm{MCU} / \overline{\mathrm{GCI}}=1$).
	XTAL ${ }_{\text {in }}$, XTAL $_{\text {out }}$	16, 15	33, 32	Input and output signals of the 20.48 MHz crystal oscillator amplifier.
3.3	PIN DESCRIPTIONS			
	The following descriptions are divided into the same functional groups as the Pin Description Quick Reference Tables in Section 3.2 and provide more information about the particular subsystem of the device and the associated pins. Refer to Figures 11-1 and 11-2 for pin assignments.			
3.3 .1	Power Supply Pins			
	The MC145572 has five pairs of VDD and VSS power supply pins. Each of these pairs provide power to a specific portion of the integrated circuit to minimize interaction between the various high performance subsystems on the device. All of the negative power supply pins should be connected to the same ground reference point and all of the positive power supply pins should be connected to the same +5 V power supply source.			
	NOTE			
	See Appendix C for printed circuit board layout recommendations.			
	VDD: Positive Power Supply			
	This is one of the five positive power supply pins and should be connected to +5 V . VDD provides power to the internal digital circuits of the device and should be decoupled with a $0.1 \mu \mathrm{~F}$ ceramic capacitor to VSS.			
	VSS: Negative Power Supply			
	Two of the six negative power supply pins are VSS, and they should be connected to ground. These pins provide a ground reference to the internal digital circuits of the device and each should be decoupled with separate $0.1 \mu \mathrm{~F}$ ceramic capacitors to VDD.			
	VDDRx, VDDTx: Positive Analog Power Supply			
	Two of the five positive power supply pins are $V_{D D R x}$ and $V_{D D T x}$, and they should be connected to +5 V . These pins provide power to the analog receive and transmit subsystems of the MC145572, and each should be decoupled with separate $0.1 \mu \mathrm{~F}$ ceramic capacitors to $\mathrm{V}_{\mathrm{SS}} \mathrm{Rx}$ and $\mathrm{V}_{\text {SS }} T x$, respectively. These two pins are not tied together internally.			

Freescale Semiconductor, Inc.

thereby allowing software control of this mode． into the LT mode．Note that Byte register 8，bit 0，also controls NT versus LT mode selection，

 addition，the $T x$ driver is put into a low impedance state to terminate the U－interface and the
$2 B 1 Q$ receiver is unable to detect the activation wake－up tone．

$$
\text { Reset must be asserted until VDD is greater than } 4.75 \mathrm{~V} \text { and the oscillator is stable. }
$$

NOIIП甘O

$$
\text { microcontroller. This pin must be held low for at least six } 20.48 \mathrm{MHz} \text { clock periods }
$$ a similar software reset function，thereby allowing control of this mode from the external tion．A logic 1 puts the device into the normal operating state．Register NRO（b3）provides ındu｜$ə$ əsəy ：IヨSヨy Chapter 8，GCI Mode Functional Description the device in specific modes can be obtained from Chapter 5，MCU Mode Device Functionality and位

applied to the MC145572 for more information on the limit of the source current．This output is at 5 V until reset is power supply may source current from this pin．See Section 10．3，Electrical Specifications， This pin is tied to the internal core logic power supply．An
 device，each should be decoupled with a $0.1 \mu \mathrm{~F}$ ceramic capacitor to VDDI／O． ground．These pins provide a ground reference to the digital input and output circuits of the Two of the six negative power supply pins are Vssl／O，and they should be connected to VSSI／O：Negative Power Supply Input／Output
connected to 3.3 V to provide $1 / \mathrm{O}$ compatibility with 3 V interface devices． should be decoupled with a $0.1 \mu \mathrm{~F}$ ceramic capacitor to $\mathrm{V} \mathrm{SS}^{\prime} / \mathrm{O}$ ．These pins can also be +5 V These pins VDDI／O：Positive Power Supply Input／Output capacitors to $V_{D D R}$ and $V_{D D T x}$ ，respectively． nected to ground．These pins provide a ground reference to the analog receive and transmit Two of the six negative power supply pins are $V S S R x$ and $V D D R x$ ，and they should be con－
nected to ground．These pins provide a ground reference to the analog receive and transmit VSSRx，VSSTx：Negative Analog Power Supply

Freescale Semiconductor，Inc

(0 sisuo

 -ə^!̣snjou! 'zHW 960'ャ of
 'も'G uO!loəs As a timing master in the MCU-NT mode this provides a 2.048 MH clock output. This choice is programmed in BR7(b2) and OR7(b4). Also see -u!d \underline{S} / W əuł Kq pəus!|qeısə se ‘əpou DCL: Data Clock Input/Output
in the Slave mode and a common sync can be used to drive both inputs FSX inputs must be driven by external circuitry. FSR and FSX inputs can be tied together In Master mode, FSR and FSX output the same waveform. In Slave mode, both FSR and deviation from a jitter free sync of $\pm 48 \mu$ s. the FSX signal must occur at an average rate of $8 \mathrm{kHz}(125 \mu$ s interval) with a maximum phase
 When the $M C 145572$ is in $N T$ mode and $M / S=1$, this output is phase locked to the signal
received at the U-interface. As an $L T$ in the Master mode, this output is derived directly from mode, as established by the M / \bar{S} pin.
When the MC145572 is in NT mode a

This pin is an input when the TDM interface is in the Slave mode and an output in Master
mode, as established by the M / \bar{S} pin. in the GCI mode. The formatting of FSX is mode dependent.

FSX is the 8 kHz frame sync for the transmit data of the MCU interface. This pin is not used FSX: MCU Mode Frame Synchronization Transmit

As a Slave, the FSC signal must occur at an average rate of $8 \mathrm{kHz}(125 \mu \mathrm{~s}$ interval) with
a maximum phase deviation from a jitter free sync of $\pm 48 \mu \mathrm{~s}$. clock. The frequency of the periodic FSR signal is 8 kHz

As an LT in the Master mode, this output is derived directly from the 20.48 MHz master
 boundary by going high for one DCL clock. This happens once every 12 ms output in Master mode as established by the M/S pin. FSC indicates a superframe of the DCL signal. This pin is an input when the TDM interface is in Slave mode and an is high for two cycles of the DCL signal and the rising edge is aligned with the rising edge In full GCl mode and in GCI 2B+D mode, this pin serves as the FSC pin, and the signal FSC: GCI Mode Frame Synchronization Receive FSX inputs must be driven by external circuitry. FSR and FSX inputs can be tied together
in Slave mode and a common sync can be used to drive both inputs. In Master mode, FSR and FSX output the same waveform. In Slave mode, both FSR and a maximum phase deviation from a jitter-free sync of $\pm 48 \mu \mathrm{~s}$. a Slave, the FSR signal must occur at an average rate of 8 kHz ($125 \mu \mathrm{~s}$ interval) with from the 20.48 MHz master clock. The frequency of the periodic FSR signal is 8 kHz . As When the MC145572 is in NT mode and M/S $=1$, this output is phase locked to the signal by the M/S pin. See Figures 5-17 through 5-20. and is rising edge aligned with the rising edge of the DCL signal. This pin is an input when
the TDM interface is in Slave mode and an output in the Master mode as established
$\forall 70 y 010 W$
$\underset{\sim}{\boldsymbol{\omega}} \underset{\boldsymbol{\omega}}{\boldsymbol{\omega}}$
maintenance bits.
IN2 may be read via BR7. In NT mode, IN2 is transmitted as PS2 in the M4 channel N2: GCI Mode Input 2 write is active low In Parallel Control Port mode, this pin functions as read versus write indication, where R/W: Parallel Control Port Read/Write continuous or it can operate in a burst mode). If the MC145572 is the only SCP device
used, the SCPEN pin can be tied low and bursted clocks applied to SCPCLK. is brought low. Note that SCPCLK is ignored when SCPEN is high (i.e., it may be
continuous or it can operate in a burst mode). If the MC145572 is the only SCP device any frequency from 0 up to 4.096 MHz . An SCP transaction takes place when SCPEN shifted out of the MC145572 SCPTx pin on falling edges of SCPCLK. SCPCLK can be This is an input to the device used for clocking data into and out of the SCP interface.
Data is clocked into the MC145572 from SCPRx on rising edges of SCPCLK. Data is SCPCLK: Serial Control Port Clock Input SCPCLK/R/W/IN2
 ı ındul : IN In Parallel Control Port mode, this pin acts as an active low chip select input. CS: Parallel Control Port Chip Select the register in the system, this pin can be tied low and bursted SCP clock can be used to access exactly 8 or 16 SCPCLK clock pulses in length. If the MC145572 is the only SCP device or out of the MC145572. The SCP interface disregards any SCP operation that is not for 8 or 16 periods of the SCPCLK signal in order for information to be transferred into This pin, when held low, selects the SCP for the transfer of control, status, and M channel
data information into and out of the U-interface transceiver. $\overline{\text { SCPEN should be held low }}$ SCPEN: Serial Control Port Enable Input $\overline{\text { SCPEN }} / \overline{\mathrm{CS}} /$ IN1
These pins provide a digital transfer interface for the MC145572 when configured for MCU mode
In GCI mode, control and status information is provided over the GCI interface.
Control/Status Interface Pins

$$
\text { be connected to } \mathrm{V}_{\mathrm{DD}} \text { through a } 1.5 \mathrm{k} \Omega \text { pull-up resisto }
$$ Chapter 8, GCI Mode Functional Description, for more information. In GCI mode, $\mathrm{D}_{\text {in }}$ must This pin is the input for the 2B + D data to be transmited at This pin is the input for the $2 B+D$ data to be transmitted at the U-interface. The formatting

GCI Mode Functional Description, for more information transfer is complete. Refer to Chapter 5, MCU Mode Device Functionality and Chapter 8, to VDD through a pullup resistor. In IDL-2 mode, Dout goes high impedance when the 2B+D This pin is the output for the $2 \mathrm{~B}+\mathrm{D}$ data received at the U -interface. The formatting of the
Dout: Data Transmit Output
ment.
basic frame. See Chapter 10, Electrical Specifications, for the locations of the timing adjustadding or subtracting a single 20.48 MHz clock period during the high time of DCL. Since
this occurs during two consecutive 8 kHz frames, the total adjustment is $\pm 97 \mathrm{~ns}$, once every

Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not available from Freescale for import or sale in the United States prior to September 2010: ZEUS

Freescale Semiconductor, Inc.

In full GCl mode, this pin is an input for the timeslot selection, SO - S 2 . S1: GCI Mode Slot Selection 1 the B1 and B2 channel timeslots. This pin is enabled when OR7 $(\mathrm{b} 5)=1$ or OR8(b3) $=1$. only. TSEN is also available when the MC145572 is configured for timeslot assigner opera-
tion. When a separate D channel serial port option is enabled, TSEN is active only during interfacing while in MCU mode, TSEN is active during the B1, B2, and D channel timeslots
only. TSEN is also available when the MC145572 is configured for timeslot assigner operaof where they occur. When the MC1 45572 is configured for GCI 2B+D electrical-only data out from the MC145572 onto a PCM highway. When the MC145572 is configured
for MCU mode, TSEN is active during the B1, B2, and D channel timeslots, regardless
 TSEN: Open-Drain Buffer Enable Output superframe. See Section 5.4.7. This pulse indicates the first 2B+D frame received from a U-interface output. This signal is one MCU clock wide and occurs during the DCL clock following FSR. SFAR provides a superframe alignment output signal in the NT and LT modes. This signal
is only available when the MC145572 is in MCU mode. Setting OR8 (b1) enables this SFAR: Superframe Alignment Receive for applications information concerning this pin bits BR14(b0) or BR15A(b0) must be set to a 1 to enable this signal. See Appendix D System Clock Output is a 10.24 MHz clock that is used to clock Eye Pattern Data. Control

SYSCLK: System Clock Output SYSCLK/SFAR/TSEN/S1 phase locked 512 kHz and 2.048 MHz clocks appearing at FREFout. When operating as a GCI timing slave in full GCI-NT mode, CLKSEL selects between When operating as a GCI timing master in full kCl mode, CLKSEL selects between
512.048 MHz for DCL. CLKSEL $=1$ selects 2.048 MHz . CLKSEL: Clock Select In Parallel Control Port mode, this pin functions as bit 7 of the data bus. D7: Data 7 DCH out is the D channel port se
in Init Group register OR8(b)). DCH $_{\text {out }}$: D Channel Data Out
DCH out is the D channel port se or BR15A(b0) must be set to logic 1 to enable this signal. This 80 kHz clock indicates the timing of the received 2B1Q bauds. Control bits BR14(b0) RxBCLK: Transmit Baud Clock Output RxBCLK/DCH ${ }_{\text {out/D7/CLKSEL }}$ not necessary to set any register bits to enable this output in GCI slave mode timing master, FREF out does not provide a clock since the clock is present on DCL. It is nized clock output as selected by CLKSEL. When the MC145572 is configured as a GCI In full GCI mode, operating as a slave, this pin provides 2.048 MHz or 512 kHz synchroFREFout: GCI Mode Locked Frequency Output In Parallel Control Port mode, this pin functions as bit 6 of the data bus in Init Group register OR8(b0).
$D C H$ in is the D channel port serial input. It is enabled by setting D channel port enable $\mathrm{DCH}_{\text {in }}$: D Channel Data In

Freescale Semiconductor, Inc

Abstract

$\stackrel{\omega}{\omega}$ $\stackrel{\omega}{\omega}$

\section*{ω ω ω H} \square

See Section H. 3 for information on how to characterize the pullable crystal. A 20.48 MHz pullable crystal is connected between XTALin and XTAL ${ }_{\text {out }}$ to form a voltage-
controlled crystal oscillator in the LT or NT modes. No other external components are required. XTALin and XTALout: Crystal Input and Crystal Output Use the CLKSEL pin to select between 512 kHz and 2.048 MHz in NT mode.

 the MC145572 is configured for NT mode by setting OR8(b4) to a 1. This signal outputs əэиәдәəə mdd 乙є 干
ANSI T1.601-1992 requirements. Some ANSI and ETSI applications require a

Freescale Semiconductor, Inc.

[^0]
Crystal Oscillator Description

 Motorola continues to qualify several third party sources for the 20.48 MHz crystal. Contact
your local Motorola representative or Motorola factory applications staff for the latest in- NOTE

 MC145572. Refer to Appendix B for crystal specifications and sourcing information. The crystal speci$\pm 32 \mathrm{ppm}$ receive signals.
A single 20.48 MHz pullab tions that require a synchronized clock. In NT mode, the U-interface transceiver can lock to 80 kbaud at all times. This means that the BUFXTALout pin can not be used as a master clock source in applicaFreescale Semiconductor, Inc.

28／18 dems	ટ¢ ҮวО৷	18 YフO৷	рəлəəəəบ	GYN
00प्1 әqеuヨ	เОપ્｜әqеuヨ	20บ1 өqеuヨ	عоบ્ᅵ өqеuヨ	tYN
00प｜	LOYI	20प1	EOपI	\＆${ }^{\text {d }}$
	әqes！！ әґерd \cap әшедцәdns		łsənbəบ uo！̣en！̣ナナ	ZपN
ssarbodd u！ 	эиイS әшедләdns	ио！чеорри 10גヨ	dnyu！ 7	LYN
ןemion ot uintoy	имод－ләмод әınjosq＊	әрqеuヨ имод－ләмод	ґәsәу әемщоS	OYN
09	19	Zq	εq	

For complete information on the operation of Control interfaces，see Section 5.3 is nearly identical to that of the MC145474／75．This simplifies the code development effort and mini－
mizes device driver code size for the microcontroller． In addition to being pin－for－pin compatible，the architecture of the register map and the SCP interface either device，such as line cards or terminal equipment． for applications utilizing both the MC145572 and the MC145474／75 and for applications that can use interface transceivers．Using the same interface as the MC145474／75 provides a common interface The MC145572 SCP interface is pin－for－pin identical to that of MC145474／75 and MC145574 S／T－ to new registers in the MC145572．Most software developed for the MC145472 will work for the
MC145572 without modifications． or software reset．Reserved bits in the MC145472 register map have been redefined to permit access The register map for the MC145572 is nearly identical to that for the MC145472 after a hardware The MC145572 provides a PCP interface mode that provides access to all control registers．See Sec－
tion 5.3 .2 for more information on the use of the PCP interface． sary to access the registers in normal applications． The internal registers of the MC 145572 are used when the device is in MCU mode．When in GCl
mode， $\mathrm{MCU} / \overline{\mathrm{GCI}}=0$ ，the MC 145572 is controlled via the C / I and Monitor channels and it is not neces－

 This chapter describes all of the MC145572 U－interface transceiver control and status registers avail－ NOILOnaO41NI

ì
 Error Power Indicator－BR12，BR13
Force Linkup－BR12（b0）
Hold Activation State－BR12（b3）

Control－BR11（b7：b1） Activation

$$
\begin{aligned}
& \text { Customer Enable - NR2(b0) } \\
& \text { Deactivation Request - NR2(b }
\end{aligned}
$$

 xәpu｜ләұs！бәу

dVW yヨISIDヨy

								عاчㅇ
（0：L）s！！g әп！әәәу əииечэ व								zเบо
（0：L）S！！ 9 ！！								
	нวロ Łэәәล		рəлəəรəบ	рəлəəรəบ	рәләэəу	рәләsəy	рəлəәsəy	014a
ə｜qesta 960t	ə｜qes！a 98¢	ə｜qes！ 0 8t0z	әᄈ⿺𠃊！	$\begin{gathered} 8+0 \mathrm{O} \\ \text { 土กOx7כ } \end{gathered}$	צơqdooา bopeuy		рəлəəรəบ	640
ә｜qеuヨ ${ }^{\mu 0 \mathrm{O}}$ рәиечว 0	ขๆ®uヨ YVAS XVAS	рəлəəรəบ	$\begin{gathered} \text { 28 ‘ıя } \\ \text { əqeu } \exists \mathrm{N} \mathrm{\exists S} \mathrm{\perp} \end{gathered}$		ข१гиヨ Indino $\mathrm{X} \forall \mathrm{AS}$	0 əpow บ／व	เ әроW צ／a	840
$\begin{gathered} \text { әроw } \\ \text { \|eu } u \perp \downarrow W \end{gathered}$						ңәииоว әu！ 7	Yoeqdoon bopuy гешәи｜	Lч\％
рәләезәу	рəлəəsəy	рәлəรəบ	$\begin{gathered} \hline \text { ә\|qeuヨ } \\ \text { əpow IЮ७ } \end{gathered}$		$\begin{aligned} & \text { e\|qeuヨ } \\ & \text { O } \forall S \perp \end{aligned}$			940
（0：Z） 101 S ।								
								syo
（0：L）s！！								tyo
								عяо
								z80
								180
								040
09	19	29	\＆q	${ }^{\text {tq }}$	sq	99	29	

\qquad

 Enable - NR5
Status - NR3
Loopbacks Interrupt IDL2 Long Frame Mode - OR7(b3)
IDL2 Rate - OR7(b4)
 B1 IDL2 Timeslot Enable - OR6(b7)
B2 IDL2 Timeslot Enable - OR6(b6)

$\mathrm{D}_{\text {in }}$ B1 Timeslot — OR3
 IDL2 IN/OUT - BR7(b6:b5)
GCI Mode Enable - OR6 (b3) GCI Request - NR2(b2) Deactivation
 Transparen - BR3(b2), BR9(b5:b4) Timer Expire - BR11(b0) Superframe Update Disable - NR2(b1)
Timer Disable - BR11(b0) Superframe Update Disable - NR2(b1) Step Activation Stat Freescale Semiconductor, Inc.
Activation (continued)

Di
Diag Fast EC Beta - BR 13(b4)
Force Linkup - BR12(b0)
Freq Adapt - BR15A(b7)
Jump Disable - BR15A(b6) ro/wo to r/w - BR14(b6) Select Dump Access - BR10(b2)
Select DCH Access - BR10(b1)
D Channel Access Overlay - OR12
Dump/Restore Access Overlay - OR13 eoc
Control $-B R 9(b 7: b 6) ~$ Message-R6 ebe
Control - BR9(b1) nput - BR2(b4), BR9(b1) Received - BR3(b4)
febe/nebe Rollover - OR7(b2) act - BR3(b2) crc Corrupt - BR8(b3)
dea - BR3(b1) febe - See febe M4 Trinal Mode - OR7(b0) M4 Control - BR9(b5:b4)
M4 Send - BR0 M5/M6 Control - BR9(b3:b2)
M50 Received - BR3(b7)
M50 Send - BR2 M5/M6 Control - BR9(b3:b2)
M50 Received - BR3(b7)
M50 Send - BR2(b7) M51 Received - BR3(b5) M60 Received - BR3(b6) M60 Send - BR2(b6)
nebe - See nebe Return to Normal - NRO(b0) Superframe Update Disable - NR2(b1)
Verified act - BR3(b2) 151 Received - BR3(b5)
151 Send - BR2(b5) oc - See eoc aintenance counter - BR4 tics (continued)

Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not available from Freescale for import or sale in the United States prior to September 2010: ZEUS
$\forall 70 \cup 0 \perp$ OW

exits from Power-Down mode on one of three conditions: operation are turned off. This bit must be cleared to 0 before enabling the MC145572 to perform any
non-activation related functions other than waiting for a wakeup tone. The MC145572 automatically MC145572 transmit drivers and the time division multiplex interface circuitry for both IDL2 and GCI
operation are turned off. This bit must be cleared to 0 before enabling the MC145572 to perform any far-end tranceiver, the MC145572 enters the Power-Down mode. In Power-Down mode, the When this bit is set to 1 and the U-interface transceiver is searching for a wake-up tone from the Power-Down Enable the contents of NR0 and BR10. must be a 20.48 MHz clock at XTAL in for the MC145572 to reset correctly. This bit has no effect on it or asserting hardware reset. Reset must be asserted for at least six 20.48 MHz clock periods. There
 Software Reset
This bit forces th

SH3ISIDヨy 37gain

by BR14(b6) and operates as discussed for all modes. Byte register 14 includes a bit (BR14(b6)) that converts all of the write-only (wo) registers
to read/write registers for diagnostic purposes. If not specified, a register is not affected

 		ом
 	KıuO-prey	0.1
 	әب𠃊мррәу	ms
uo!̣duэsəด	әdKı	

 Freescale Semiconductor, Inc.
by setting BR10（b1）
See D Channel Interrupt below for operation of this bit when D channel access has been enabled
4．A hardware or software reset occurs
While operating in the LT mode，the Deactivate Request bit（NR2（b2））is set． or Verified dea（BR3（b1））becomes a 1 during M4 Control mode 0，0（BR9（b5：b4））
While operating in the NT mode，receive framing is lost after Deactivate Request is set in NR2（b2）
．Receive framing is lost or severely in error，and remains so，for 480 ms ． will remain set until one of four things happens from purely a transmit／receive point of view，the U－interface is operational when Linkup is 1 ．Linkup activation to be completed，the act bit in the M4 maintenance bits must still be exchanged．However， This bit is set when the U－interface transceiver has completed an activation up to the point where
cleared.
activation status，an interrupt is still queued up even though the D channel interrupt has been NR1 but does not affect any updates in activation status．So，if there has been a change in When access to the D channel via register OR12 is enabled，NR1 indicates a D channel inter－
rupt by setting all four status bits to 1 s ．Reading OR12 clears the special code（1111）from

ヨュON

Sync，or Transparent／Activation in Progress change from 1 to 0 ，an $\overline{\operatorname{IRQ3}}(\mathrm{NR} 3(\mathrm{~b} 3))$ is generated．
The $\overline{\mathrm{IRQ3}}$ interrupt is cleared by reading NR1． Hardware Reset（ $\overline{\mathrm{RESET}})$ ．If any bit in this register changes from 0 to 1，or if Linkup，Superframe

This bit is used to return maintenance functions to their normal operating state．When set to 1 ，the
crc Corrupt bit（BR8（b3））and all of the loopback control bits in BR6 are cleared． Return to Normal to．Setting this bit clears all coefficients and forces the transceiver to activate in cold start mode during ware Reset（ $\overline{\mathrm{RESET}})$ ．During Absolute Power－Down，NR0 is the only register that may be written
to．Setting this bit clears all coefficients and forces the transceiver to activate in cold start mode during mately 1 ms while the internal clocks stabilize．Absolute Power－Down may also be aborted by a Hard－ circuits resume full power．After this bit is cleared，the Software Reset bit must be set to 1 for approxi－ are turned off and the transmit drivers are high impedance．After setting this bit back to 0，the internal of a software reset．All clocks except the Phase Locked Loop（PLL）subsystem used in the LT mode When this bit is 1 ，the U－interface transceiver enters its Absolute Power－Down mode，the equivalent interface transceiver has warm start capability regardless of the state of this bit．

$$
\begin{aligned}
& \text { When access to the D channel register OR12 has been enabled by setting BR10(b1), the operation } \\
& \text { of the NR1 status bits is modified. A D channel available status is indicated by NR1(b3:b0) all being } \\
& \text { set to } 1 \mathrm{~s} \text {. Software must first do a check for NR1 = \$F, then perform a check for status of the individual } \\
& \text { bits. The D channel interrupt is cleared by reading OR12. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { The received data is not transmitted on the IDL2 interface until Linkup is 1, Superframe Sync } \\
& \text { is 1, Transparent/Activation in Progress is 1, and either Customer Enable (see NR2(b0)) or } \\
& \text { Verified act (see BR3(b2)) is } 1 \text {. }
\end{aligned}
$$

NOTE

See \boldsymbol{D} Channel Interrupt below for operation of this bit when D channel access has been enabled
by setting BR10(b1). all 1s) until the error returns to normal. the U-interface. Under this condition, the receiver blocks received data (forcing the $2 B+D$ data to ever Linkup is 1 , this bit may be cleared, indicating that the receiver has detected a high error on receiver and Superframe Deframer are ready to pass data transparently from the U-interface to the
IDL2 interface. If the activation process fails, this bit is cleared and Error Indication is set to 1 . Whencompleted, Linkup is set to 1 indicating success, and this bit remains set to 1 , indicating that the

by setting BR10(b1)

See \boldsymbol{D} Channel Interrupt below for operation of this bit when D channel access has been enabled frame Sync is 0 , the received maintenance bits are unknown. IRQ2, IRQ1, and IRQ0 are not generated
while Superframe Sync is 0 . The $2 B+D$ data is blocked (forced to all 1s) when Superframe Sync is and if Superframe Sync remains 0 for 480 ms , the U-interface transceiver will deactivate. While Supercident with Linkup being set. Subsequently, if the superframe is lost, Superframe Sync returns to 0 , Superframe Sync
by setting BR10(b1).

See \boldsymbol{D} Channel Interrupt below for operation of this bit when D channel access has been enabled
the Activate Request bit in NR2(b3) or receiving a wakeup tone. Error Indication is not cleared by
reading NR1. Error Indication is always automatically reset prior to the next $\overline{\mathrm{IRQ3}}$. This is the result of either setting (*uoḷeınp 2. $480-\mathrm{ms}$ loss of frame/signal.
3. Failure to get NT1 response . 15-second Activation Timer (BR11(b0)).
. $480-\mathrm{ms}$ loss of frame/signal.
for another way to achieve 2B＋D data transparency roperly exchanged，should the Customer Enable bit be set to a 1．See BR9（b5：b4），M4 Control Bits， ceiver has reached full－duplex operation and the act bits of the M4 maintenance channel have been When this bit is set to 1 ，it permits the \cup－interface transceiver to pass $2 B+D$ data transparently．During Customer Enable
When this bit is se
that Superframe Update Disable does not affect the transmitted eoc，febe，or crc maintenance bits．
 the external microcontroller．This guarantees that the U－interface transceiver will send exactly three frame Update Disable bit is set to a 0 and the Deactivate Request bit in NR2（b2）is set to a 1 by sequence of operations，the Superframe Update Disable bit is first set to 1 ．The M4 maintenance
bits are then written by the external microcontroller to the proper setting for deactivation．The Super－ sequence of operations，the Superframe Update Disable bit is first set to 1 ．The M4 maintenance BR2（b7：b4）．The exception to this is during a deactivation in the LT mode．The transceiver can be at the transmit superframe boundary with the maintenance channel data in registers BRO and registers．In normal operation，this bit is always set to 0 ，allowing the transmitted bits to be updated This bit tells the Superframe Framer whether or not to update the maintenance bits $\mathrm{M} 40-\mathrm{M} 47$ ，M50，
M 51 ，and M60，which are being transmitted with the new bits that have been loaded in the control Superframe Update Disable this bit upon deactivation．In LT mode，this bit is not cleared prior to starting the next activation and
must be cleared when the MC 145572 is deactivated．
 which indicates to the U－interface transceiver that this is a normal deactivation attempt．In this case， bit is set to a 1 by the external microcontroller in response to a received dea bit on the M4 channel， set back to 0 prior to completion of three transmitted superframes．In NT mode，the Deactivate Request complete superframes．The deactivation sequence can be aborted if the Deactivate Request bit is halt transmission and proceed to ANSI T1．601 defined＂Tear Down＂state H10 or J10，following three When this bit is set to 1 in the LT mode；upon reaching Linkup $=1$ ，the U－interface transceiver will Deactivation Request to be set once per activation attempt starts，the MC145572 automatically clears this bit．Do not continuously reassert this bit．It only needs
 reason，the Activation Request bit must be set to 1 once again to initiate another activation attempt． The bit is internally set to 0 whenever Transparent／Activation in Progress（NR1（b0））is set to a 1，when－
ever $T L$ is transmitted in the LT mode，or on hardware or software reset．If the activation fails for any the transceiver will begin an activation．The external microcontroller never needs to set this bit to 0 ． When this bit is set to 1 and the U－interface transceiver is in ANSI T1．601－1992 defined＂Full Reset＂，

ısənbey u0！ןеハ！！つヲ

b3 and b2 should always be written as 0 while the device is in GCl mode
CAUTION
NR2 normally is not written to in GCl mode；if ne NRO（b3））or Hardware Reset（ $\overline{\mathrm{RESET}}$ ）

when there is a change in activation status, or there is a D channel interrupt when D channel register
OR12 is updated. external microcontroller and the IRQ1 interrupt bit is set to 1 in NR3, the IRQ pin becomes active

asserted at the end of the fourth received basic frame of a superframe. of when the buffer is updated. To clear the interrupt, it is necessary to read Register BR3. IRQ0 is
 This interrupt is dedicated to the received M50, M51, and M60 bits from basic frames 1 and 2 that 0041 to read Register BR1, which is the M4 receive buffer. $\overline{\mathrm{RQ} 1}$ is asserted at the end of every superframe.

$$
\begin{aligned}
& \text { This interrupt is set whenever there is a state change in NR1 and is cleared by reading NR1. If this } \\
& \text { bit is set by the } D \text { channel reaister interrupt. it is cleared once OR12 has been read. unless there }
\end{aligned}
$$ Register BR1, is updated. The updating of the M4 buffer is dependent on its mode of operation. See This interrupt is dedicated to the received M4 maintenance bits. This bit is set whenever the M4 buffer, LOY frame of a superframe See Regist BRS($\mathrm{D} . \mathrm{b6}$) eoc buffer register. IRQ2 is asserted at the end of the fourth and eighth basic

 RQ2
has been a change in activation status.

IRQ3

OM／0，	ом／0ג	ом／оג	ом／оג	ом／0ג	ом／оג							
$\begin{gathered} 8! \\ \text { 80ə } \end{gathered}$	$\begin{gathered} \text { L! } \\ \text { دOə } \end{gathered}$	$\begin{gathered} 9! \\ 00 \text { a } \end{gathered}$	$\begin{gathered} 9! \\ \text { 900 } \end{gathered}$	$\begin{gathered} t! \\ 00 ə \end{gathered}$	$\begin{gathered} \varepsilon! \\ 000 \end{gathered}$	$\begin{gathered} \text { Z! } \\ \text { 00ə } \end{gathered}$	$\begin{gathered} 1! \\ 00 \text { 1! } \end{gathered}$	$\begin{aligned} & \text { up } \\ & \text { oоə } \end{aligned}$	$\begin{gathered} \varepsilon e \\ \text { јоә } \end{gathered}$	$\begin{aligned} & \text { ¿厄 } \\ & \text { כоә } \end{aligned}$	$\begin{aligned} & \text { Le } \\ & \text { joo } \end{aligned}$	94
09	19	乙q	εq	tq	¢q	99	29	89	69	019	149	

 In the default mode $(B R 14(b 6))$ is $0, R 6$ performs as a read－only／write－only register．Data that is read
from R6 by the external microcontroller is the eoc message that the Superframe Deframer stores for read and write operations．

山อ7sן6ey eqea ooe ：9y

Swap B1／B2
When this bit is 1，the IDL2 interface performs a swap of the B channels from the U－interface to the
IDL2 interface and from the IDL2 interface to the U－interface．
（NR5（b0））is 1，data in the second B channel timeslot on the IDL2 interface is the data that is blocked． B2 designator on this bit always refers to the IDL2 interface．Therefore，even if bit Swap B1／B2 on the B2 channel from the IDL2 interface is still transmitted normally out of the U－interface．The When this bit is 1 and the IDL2 Invert（BR7（b4））is 0 ，the B1 channel is forced to transmit 1s on the
IDL2 interface．When IDL2 Invert（BR7（b4））is 1，Os are transmitted in the B2 timeslot．Data received Block B2
（NR5（b0））is 1，data in the first B channel timeslot on the IDL2 interface is the data that is blocked． B1 designator on this bit always refers to the IDL2 interface．Therefore，even if bit Swap B1／B2 IDL2 interface．When IDL2 Invert（BR7（b4））is 1，Os are transmitted in the B1 timeslot．Data received When this bit is 1 and the IDL2 Invert（BR7（b4））is 0 ，the $B 1$ channel is forced to transmit 1 s on the

Block B1

$$
\begin{aligned}
& \text { bits becomes a read/write register. Therefore, the data that is written to the Superfrar } \\
& \text { be read back through R6. In this mode, the received eoc message is not available. }
\end{aligned}
$$

	los＇＇f d әৃэ әાอכ！p	） $0=$ łəs） ＝ןəs）			（əбิe t		ュоұеэ！ри！ә6 yo suoupardo $+1=$ łəs）人 жәәчэ イэиер uunn $1=$ ləs	
210x	110×0	qȚu	$\begin{gathered} 8! \\ \text { 80ə } \end{gathered}$	$\stackrel{L!}{\text { د! }}$	$\begin{gathered} 9! \\ \\ 000 \end{gathered}$	0＋82 $\times 2$.	MS	8
010x	60×0	tes	$\begin{gathered} \text { S! } \\ \text { jö } \end{gathered}$	$\begin{gathered} t! \\ 000 \end{gathered}$	$\begin{gathered} \varepsilon! \\ 00 ə \end{gathered}$	0＋82 $\times 2$.	MS	L
80フ	Lox	1	$\begin{gathered} 2! \\ 002 \end{gathered}$	$\begin{gathered} 1! \\ 002 \end{gathered}$	$\begin{aligned} & \text { up } \\ & \text { ooo } \end{aligned}$	0＋92 $\times 2$－	MS	9
90x0	goxo	oso	$\begin{gathered} \varepsilon^{\ell} \\ \text { مoə } \end{gathered}$	$\begin{aligned} & \text { ze } \\ & \text { joə } \end{aligned}$	$\begin{gathered} 16 \\ \text { ooo } \end{gathered}$	0＋82 \times て	MS	G
¢0x	عファ	แาบ	$\begin{gathered} 8! \\ 000 \end{gathered}$	$\stackrel{L!}{20 ə}$	$\begin{gathered} 9! \\ 002 \end{gathered}$	0＋82 $\times 2$－	MS	t
20ォ	10x	2sd	$\begin{gathered} \text { 9! } \\ 002 \end{gathered}$	$\begin{gathered} \dagger! \\ 000 \end{gathered}$	$\begin{gathered} \varepsilon! \\ 00 ə \end{gathered}$	0＋82 $\times 2$.	MS	ε
ә¢ә于	1	ısd	$\begin{gathered} \text { 2! } \\ \text { دо } \end{gathered}$	$\begin{gathered} 1! \\ 002 \end{gathered}$	$\begin{aligned} & \text { up } \\ & \text { ooə } \end{aligned}$	a＋ą \times て	MS	乙
1	1	7จะ	$\begin{gathered} \text { عe } \\ \text { jo } \end{gathered}$	$\begin{aligned} & \text { ze } \\ & \text { joo } \end{aligned}$	$\begin{gathered} 16 \\ 000 \end{gathered}$	a＋gz \times て 1	MSI	1
9W	SW	tW	EW	ZW	IN	a＋az	p．om ${ }^{\text {ouks }}$	\＃әue入」 ग！seg
Otて	$6 \varepsilon 乙$	8£乙	L\＆乙	9¢乙	¢ ¢	t\＆z－6ı	81－1	suolu！${ }^{\text {dod lig }}$
mozt	sozt	m6It	s6It	m815	s8L1	LLレ－OL	6－1	suoulusod
（9W－LW）Su！g peəчıəл						a＋az	6u！	

$$
\begin{aligned}
& \text { act }=\text { start up bit, set }=0 \text { during start up } \\
& \text { aib }=\text { alarm indication bit (set }=0 \text { to indicate interruption) }
\end{aligned}
$$

二 ${ }_{\circ}^{\circ}$	F ${ }^{\circ}$	$=\stackrel{\circ}{\circ}$	N0	二	ғ ${ }_{\text {¢ }}^{\circ}$	$=\stackrel{\circ}{\circ}$	N0	근	$\underset{\sim}{N}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\infty} \\ & \underset{3}{0} \end{aligned}$
∞	ज ${ }^{\circ}$	べ	$\stackrel{\square}{\mathrm{L}} \mathrm{O}$	$\cdots \stackrel{\circ}{\circ}$	ज ${ }^{\circ} \mathrm{O}$	N。	$\stackrel{\square}{\mathrm{L}} \stackrel{\mathrm{O}}{\circ}$	కె	N్ర	$\stackrel{\rightharpoonup}{\stackrel{\rightharpoonup}{4}}$
$\stackrel{0}{\square}$	¢	\rightarrow	\sim	\rightarrow	$\begin{aligned} & \text { un } \\ & 0 \end{aligned}$	$\begin{gathered} \circ \\ \stackrel{\circ}{\infty} \\ \hline \end{gathered}$	$\stackrel{?}{\stackrel{N}{i}}$	3	$\begin{array}{\|c} \mathbf{N} \\ \hline \end{array}$	$$
$\begin{aligned} & \Omega \\ & \stackrel{\mu}{\mu} \\ & \stackrel{\mu}{\leftrightharpoons} \end{aligned}$	$\begin{aligned} & 0 \\ & \mu_{0} \\ & 0 \end{aligned}$	$\begin{gathered} \stackrel{n}{\mu} \\ \stackrel{1}{2} \end{gathered}$	$\begin{aligned} & \text { n} \\ & \text { R } \\ & \text { G⿵冂} \end{aligned}$	$\begin{aligned} & \hat{n} \\ & \stackrel{\mu}{0} \\ & \omega \end{aligned}$	$\begin{aligned} & \stackrel{n}{\mu} \\ & \stackrel{2}{2} \end{aligned}$	－	\rightarrow	忐	$\underset{\substack{\mathrm{O}}}{ }$	苍
$\begin{aligned} & \Omega \\ & \stackrel{\mu}{\mu} \\ & \stackrel{1}{N} \end{aligned}$	$\stackrel{\stackrel{n}{\stackrel{N}{2}} \stackrel{\rightharpoonup}{\circ}}{ }$	$\begin{aligned} & n \\ & \mu \\ & 0 \\ & \infty \end{aligned}$	$\begin{aligned} & \text { م} \\ & \stackrel{\mu}{2} \end{aligned}$	$\begin{aligned} & n \\ & \stackrel{n}{م} \\ & \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & \stackrel{n}{\mu} \\ & \stackrel{n}{n} \end{aligned}$	$\begin{aligned} & \text { i+ } \\ & \underset{\sim}{\infty} \end{aligned}$	\rightarrow	元	$\begin{aligned} & \text { N } \\ & \text { at } \end{aligned}$	$\begin{aligned} & \vec{N} \\ & \mathrm{O} \\ & \hline \end{aligned}$

Table 4－5．Register Bit Locations Within the Superframe LT \rightarrow NT

$$
\begin{aligned}
\mathrm{eoc} & =\text { embedded operations channel } \\
\mathrm{a} & =\text { address bit }
\end{aligned}
$$

ом／0ג	OM／0ג	ом／Oג	OM／Od	OM／Oג	ом／0ג	OM／Od	OM／Oג	
$\angle \square W$	9 tW	StW	切W	$\varepsilon \pm W$	てtW	ItW	OャW	เบя
09	19	Zq	\＆q	ャq	sq	99	L9	

 it must be done in software．This register is replaced by Register OR1 when $\mathrm{BR} 10(\mathrm{~b} 0)=1$ ．When checking on M4 act，dea，uoa，sai bits when set to 1．If trinal checking is desired for all bits，then BR14（b6）has no effect on the operation of this register．Bit 0 in Overlay register OR7 selects trinal is recommended that the MPU read this register as soon as possible after an interrupt．Note that receive M4 channel byte can be read at any time during the superframe prior to the next update．It ＂read＂information is updated and when to write to this register．This register is double buffered．The parsed from the received superframe by the Superframe Deframer．The values in the register are By reading this register，the external microcontroller obtains a buffered copy of the M4 bits that are
parsed from the received superframe by the Superframe Deframer．The values in the register are

Table 4－7 shows the definitions of the M4 bits as defined by ANSI T1．601－1992 for the Network to
NT channel and the NT to Network channel．

$$
I=(0 q) 014 \mathrm{y}
$$

\qquad

 Whenever the U－interface transceiver detects a transition from 0 to 1 on Superframe Sync，NR1（b1）， secutive checking requires that the received bit be in the same state for two consecutive superframes．
 Verified act error（nebe）bit is forced to 0 Also，when either Superframe Sync（NR1（b1））or Linkup（NR1（b3））is 0，this computed near－end block frame．It is updated at the end of each received superframe．This bit is 0 when a crc error is detected． This is the state of the cyclic redundancy check（crc）check from the last complete received super－ Computed nebe This is the state of the received febe bit in the last complete received superframe．It is updated at
the end of each received superframe when Superframe Sync（NR1（b1））and Linkup（NR1（b3））are Received febe

three bits．When $\operatorname{BR} 10(\mathrm{~b} 0)=1$ ，this register is replaced by Register OR3． channel interrupt．Refer to the description of BR9（b3：b2）for details concerning the operation of these to the next update．It is recommended that this register be read as soon as possible after an M5／M6 Bits b7，b6，and b5 are double buffered．They can be read at any time during the superframe prior
 Superframe Deframer，occurring in basic frames 1 and 2 of the superframe，and four other Superframe This register contains the ANSI T1．601－1992 reserved M5 and M6 bits that are received by the

 patibility．
OR2.
b4．Bits $b 7$ ，b6，and b5 are double buffered．When $\operatorname{BR10}(\mathrm{b} 0)=1$ ，this register is replaced by Register
OR2． Reset（NR0（b3））．See BR9（b1）for details concerning use of the far－end block error（febe）Input， Disable（NR2（b1））is set to 0 ．All bits are set to 1 s following a Hardware Reset（RESET）or Software
 This register contains the reserved M5 and M6 bits that are sent by the Superframe Framer．The bits

$$
\begin{aligned}
& \text { the end of each received superframe when Superframe Sync (NR1(b1)) and Linkup (NR1(b3)) are } \\
& \text { both } 1 \mathrm{~s} \text {. }
\end{aligned}
$$

the MC145472／MC14LC5472．When $\operatorname{BR10}(\mathrm{b0})=1$ ，this register is replaced by Register OR5．When default setting for OR7（b1），after any hardware or software reset，produces the same operation as $\$ F F$ to $\$ 00$ ．The user software must take into account that if OR7（b1）is set，the counter value read
 When the Superframe Deframer detects a crc error in the received superframe，the counter is increm－
 Superframe Sync is 0 ．The counter is not cleared by a software or hardware reset．The register can

BR5：nebe Counter

configuration after any reset to maintain MC145472 compatibility． $B R 10(b 0)=1$ ．When OR7（b1）is cleared，BR4 counts to \＄FF and does not roll over．This is the default same operation as the MC145472／MC14LC5472．This register is replaced by Register OR4 when
 will roll over from $\$ F F$ to $\$ 00$ ．The user software must take into account that if OR7（b1）is set，the
counter value read from BR4 might be less than the previous value，which means that the counter
 the counter will increment at the end of the received superframe．The counter will not increment unless This register contains the current febe count．The counter is not cleared by a software or hardware

BR4：febe Counter

This is the unmodified output of the Superframe Deframer＇s superframe detection circuit．It is primarily
intended for diagnostic purposes．

before Verified dea is updated information regarding this bit．When OR7（b0）is set，the M4 dea bit must be valid for three superframes frame of each superframe and is provided in this register for status only．See BR9（b5：b4）for more superframes，then Verified dea will become a 0 ．This bit is updated at the end of the second basic （NR1（b3））are 1s．Then，if the received dea bit is 0 for two consecutive superframes，Verified dea dea is set to 0 ．It remains in its current state until both Superframe Sync（NR1（b1））and Linkup checking requires that the received bit is in the same state for two consecutive superframes．Whenever
the U－interface transceiver detects a transition from 0 to 1 on Superframe Sync in NR1（b1），Verified Since the dea bit can only be received by an NT，this bit can only be 1 in the LT mode．Dual－consecutive This is the dual－consecutively checked，inverted setting of the dea bit，in the received superframe． еәр рәэ！！иал

Verified act or Verified dea are updated． frame and is provided in this register for status only．See BR9（b5：b4）for more information regarding
this bit．When OR7（b0）is set，the M4 act and dea bits must be valid for three superframes before a 0 for two consecutive superframes．This bit is updated at the end of the first frame of each super－
$\forall 7 O \cup O \perp O W$
 IDL2-Loop Transparent GCI modes. This bit selects a loopback on the B1, B2, and D channels toward the IDL2 interface. When this bit DL2-Loop 2B+D

This bit selects a loopback on the B2 channel toward the IDL2 interface. This bit operates in all IDL2
and GCI modes.
and GCl modes
This bit selects a loopback on the B1 channel toward the IDL2 interface. This bit operates in all IDL2
and GCI modes. IDL2-Loop B1

This transparency selection applies to all channels that are selected for loopback to the U-interface This bit selects whether the loopback toward the U-interface should be handled transparently or not U-Loop Transparent

This bit selects a loopback on the B1, B2, and D channels toward the U-interface U-Loop 2B+D

This bit selects a loopback on the B2 channel toward the U-interface.
U-Loop B2
This bit selects a loopback on the B1 channel toward the U-interface.

U-Loop B1

	b7	b6	b5	b4	b3	b2	b1	b0
BR6	$\begin{gathered} \overline{\text { U-Loop }} \\ \text { B1 } \end{gathered}$	$\begin{gathered} \text { U-Loop } \\ \text { B2 } \end{gathered}$	$\begin{aligned} & \text { U-Loop } \\ & 2 B+D \end{aligned}$	U-Loop Transparent	$\begin{gathered} \text { IDL-Loop } \\ \text { B1 } \end{gathered}$	$\begin{gathered} \text { IDL-Loop } \\ \text { B2 } \end{gathered}$	$\begin{gathered} \text { IDL-Loop } \\ 2 B+D \end{gathered}$	IDL-Loop Transparent
	rw							

Bits b7 through b4, inclusive, are not set when the MC145572 is operating in the automatic eoc mode. enabled. This register is replaced by Register OR6 when BR10(b0) $=1$. of BR6 should be 0 . BR6 is cleared by a Software Reset (NRO(b3)), Hardware Reset (RESET), or
when the Return to Normal bit (NR0(b0)) is set. When a bit is set to 1 , the appropriate loopback is This register contains the loopback controls. For normal (no loopback) operation, bits b7:b5 and b3:b1

	b7	b6	b5	b4	b3	b2	b1	b0
BR5	nebe Counter 7	nebe Counter 6 rw	nebe Counter 5 rw	nebe Counter 4 rw	nebe Counter 3 rw	nebe Counter 2 rw	nebe Counter 1 rw	nebe Counter 0 rw

OR7(b1) is cleared, BR5 counts to \$FF and does not roll over. This is the default configuration after

Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not available from Freescale for import or sale in the United States prior to September 2010: ZEUS
 pleted successfully and the internally monitored receive error rate is adequate for passing data.

 control in BR6, as well as the bits in NR5 and BR7. Only details for the B1 channel are shown, but Figures 4-1 and 4-2 may be used to determine the combined effect of setting more than one loopback Freescale Semiconductor, Inc.

\sum_{0}^{∞}
品
䍐
Freescale Semiconductor，Inc．

 BLON the IDL2 interface，see Section 5．4． This bit reorders the sequence of $2 B+D$ data presented in the IDL2 data transfer．The two possible
transfer sequences are shown in Figures $4-3$ and $4-4$ ．A 1 selects the 8 －bit mode and a 0 selects
the $10-$ bit mode．In the 8 －bit mode，the two B channels are provided sequentially，followed by the
two D channel bits．In the 10－bit mode，one D channel bit follows each B channel byte．The ability
to swap the B channels，（NR5（b0）），applies to both of these modes．For further information about
the IDL2 interface，see Section 5.4 ． IDL2 8／10

$$
\begin{aligned}
& \text { IDL2 Speed } \\
& \text { This bit select }
\end{aligned}
$$

When this bit is 1 ，it inverts the polarity of the IDL2 Master／Slave pin．When this bit is 0 and IDL2
Master is set high，the U－interface transceiver operates in the IDL2 Master mode．
or FREFout when in NT Slave mode. Also, see the description for OR7(b4).

$$
\begin{aligned}
& \text { This bit selects the DCL clock speed in the IDL2 Master mode. When this bit is } 0 \text {, the clock rate is } \\
& 2.56 \mathrm{MHz} \text {. A } 1 \text { selects a rate of } 2.048 \mathrm{MHz} \text {. This bit also sets the output clock rate for FREQREF }
\end{aligned}
$$

and halts when the U－interface transceiver enters the ANSI T1．601 defined＂Tear Down＂state． deactivated．DCL and FSR／FSX will start operating when Superframe Sync in NR1（b1）becomes 1 Master mode．When this bit is 1 ，the DCL and FSR／FSX stop when the U－interface transceiver is IDL2 Free Run Dout pin and invert every bit that is received on $\mathrm{D}_{\text {in }}$ ． When set to 1，this bit forces the IDL2 interface to invert every bit just before it is transmitted on the IDL2 Invert
when active in LT mode or NTD1 when active in NT mode，sets OUT1 high． in a GCI application．See Chapter 3，Device Description，for more information．GCI command LTD1

 This is a read－only／write－only bit．The write only portion，OUT1，is cleared by hardware and software

дәшeג！！！
 aries． TN of an NT activation sequence．State transitions are always made on frame or superframe bound－ maps directly onto the meaning of Frame Control 2：0．Frame State 3 is 0 at all times，except during
 Superframe Framer，regardless of whether the Superframe Framer is being controlled by the external Frame State 3：0
These bits provide

 bits and the Frame Steering bit

 of operation． （

0． әpow $\perp 7 / \perp \mathrm{N}$	рəлəsəy	рәләләบ	рəлəsəy	0. 0 әłels әшモ」		0. z әtels әшел		
OM дәли৷ $\perp 7 / \perp \mathrm{N}$	M ә｜qes！a мори！ әл！әәәу	MU पग्रеW	M Idnuoo วมว	OM 0 ｜01ㄱuoう әшモ』	ом －｜одиоо 	ом ट Іодиоо әس゙メ」	ом 6u！̣әә！ әшモメ」	849
09	19	Zq	εq	t9	sq	9 q	$\angle 9$	

 BR8：Transmit Framer and Mode Control Register Freescale Semiconductor，Inc

[^1] available from Freescale for import or sale in the United States prior to September 2010：ZEUS

plications 1 Use the update on every frame mode $(b 7, b 6=1,1)$ for digital loop carrier or proprietary ap－ Tass of the operating mode， and the Automatic eoc Processor mode（ $\mathrm{b7}, \mathrm{~b} 6=0$ ，＂Don＇t Care＂）are described in the paragraphs
following Table 4－9．The default mode setting is 0,0 ；thereby selecting the Automatic eoc Processor description of each mode selected by the eoc Control bits．The eoc Trinal－Check mode（ $\mathrm{b} 7, \mathrm{~b} 6=1,0$ ） These bits control the eoc handling capability of the U－interface transceiver．Table 4－9 gives a brief
eoc Control 1:0

NOILกもO

 The register is cleared on Software Reset（NR0（b3））or Hardware Reset（ $\overline{\mathrm{RESET}}$ ）．When BR10（b0）$=1$ this register is replaced by Register OR9．
 BR9：Maintenance Channel Configuration Register in the NT mode
This read－only bit reflects the current mode of the device．If 1 ，the U －interface transceiver is operating әpow $17 / \perp N$ external $N T / \overline{\mathrm{LT}}$ mode pin．If this bit is 0 and the $N T / \overline{\mathrm{LT}}$ pin is high，the device is in NT mode．When
this bit is then set to 1 ，the device will then be in the LT mode．
 NT／LT Invert
detection when operated in external analog loopback mode and framer－to－deframer loopback． word．This allows the U－interface transceiver to use its own transmitted synchronization word for frame chronization word that is located at any arbitrary point with respect to its transmitted synchronization in the LT mode．When the receive window is disabled，the LT will synchronize to an incoming syn When set to 1 ，this bit disables the search window placed around the received synchronization word Receive Window Disable external analog loopback and framer－to－deframer loopback．
When set to 1，this bit forces the descrambler and scrambler polynomials to match．This is used for tch Scrambler MC14LC5472 after a Hardware Reset（RESET）．When OR7（b2）is set to 1，the operation of this bit
is modified so that the outgoing crc is only corrupted on the current superframe． at any time during transmission of a superframe．This bit functions the same as in the MC145472／
MC14LC5472 after a Hardware Reset（RESET）．When OR7（b2）is set to 1 ，the operation of this bit transmits the crc and this bit is set，the transmitted crc is inverted．This bit can be cleared or set Freescale Semiconductor，Inc．

Abstract

uoa, act, sai, and dea bits in the M4 channel are trinal-checked. See Table 4-11. is b5, b4 = 0,0. In all of the modes, BR1 will not be loaded and an IRQ1 (NR3(b1)) will not be issued M4 Control 1:0 | eoc Message | Automatic eoc Processor Response |
| :--- | :--- |
| Operate 2B + D Loopback | Invokes a loopback to the U-interface at the IDL interface of the B1, B2, and D chan-
 nels. Transparency will be determined by the setting of BR6(b4), U-loop transparent. |
| Operate B1 Channel Loopback | Invokes a loopback to the U-interface at the IDL interface of the B1 channel. The
 loopback is transparent. |
| Operate B2 Channel Loopback | Invokes a loopback to the U-interface at the IDL interface of the B2 channel. The
 loopback is transparent. |
| Request Corrupted crc | Equivalent to setting BR8(b3) to a 1. |
| Notify of Corrupted crc | None. |
| Return to Normal | Resets all of the previously invoked eoc functions. |
| Hold State | Maintains previously invoked eoc functions. |

Table 4-10. Automatic eoc Processor Functions Regardless of eoc mode, Register R6 will not be altered while Superframe Detect (BR3(b0)) is a 0. $$
\text { NT mode only function, selecting mode } 0,0 \text { in the LT mode is equivalent to mode } 1,0 \text {. }
$$ the "Hold State" message is transmitted with the NT1 address. Whenever operating in this mode, the eoc Trinal-Check operation continues to function and R6 will be loaded with the eoc message to Comply" message is transmitted in response. If an improperly addressed message is received, action indicated. If a properly addressed message is received that is not listed in the table, the "Unable or the broadcast address. The processor decodes the messages in Table 4-10 and then takes the dance with ANSI T1.601-1992. The processor recognizes eoc messages addressed to either the NT1 Automatic eoc Processor Mode (b7 = 0, b6 = Don't Care) until it is altered by another CPI interface write to it, or the received eoc message changes. out to the LT (see Figure 4-2). Register R6 will be repeated throughout all subsequent eoc frames to handle the eoc message and place a response into R6 before the U-chip sends the next eoc frame Rer (written to by a SCP interface operation) is transmitted. It is up to the microcontroller firmware the LT. Once three valid consecutive identical messages have been received, the deframer updates Register R6. Once R6 has been updated with the received message, the Superframe Framer's Regiseoc message is not 0 or 7 , the Hold message is substituted and automatically transmitted back to until three valid consecutive identical messages have been received. If the eoc address in the received back by the Superframe Framer if the address is either the NT1 or broadcast address. This continues When operating as an NT in Trinal-Check mode, received eoc messages are automatically transmitted Check is reset whenever the Linkup (NR1(b3)) or Superframe Sync (NR1(b1)) bits are 0. In Trinal-Check mode when operating as an LT, the trinal-check is automatically restarted whenever a new message is written to the Superframe Framer's R6 register for transmission. The eoc Trinal-

 when the third identical consecutive message is received
 eoc Trinal-Check Mode (b7, b6 = 1,0)

Freescale Semiconductor, Inc.

act and Verified dea may be monitored by the external microcontroller through BR3(b2:b1). vate without requiring any interaction by the external microcontroller. Note that the state of Verified NR2(b2) allows the U-interface transceiver to respond to the far-end transceiver's intention to deactito 0 . When this mode is selected, the logical OR of Verified dea and the Deactivate Request bit in is set to 1 . Similarly, if M41 is received as 1 for two consecutive superframes, Verified dea will return Enable bit in NR2(b0) permits customer data transparency without any action taken by the external Verified act is set to 0 . When this mode is selected, the logical OR of Verified act and the Customer frames, Verified act is set to 1 . Similarly, if M40 is received as 0 for two consecutive superframes, dea operates in the NT mode only. Whenever there is a 0 to 1 transition on Superframe Sync рә!!!
 The default M4 Dual Consecutive mode ($\mathrm{b} 5, \mathrm{~b} 4=0,0$) has the additional feature of performing autoBR1. time that Superframe Sync is lost and then regained, the initial programmed value is reloaded into current state for the M4 bits, and then wait for an IRQ1 to inform it of a change in state. Also, any may write to BR1 and set the initial value. In this way, the external microcontroller may assume a for the initial setting for BR1 is as follows: a hardware or software reset sets BR1 to all 0s. However,
at the user's discretion, while either Linkup (NR1(b3)) or Superframe Sync (NR1(b1)) is 0, the user

 not cause an interrupt and do not show up in BR1 that the received M4 bits that do not hold their state for at least two consecutive superframes, do解 "BR1 Contents" Now, notice in the column labeled "Received M4 Byte". If the external microcontroller read BR1, it would read all 0 s as recent values that have been the same for two consecutive superframes. Referring to Table 4-12, for two consecutive superframes. The M4 bit values read from BR1 in this mode are only the most

 M4 Dual Consecutive Modes (b5, b4 = 0,0 or 0,1)

This register is used to enable access to the overlay register set of the MC145572．To maintain future
compatibility，the reserved bits must be written as 0s．

BR10：Overlay Select Register

Regarding febe and nebe，＂active＂means they are set to 0 ．
this control bit is set to 1 ，the transmitted febe is set to whatever is set in the febe input（BR2（b4））． This bit controls how the transmitted febe is computed．If this bit is 0，the transmitted febe is set
active if either the Computed nebe（BR3（b3））is active or the febe input（BR2（b4））is set active．If

әрош Кıə＾ヨ	1	1
＇әрош еұәด	0	1
	әıеう ґ．u00	0
uo！̣d！ıכsəa uoḷjun」 9W／SW	zq	εq

 received． rupt，$\overline{\mathrm{IRQO}}$（NR3（b0）），occurs in the middle of the superframe when basic frame 4 has been completely M4 Control mode paragraphs above for a description of the M5／M6 Control modes．The M5／M6 inter－
 These bits control the M5／M6 handling capability of the U－interface transceiver．The default mode M5／M6 Control 1：0

The M4 act，dea，sai，and uoa bits can be configured for trinal－check operation by setting OR7（b0）
to a 1 ．See Section 4.5 .8 for more detail． M4 Trinal－Check Mode （NR1（b1））is 0 ． Note that regardless of the mode of operation，BR1 will not be altered while Superframe Sync end of every received superframe． M4 Every Mode（b5，b4＝1，1） the previous superframe．

M4 Delta Mode（b5，b4＝1，0）
 Freescale Semiconductor，Inc

Freescale Semiconductor，Inc．
MOTOROLA

Abstract

These write－only bits allow the external microcontroller to set a new activation state for the U－interface ransceiver to execute．The transition to this state is controlled by BR12．Use of this register is not | O1 | 01 | 01 | Od | Od | Od | Od | Od | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | | | |
| เขแ！ | 0 әtels | 1 elels | 乙 əlels | ε 2lets | ¢ 2lels | G 2lets | 9 ərels | |
| | uo！！en！！ob | uo！！en！！ov | uo！！en！！̣ | uо！̣en！̣フ | uо！̣en！！כ | uо！̣еп！！ | uо！！en！！ | |
| OM | |
| ә｜qes！ Јəய | | | | | | | | |
| ィขแ！ | 0 IOגłu | L IOAluO | 乙 IOגłuOO | ع IOגłu | т IOAluOO | Glonuuo | 9 Ionluo | |
| uo！len！̣ヤV | uo！len！̣フヲ | uо！̣en！̣フヲ | uo！len！̣フヲ | uo！len！̣フV | uO！̣en！̣フヲ | UO！！en！！ | uO！！en！̣フヲ | Ily |
| 09 | 19 | zq | εq | 七q | ¢q | 99 | L9 | |

 ヨュON
then read NR1，where it would find the code 1111，indicating the actual source is a D channel interrupt．

 the D channel interrupt occurs．

 tains correct byte alignment relative to the U－interface basic frame boundary on the pin interfaces，
and is readable through the overlay register，OR12，eight bits at a time．$\overline{\mathrm{IRQ3}}$ is used to indicate when the D channel is sourced strictly from this register．D channel data received from the U－interface main－ data present on the pin interfaces of the MC145572 is ignored and $D_{\text {out }}$ is high impedance．Instead，

 Select DCH Access reset only．

 be returned to 0 following the step, to prepare for subsequent steps. Stepping overrides the Hold The step is performed at a time that does not adversely affect the operation of the CPU. This bit must When this bit is set to 1 , the activation controller advances to its next state based on its current inputs. Step Activation State setting of the Hold Activation State bit (b3) desired state should then be loaded into BR11 and this bit should be set to 1. Loading overrides the place within 1 baud of setting this bit to 1 . To load an activation state, this bit must initially be 0 . The The load is performed at a time that does not adversely affect the operation of the CPU, and will take When this bit is set to 1 , Activation Control 6:0 is loaded into the activation controller as the new state. Load Activation State disabled when this bit is 0 and the transceiver is operating in LT mode. is enabled when this bit is 1 and the transceiver is operating in LT mode. The timing interpolator is This bit is active only when the Activation Control Steer bit (b7) is set to 1. The timing interpolator Interpolate Enable register (b6), BR13, BR15A(b7), and BR15A(b6) its peripherals are directed to use the control information provided in the Interpolate Enable bit in this them perform a normal activation procedure. However, when this bit is set to 1 , the internal CPU and When this bit is 0 , the internal CPU of the MC145572 has total control of its peripherals, and has Activation Control Steer

	b7	b6	b5	b4	b3	b2	b1	b0
BR12	Activation Control Register wo	Interpolate Enable wo	Load Activation State	Step Activation State wo	Hold Activation State wo	Big Jump Select wo	Reserved	Force Linkup wo
	$\begin{array}{r} \text { EPI } 18 \text { ro } \end{array}$	$\begin{aligned} \text { EPI } 17 \\ \text { ro } \end{aligned}$	$\begin{array}{r} \text { EPI } 16 \\ \text { ro } \end{array}$	$\text { EPI }{ }^{15}$	$\begin{aligned} \text { EPI } 14 \\ \text { ro } \end{aligned}$	$\begin{array}{r} \text { EPI } 13 \\ \text { ro } \end{array}$	$\begin{array}{r} \text { EPI } 12 \\ \text { ro } \end{array}$	EPI 11 ro

NOILП甘O

can read back the setting of the control bits. These bits are cleared on a Hardware Reset $(\overline{\operatorname{RESET}})$
or Software Reset (NRO(b3)). This register is replaced by OR12 when BR10(b1) $=1$.
 internal CPU and activation controller. The read portion contains the eight most significant bits of the

This bit shows the status of the activation timer. A 1 indicates that the activation timer has expired. Activation Timer Expire

These read-only bits contain the current state of the internal activation controller. Activation State
6 , BR11(b7) indicates cold start mode when it is 0 and indicates warm start mode when it is 1. Activation State 6:0
disabled and the Activation Timer Expire will always read back as 0 activation state machine will react to the time-out. When this bit is set to 1 , the activation timer is
 Activation Timer Disable

Freescale Semiconductor, Inc

When set to 0 ，this bit freezes the DFE coefficients and the Adaptive Reference Control（ARC）tap． səıepdก ヨコロ əqеuヨ the symbol storage elements of the DFE will set to alternating ± 1 ．When this bit is 1 ，the DFE convolu－
tion is included in the process of recovering the received symbol． When 0，this bit forces the output from the Decision Feedback Equalizer（DFE）convolution to 0 and Accumulate DFE Output
Fast EC Beta
This bit controls
rate．
When set to 0 ，this bit freezes the current coefficients of the TEC and IIREC echo cancellers Enable EC Updates

$$
\begin{aligned}
& \text { When set to 0, this bit freezes the current coefficients of the Memory Echo Canceller (MEC) } \\
& \text { Accumulate EC Output } \\
& \text { When this bit is set to 1, the results of all three echo cancellers (MEC, Transversal Echo Car } \\
& \text { (TEC), and Infinite Impulse Response Echo Canceller (IIREC)) are included in the process of re } \\
& \text { ing the received symbol. }
\end{aligned}
$$

	b7	b6	b5	b4	b3	b2	b1	b0
BR13	Enable MEC Updates wo	Accumu－ late EC Output wo	Enable EC Updates wo	Fast EC Beta wo	Accumu－ late DFE Output wo	Enable DFE Updates wo	Fast DFE／ARC Beta wo	Clear All Coeffi－ cients wo
	EPI 10 ro	EPI $9{ }_{\text {ro }}$	EPI 8 ro	EPI 7	EPI 6	EPI 5	EPI 4	EPI 3

This register contains several items that control the internal operation of the U－interface transceiver
echo canceller．These bits are cleared on a Hardware Reset（RESET）or Software Reset（NR0（b3））．
Note that none of the control bits in this register affect the operation of the chip unless the Activation
Control Steer bit in BR12（b7）is set to 1．This register is replaced by OR13，when BR10（b2）$=1$ ．

BR13：Echo Canceller Test Register

 microcontrolleronce per frame．The EPI 10：3 bits are in Register BR13．EPI 2：0 are not available to the external takes on different meanings，depending on the current activation state．This EPI register is updated These are the most significant bits of the EPI register within the CPU．The EPI register in the CPU EPI 18：11 transparency maintenance operations may be performed at the Superframe Framer／Deframer level with full data the CPU is still operating according to the activation state as read in BR11．However，loopbacks and When this bit is set to 1 ，the internal status is forced to be that of full－duplex operation．Note that Force Linkup phase jumps will be made in one－unit increments When this bit is 1 ，timing phase jumps will be made in four－unit increments．When this bit is 0 ，timing Big Jump Select

State（b5）or a Step Activation State（b4）is performed．
When this bit is set to 1 ，the activation controller is held in the current state until either a Load Activation Hold Activation State
SYSCLK, EYEDATA, RxBCLK, TxBCLK, and TxSFS pin functionality can be modified by
the setting of bits in OR8 and OR9.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \& b7 \& b6 \& b5 \& b4 \& b3 \& b2 \& b1 \& b0

\hline BR14 \& Reserved \& ro/wo to r/w \& Reserved

rw \& | Framer-toDeframer Loop |
| :--- |
| rw | \& ± 1 Tones

rw \& Reserved \& Reserved \& Enable CLKs rw

\hline \multicolumn{9}{|l|}{ro/wo to r/w}

\hline \multicolumn{9}{|l|}{When this bit is set to 1 , all of the write-only registers, except BR15A, become read/write registers for diagnostic purposes. A bit that is normally read-only will not be available when this bit is set to 1. Setting this bit to 1 has no effect on BR15A(b4:b0); they remain write-only bits at all times.}

\hline \multicolumn{9}{|l|}{Framer-to-Deframer Loopback}

\hline \multicolumn{9}{|l|}{This bit enables the Superframe Framer to Superframe Deframer Loopback mode when it is 1. T transmit drivers are off in this mode.}

\hline \multicolumn{9}{|l|}{± 1 Tones}

\hline \multicolumn{9}{|l|}{When this bit is set to 1 , the Superframe Framer generates its tones (10 kHz and 40 kHz) usi ± 1 quats instead of the default of ± 3 quats.}

\hline \multicolumn{9}{|l|}{Enable CLKs}

\hline When set that BR1 \& 1, this b3) mus \& enables so be s \& | e SYSC |
| :--- |
| to 1 for | \& | K, EYEDA |
| :--- |
| he TxSFS | \& | A, RxBCL |
| :--- |
| output to | \& , TxBCL enabled \& and TxS \& pins.

\hline
\end{tabular}

once per frame. The EPI 18:11 bits are in Register BR12. EPI 2:0 are not available to the externa
microcontroller. takes on different meanings, depending on the current activation state. This EPI register is updated These are the least significant bits of the EPI register within the CPU. The EPI register in the CPU EPI 10:3
When set to 1 , the coefficients in the DFE, ARC, TEC, and MEC are cleared and the elastic buffer
is reset. The timing offset between the receive and transmit clocks is not altered by setting this bit. Clear All Coefficients highest rate.
This bit controls the betas for the DFE and ARC. When set to 1 , the DFE and ARC adapt at their Fast DFE/ARC Beta
microcontroller.

Freescale Semiconductor, Inc

 MC145472／MC14LC5472 that set BR15A（b1 or b2）is not affected when an existingMC145472 or MC14LC5472 product is upgraded to MC145572．

 BION When set to 1，this bit enables the EYEDATA，SYSCLK，Rx BAUD CLK，and Tx BAUD CLK output
pins． Enable Eye Data and Baud Clock
When set to 1 with BR14（b0）set to 1，this bit enables the transmit Superframe Sync to be output． Enable TxSFS （BR12（b7））is set to 1 （this bit is used for Motorola test purposes only） This bit is a read／write bit．Setting this bit to 1 disables the digital PLL when Activation Control Steer Jump Disable 0 freezes the frequency adaptation circuits in their current state frequency adaptation circuits are enabled to adjust the external crystal frequency．Setting this bit to LN əuł ‘ㄷ Of łəs s！Id甘
 FREQ ADAPT

0. рәлдәsəy	Od рәлəәәәу	O． рәләләу	Od рәләзәу	od рәләsəy	M	M	M	
OM	OM	OM	OM	OM				
чэоэ pneg pue енед әкョ ә｜qеuヨ	рәләsәу	рәләsəу	$\text { S } \exists \mathrm{S}_{\mathrm{x}}^{\mathrm{x}}$ ә\|q®uヨ	рәләsәу	рәләรәу	әવृड！̣ duñ	$\begin{aligned} & \text { Idva甘 } \\ & \text { - } \end{aligned}$	VGILy
09	19	乙q	$\varepsilon 9$	t9	¢q	99	29	

NOI \perp Пヲ

 in the SCP transfer is 15 ．The write－only bits in this register remain write－only bits when BR14（b6）
 BR15A：Baud Clock and Timing Test Register transceiver manufacturing mask set．
These bits allow for an electronic determination of the revision number of the MC145572 U－interface
0： 2 ysew

0．1	－1	－1	－1	01	－1	01	－1	
0 Ysew	1 ysew	z ysew	ε ysew	\checkmark ysew	¢ ysew	9 ysew	\angle YSEW	styg
09	19	2q	εq	tq	sq	99	29	

 BR15：Revision Number Register

Freescale Semiconductor，Inc

Programmed the same way as OR0. This register controls when the D timeslot appears on the
Dout pin. After a hardware or software reset, all bits default to 0 to maintain MC145472/
MC14LC5472 compatibility.

Programmed the same way as OR0. This register controls when the B2 timeslot appears on the
Dout pin. After a hardware or software reset, all bits default to 0 to maintain MC145472/
MC14LC5472 compatibility.

This register controls when the B1 timeslot appears on the $D_{\text {out pin. After a hardware or software }}$
reset, all bits default to 0 to maintain MC145472/MC14LC5472 compatibility.
ORO: Dout B1 Timeslot Register
are hidden after a hardware or software reset. They can be accessed when BR10(b0) is set to 1 . All bits in the overlay registers are reset to 0 on hardware and software resets. The overlay registers following Table 4-3. Overlay register OR5 also is used to define the GCI timeslot when the bit GCI Mode Enable is asserted bered starting from 0 . is put into Timeslot Assigner mode by setting one or more of the bits TSA B1 Enable, TSA B2 Enable,
or TSA D Enable, found in Overlay register OR6. Timeslots are two DCL clocks in width and are numOverlay registers OR0 - OR5 are used for defining the timeslot assignment when the IDL2 interface
is put into Timeslot Assigner mode by setting one or more of the bits TSA B1 Enable, TSA B2 Enable,
moved from BR15A to the overlay registers. To disable these clocks, OR9(b2, b1, b0) can be set to
1s. outputs to default to enabled. In order to maintain code-compatibility with MC145472, the bits were
moved from BR15A to the overlay registers. To disable these clocks, OR9(b2, b1, b0) can be set to BR15A was modified on MC145572 from MC145472, to change the 15.36 MHz and 20.48 MHz clock b0) is set to 1. BR15A was implemented in MC145472, but the other registers are new to MC145572. for the overlay registers is the same as the address for the standard byte register set. The overlay
regstituted for the standard registers, when at least one of BR7(b7) or BR10(b2, b1, Table $4-3$ shows the registers on MC145572 that overlay the standard byte registers. The SCP address
for the overlay registers is the same as the address for the standard byte register set. The overlay OVERLAY REGISTERS

Freescale Semiconductor, Inc.
 overlay registers
 Semiconductor, Inc.

Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not available from Freescale for import or sale in the United States prior to September 2010: ZEUS

$$
\begin{aligned}
& \text { Setting b7, b6, or b5 will put the MC145572 in Timeslot Assigner mode. In Timeslot Assign- } \\
& \text { er mode, the IDL2 8/10 mode bit in BR7(b0) is ignored and data is placed according to } \\
& \text { values programmed in OR0 - OR5. }
\end{aligned}
$$

рәләәәәப	ML рәләзәу	MI рәләләу	M1 ә｜qセuヨ әроW IЭ૭	M 1 0yg－tW 	әрृиヨ a \forall S」	M ә｜qеuヨ z8 VS」	M ә१ृеuヨ 18 VS」	940
09	19	zq	εq	${ }_{\square} 9$	¢q	9 q	29	

compatibility OR4：Din $B 2$ Timeslot Register
compatibility． OR3：Din B1 Timeslot Register
IION

$\mathrm{D}_{\text {in }}$ pin．After a hardware or software reset，all bits default to 0 to maintain MC145472／MC14LC5472
$\mathrm{D}_{\text {in }}$ pin．After a hardware or software reset，all bits default to 0 to maintain MC145472／MC14LC5472

4.5 .5

$$
\begin{aligned}
& \text { timeslot assignment. }
\end{aligned}
$$

$$
\text { for } \mathrm{GCl} \text { slot assignment in this mode }
$$

(0:Z)q ¢ ¢

 GCI Mode Enable
or software reset this bit is 0 . Normally, GCl operation does not require this bit to be set to a 1 . can be set/cleared by using the monitor channel byte register read/write commands. After a hardware transmitted according to the data present in Register BRO. When operating in full GCI mode, the bit the LT mode and \{act, sai\} in the NT mode. Additionally, the \{ps1, ps2\} bits in the NT mode are
transmitted according to the state of IN1 and IN2 pin inputs. When this bit is set to 1 , all M4 bits are
 when this bit is set to 0 , the $\mathrm{GCI} \mathrm{C} / \mathrm{l}$ channel control automatically sets and resets M 4 channel control
 GCI Select M4 - BRO on the timeslot programmed in the timeslot registers for the D channel. The clock on DCHCLK (assuming the D channel port is enabled), operates relative to FSR, based bit time D channel continues to operate on the D channel port and $D_{\text {out }}$ is high impedance during the D channel on both Dout and DCH out, and the data transmit onto the U-interface is taken from DCHin. If the
D channel port is enabled and TSA D Enable is set to 0 (see Overlay register OR8(b0)), then the If both TSA D Enable and D channel port Enable are set to 1, then the D channel data is presented VOH . is not present on the pin Dout, and the D channel transmit on the U -interface is actively driven to

 TSA D Enable VOH . is not present on the pin Dout, and the B1 channel transmit on the U-interface is actively driven to all channels enter Timeslot mode. If in Timeslot mode and TSA B2 Enable is 0 , then the B2 channel This bit is used to enable the B2 channel in IDL2 Timeslot mode. The B2 timeslot is defined through
Overlay registers OR1 and OR4. Whenever any channel (B1, B2, or D) is enabled for Timeslot mode, TSA B2 Enable HO

 əqeuヨ เя \forall S」

M әृृеuヨ Hod เəииечว 0	m	M	M 1	M 1	M 1	M	M	8 yO
	әряеи		әреиヨ	әреиヨ	әреиヨ			
	प $\forall \exists \exists \mathrm{S}$		HOg	ındıno	ındıno	0 әpow	ı әpow	
	$1 \times \forall \pm S$	рәләsәу	N $\mathrm{SS}^{\text {¢ }}$	ョココロョบ	XVAS	y／a	y／a	
09	19	Zq	εq	tq	sq	99	29	

configured in BR9（b5，b4）．When operating in full GCI mode，the MC145572 performs trinal checks
on the received M4 channel act，dea，sai，and uoa bits（see Table 4－11）． mode is set to 0 ，the checked M4 bits behave as they did in the MC145472，only checking them as
configured in BR9（b5，b4）．When operating in full GCI mode，the MC145572 performs trinal checks
 and uoa bits in the deframer．When M4 Trinal mode is set to 1 ，the checked M4 bits must be valid әpow Ieu！ $1 \perp$ tW egisters behave just as they do in the MC145472． instead，rollover from $\$ F F$ to $\$ 00$ ．When febe／nebe rollover is set to 0 ，the febe and nebe counter febe／nebe rollover is set to 1 ，the febe and nebe counter registers do not saturate at all 1 s ，but This bit changes the operating mode of the febe and nebe counter registers BR4 and BR5．When ләлоㅣㅇㅣ әqәu／әqәғ to the transmit superframe，and continues to affect the cre data until explicitly reset． When arc Corrupt mode is set to 0 ，the crc Corrupt behaves as it did in the MC145472，unaligned

slave，the MC145572 determines the mode based on the length of FSR．See Section 5．4．2． While operating as an IDL2 master，this bit controls whether the FSR and FSX operate in Long Frame
or Short Frame mode．If this bit is 1，both FSR and FSX operate in Long Frame mode．As an IDL2 IDL2 Long Frame Mode This bit also sets the clock frequency on FREQREF or FREF ${ }_{\text {out }}$ when in NT Slave mode NT mode，the DCL clock rate is selected using the pin input（see CLKSEL description in Section 3．3．4）． speed（see Register BR7）is ignored when this bit is set to 1 ．In full GCl mode，as a master in the In the IDL2 mode，when IDL2 rate 2 is set to 1，the IDL2 clock（DCL）rate is 512 kHz ．IDL2 clock乙 əןеy 乙7ดI transferred． This bit enables TSEN when D channel data is present on the Dout or DCH out pins．When the
timeslot assigner is enabled，the TSEN signal is active during the timeslot which D channel data is TSEN DCH Enable
When this bit is 1 ，the U－interface line can remain connected during analog loopbacks．When this
bit is 0 ，the line must be disconnected．Default after any reset is 0 ． ๒әәииоэ әи！ 7 is 0 or external analog loopback path．
When this bit is set to 1 ，the analog loopback path is inside the MC145572．Default after any reset Internal Analog Loopback

Freescale Semiconductor，Inc．

$\forall 7 O บ O \perp O W$
rate．When set back to 0 ，the clock cleanly transitions to 4.096 MHz When this bit is set to 1 ，it causes the 4.096 MHz clock output to cleanly transition to a 10.24 MHz 4096 Hirate
When this bit is set to 1 ，it enables a 20.48 MHz buffered clock output on pin 25 of the MC145572FN
and on pin 8 of the MC145572PB． CLKOUT 2048
When this bit is set to 1 ，it invokes a receive analog loopback on the MC145572 Analog Loopback
Open Feedback Switches
When this bit is set to 1，it opens the internal feedback path between the transmit（TxP／TxN）and
the receive（RxP／RxN）sections．This feature may be used in conjunction with analog loopback．

M	M	M	M 1	M 1	M	M	M	
$\begin{gathered} \text { әqes!a } \\ 960 t \end{gathered}$	ә｜qes！a 9民S।	ә｜qеs！！ 8ャ02	ә䒑セ！！！ 960t	$\begin{gathered} \text { 8ャ0z } \\ \text { 」กOฯา } \end{gathered}$	уэеqdoо 7 6oleuv	sәчгимм уэетрәә」 uәdo	рәлəəऽəบ	6 CO
09	19	てq	εq	${ }_{\square} 9$	¢q	9 q	Lq	

OR9：Configuration Register $\mathbf{3}$
This register is used to control the analog loop
After a hardware or software reset，all bits def
ibility．
both $D C H_{\text {out }}$ and Dout2．（Note that Dout does not output the D channel data when the
IDL2 interface is in timeslot mode，and the TSA D Enable is not set to 1．） U－interface is taken from $\mathrm{DCH}_{\mathrm{in} 2}$ ，and D channel information from the U－interface is transmitted on as a D channel port．When the D channel port is enabled，D channel information transmitted on the
 D Channel Port Enable
When this bit is set to 1 ，it enables two pins on the MC145572 to be used to control and／or indicate
the location of the transmit and receive superframes relative to the IDL2 interface． SFAX／SFAR Enable in which B1 and B2 channel data is transferred． B2 timeslots．When the timeslot assigner is enabled，the TSEN signal is active during the timeslot When this bit is set to 1 ，it enables the pin TSEN to operate an off－chip bus driver during the B1 and TSEN BCH Enable
When this bit is set to 1 in NT mode，it forces the pin FREQREF to become an output and source
a locked clock．The locked clock is the same as DCL clock． FREQREF Output Enable SFAX is an input to control the start of the transmit superframe．
When this bit is set to 1 in LT mode，it forces the SFAX pin to be an output．Normally，in LT mode， SFAX Output Enable
to perform dump／restore via the IDL2 or GCl interface depending on the state of the MCU／GCI pin．
 the mode for normal dumping and restoring of the internal coefficients via the EYE out interface．$\{1,0\}$ （0：ı）әроW y／a

> to 0 to maintain MC145472/MC14LC5472 compatibility bit is reset by both hardware and software resets. After a hardware or software reset, all bits default registers control the operating mode of the dump/restore mechanism. See Overlay register OR8. This a byte-wide access port to the dump/restore mechanism of the U-chip. Two more bits in the overlay

> portant in LT mode, when SFAX is used as an input. be 0 , so as to maintain synchronization with the transmit superframe. This is especially im-

ㅋon

Od		
OM		
		てเบ0

D channel data is transmitted to and received from the U-interface most significant bit first. the transmit and receive superframes. The MC145572 does not perform any HDLC framing/deframing. the D channel interrupt has been cleared. Both transmit and receive D channel data are aligned to status. So, if there has been a change in activation status, an interrupt is still queued up even though
 $\overline{\mathrm{IRQ3}}$ is used to indicate when each new eight bits of data are received. A special code (1111) is loaded face, when SFS, NR1 (b3), is a 1. the received D channel data, when SFS, NR1(b3) is a 1. Data is transferred from OR12 to the U-interD channel is sourced strictly from this register. D channel data received from U-interface is byte aligned
to Superframe Sync, and is readable through OR12, eight bits at a time. This register is updated with In this mode, D channel input data present on the pin interfaces of MC145572 is ignored. Instead and the register becomes an 8-bit read-only/write-only register providing access to the D channel When $\mathrm{BR} 10(\mathrm{~b} 1)$ is set to 1 , this double buffered register takes the place of Normal Byte register BR12

D CHANNEL AND DEBUG REGISTERS

MC145572. This bit is reset by hardware reset, $\mathrm{NRO}(\mathrm{b} 3)=1$ or NRO(b1) $=1$. off by setting this bit, it can only be re-enabled by asserting a hardware or software reset to the written to once, following a hardware or software reset. Once the 4.096 CLKOUT pin has been turned When this bit is set to 1 , it causes the 4.096 CLKOUT pin to go high impedance. This bit may only be 4096 Disable

When this bit is set to 1 , it causes the 15.36 CLKOUT pin to go high impedance 1536 Disable

When this bit is set to 1 , it causes the 20.48 MHz clock output at BUFXTAL to go to high impedance. əાવes!a 8t0乙

 converter). The resulting pulse amplitude modulated signal is band limited by the Tx filter prior to enter-
ing the Tx driver, which differentially drives the line coupling circuit to the twisted wire pair.

 This data is passed through a three-frame deep FIFO prior to being formatted and scrambled in the The 2B+D data is input to the device at the $D_{\text {in }}$ pin of the time division multiplexed data interface.
Figure 5-1. MC145572 Functional Block Diagram

> MCU MODE DEVICE FUNCTIONALITY
Freescale Semiconductor, Inc.
set either bit b2 or bit b1 in Overlay register OR9. to enable a clock, leaves the clock(s) enabled. To disable one or both of these clocks, software must tively; when set to 1 . In MC145572, these bits are reserved and writing a 1 to either of these bits after a hardware or software reset. Due to this change, the function of bits BR15A(b2, b1) have changed
in MC145572. In MC14LC5472, these two bits enabled 15.36 CLKOUT and BUFXTAL outputs, respecand BUFXTAL pins after a hardware or software reset. On MC14LC5472, these clocks were disabled When operated in MCU mode with the SCP, MC145572 has clock outputs enabled on 15.36 CLKOUT The MC14LC5472 used a line interface transformer having a $1: 2$ turns ratio transformer having a turns ratio of $1: 1.25$ where the 1.25 is on the tip and ring side of the transformer. Tables 5-1 and 5-2 contain the MC145572 pin function charts. The MC145572 requires a line interface
 $4-2$, and 4-3 detail the register set of MC145527. See Chapter 4, Register Description, for details ware to switch between the basic register set and the overlay register set, as required. Tables $4-1$, OR0 through OR9, OR12, and OR13. Register BR10 is common to both register sets, permitting softare accessed by setting bits in Register BR10 that were reserved bits for MC14LC5472. The new l/O pin configuration bits, D channel, and internal parameters of the device. The extended registers The MC145572 has an extended register set which provides access to the on-chip timeslot assigner, Most software written for MC14LC5472 will operate MC145572 without requiring any modifications. quirements and outputs for these pins. the SCP interface. There are differences between MC14LC5472 and MC145572 in exact signal recompatibility with the MC14LC5472 U-interface transceiver when configured for MCU mode and using

ALlilalivanoo zltsoltiow/zLtstiow

 chapter pulling circuitry adjusts the crystal frequency in both LT and NT modes of operation. The MC145572 requires a single 20.48000 MHz pullable crystal connected between the XTALin andXTAL pins. No other external components are required for the crystal oscillator. Internal crystal Controller. The eoc portion of the M channel can be handled automatically with the internal Automatic eoc Pro-
cessor. In addition, activation and deactivation of the MC 145572 is handled by an Automatic Activation read from or written to, if it is desired to bypass the normal operation of the GCI interface. channel messages. The Monitor channel also permits the internal registers of the MC145572 to be control and status messages. The GCI Monitor channel is used to send and receive Maintenance When the MC145572 is configured for GCI mode, the C / l channel of the GCI interface is used for channel provided across the U-interface. register set of the MC145572 gives an external microcontroller access to the 4 kbps Maintenance provide an eight-bit wide data port with a chip select and read/write pin. In either case, the internal a standard four-wire serial microcontroller interface. In PCP mode, the MC145572 is configured to to its register set. When operating in MCU mode, the MC145572 can be configured for either SCP
or PCP mode of operation. In SCP mode, control and status of the device is handled via the SCP, The MC145572 permits the designer to select one of three options for control of the device and access the $D_{\text {out }}$ pin of the time division multiplexed data interface received 2B+D data through a three IDL frame deep FIFO to the IDL interface, where it is available at to produce a 160 kbps data stream. Timing information is also recovered from the far-end signal. The
Superframe Deframer descrambles and disassembles the received superframes and passes the
 tracted from the combined signal leaving only the far-end signal. In addition, phase distortion present is converted to a digital word in the $\Sigma-\Delta$ (sigma-delta) ADC (analog-to-digital converter). After filter-
ing, an adaptively generated replica of the transmitted signal, calculated by the echo canceller, is sub-

0 0 0 0 0	$\underset{\sim}{3}$	$\begin{aligned} & z_{1} \\ & -1 \end{aligned}$		$\left.\begin{aligned} & \pi \\ & \tilde{0} \\ & \tilde{n} \end{aligned} \right\rvert\,$	$\begin{aligned} & \eta \\ & 刃 \\ & 0 \\ & 0 \\ & 0 \\ & \pi \end{aligned}$			$\begin{array}{\|l} 0 \\ \frac{x}{0} \\ 0 \\ \\ \mathbf{x} \end{array}$	$\left\lvert\, \begin{aligned} & -1 \\ & x_{0} \\ & \underset{\lambda}{\lambda} \\ & \underset{\sim}{2} \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & \infty \\ & \underset{x}{x} \\ & \hline \end{aligned}\right.$		$\begin{aligned} & \infty \\ & \infty \\ & 0 \\ & x_{1} \end{aligned}$	$\left\lvert\, \begin{aligned} & \delta_{0} \\ & 0 \\ & D_{x} \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & < \\ & \infty \\ & \check{O} \end{aligned}\right.$	$\begin{aligned} & \overline{0} \\ & \underline{0} \\ & \bar{O} \end{aligned}$	\|	\mid	$\begin{aligned} & \text { T } \\ & \stackrel{0}{7} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$
$\stackrel{\rightharpoonup}{\omega}$	の	ज	ఉ	$\stackrel{\rightharpoonup}{\square}$	A	$\begin{aligned} & \underset{\sim}{\omega} \\ & \underset{\sim}{\omega} \end{aligned}$	$\stackrel{\sim}{\infty}$	$\left\|\begin{array}{c} 0 \\ 0 \\ 0 \end{array}\right\|$	$\left\|\begin{array}{l} 0 \\ \vec{v} \end{array}\right\|$	$\stackrel{\rightharpoonup}{0}$	\pm	-	ω	$\left\|\begin{array}{l} \sim \\ \omega \\ \omega \\ 0 \end{array}\right\|$	$\left\|\begin{array}{c} \sim \\ \stackrel{\rightharpoonup}{\omega} \\ \underset{v}{0} \end{array}\right\|$	$\begin{aligned} & \text { N } \\ & \end{aligned}$	A	
+	ఉ	N	N	\pm	O	$\begin{gathered} \vec{\sigma} \\ \stackrel{\rightharpoonup}{v} \end{gathered}$	$\begin{array}{\|l\|l} \omega \\ + \\ \omega \\ \omega \end{array}$	$\left\|\begin{array}{c} \omega \\ \\ \omega \\ \omega \end{array}\right\|$	$\left.\begin{array}{\|c\|} \hline \omega \\ \omega \\ \omega \\ \omega \end{array} \right\rvert\,$	\sim_{ν}	${ }_{\infty}^{\infty}$	$\stackrel{\omega}{\omega}$	${ }^{\circ}$	$\left\|\begin{array}{c} \circ \\ \stackrel{\rightharpoonup}{\omega} \end{array}\right\|$	$\begin{aligned} & v \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { or } \end{aligned}$	$\stackrel{\sim}{v}$	$\begin{aligned} & 0 \\ & B_{3}^{\prime} \\ & \text { O } \\ & \hline \end{aligned}$
											$\begin{aligned} & + \\ & c \\ & c \\ & < \end{aligned}$		$\begin{aligned} & + \\ & G \\ & < \end{aligned}$	$\left(\left.\begin{array}{l} 0 \\ 0 \\ \stackrel{\rightharpoonup}{0} \\ \stackrel{\rightharpoonup}{0} \\ 0 \\ 0 \\ 0 \\ 0 \\ \vdots \\ \hline 0 \end{array} \right\rvert\,\right.$	$\begin{array}{l\|l} + \\ 0 \\ c \\ o \\ o \\ + \\ \omega \\ < \\ \hline \end{array}$		$\begin{aligned} & + \\ & c \\ & c \\ & < \end{aligned}$	$\begin{aligned} & \text { ㄹ } \\ & \stackrel{\rightharpoonup}{\text { ¢ }} \\ & \text { N } \end{aligned}$
											$\begin{aligned} & + \\ & c \\ & c \\ & < \end{aligned}$		$\begin{aligned} & + \\ & G \\ & < \end{aligned}$	$\left\|\begin{array}{l} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}\right\|$	$\begin{aligned} & + \\ & 0 \\ & c \end{aligned}$		$\begin{aligned} & + \\ & 0 \\ & c \end{aligned}$	$$

$\stackrel{N}{\omega}$

$$
\begin{aligned}
& \text { NOTE } \\
& \text { When MC145572 is configured for MCU operation, it is possible to put the IDL2 interface } \\
& \text { pins into GCI Electrical mode, which accepts GCI timing for transfer of 2B+D data only. } \\
& \text { This is done by setting bit OR6(b3) GCI Mode Enable. Access to the MC145572 register } \\
& \text { set is via the SCP or PCP. In GCI Electrical mode, the pin names and functions for IDL2 } \\
& \text { interface pins correspond to the GCI names and function. }
\end{aligned}
$$ $\circ \mathrm{O}$ ot pe！t s！u！d pin is tied to a 1 ．The SCP mode is enabled when the MCU／GCI pin is tied to a 1 and the PAR／SER PCP mode configures MC145572 to have an eight－bit parallel data port that can be located anywhere

in processor memory．The PCP mode is enabled when the MCU／GCI pin is tied to a 1 and the PAR／EER at data rates up to 4 Mbps ．This interface is compatible with National＇s MICROWIRE
PCP mode configures MC145572 to have an eight－bit parallel data port that can be located anywhere nal register set．The SPC mode is a four－wire serial interface that clocks data into or out of MC145572 SEOVUYヨ1NI TOY\＆NOO

	\pm	＋	ω	ज	N	${ }_{\infty}^{\infty}$	$\stackrel{\sim}{\sim}$	$\stackrel{\omega}{+}$	ω	N	$\stackrel{\omega}{-}$	N	$\stackrel{N}{V}$	$\stackrel{\rightharpoonup}{\bullet}$	$\stackrel{\rightharpoonup}{\infty}$	N	N	$\stackrel{\rightharpoonup}{\text { v }}$		
	N	N	N	∞	\bigcirc	N	$\stackrel{\rightharpoonup}{\infty}$	$\stackrel{\rightharpoonup}{\nu}$	$\stackrel{\rightharpoonup}{\omega}$	$\stackrel{\rightharpoonup}{N}$	म	\pm	－	N	\rightarrow	ω	－	A	끌	
					$\begin{aligned} & \overrightarrow{1} \\ & 0 \\ & 0 \\ & 0 \\ & \underset{\sim}{n} \\ & \underset{0}{0} \\ & \underset{\sim}{c} \end{aligned}$				$\stackrel{\circ}{\circ}$	$\stackrel{\square}{\square}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{c} \end{aligned}$	$\begin{aligned} & \pi \\ & \times \\ & \underset{\sim}{\grave{0}} \\ & \stackrel{\rightharpoonup}{0} \\ & \stackrel{\rightharpoonup}{n} \end{aligned}$	$\begin{aligned} & \pi \\ & 0 \\ & 0 \\ & \hat{3} \\ & \stackrel{0}{0} \\ & \omega \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{N}{\underset{x}{2}} \end{aligned}$	$\begin{aligned} & 0 \\ & \underset{\sim}{0} \\ & 0 \end{aligned}$	$\left\lvert\, \begin{aligned} & \infty \\ & 0 \\ & 0 \\ & \\ & \hline \end{aligned}\right.$		\％		
	믁	8	¢		$\begin{aligned} & \overrightarrow{1} \\ & 0 \\ & 0 \\ & 0 \\ & \underset{0}{2} \\ & 0 \\ & \underset{0}{0} \\ & \Omega \end{aligned}$	－	$\stackrel{\square}{\omega}$	吹	$\stackrel{\circ}{\circ}$	$\stackrel{\square}{\bar{j}}$	$\begin{aligned} & \mathrm{O} \\ & \hline \end{aligned}$		$\begin{array}{\|l\|l\|} \hline 0 \\ 0 \\ 0 \\ \underset{\sim}{2} \\ \stackrel{0}{0} \\ \omega \\ \omega \end{array}$	모	8	\sum	Q	\％		策
		$\left\lvert\, \begin{aligned} & \underset{\sim}{\underset{\sim}{c}} \\ & \underset{\sim}{\infty} \\ & \stackrel{2}{2} \end{aligned}\right.$	N	$\stackrel{\sim}{\sim}$	¢				$\stackrel{\circ}{\circ}$	$\stackrel{\square}{\bar{j}}$	$\stackrel{\square}{\circ}$		欠ٌ	$\stackrel{0}{\mathrm{C}}$		$\begin{aligned} & \bar{N} \\ & \underset{z}{z} \\ & \underset{\omega}{\omega} \\ & \underset{~}{2} \end{aligned}$	$\left\lvert\, \begin{aligned} & \underset{z}{z} \\ & \underset{z}{z} \\ & \stackrel{\rightharpoonup}{0} \\ & \underset{\substack{2}}{ } \end{aligned}\right.$	$\left.\begin{aligned} & \underset{\sim}{z} \\ & \underset{\sim}{\infty} \\ & \mathrm{o} \end{aligned} \right\rvert\,$		
		$\begin{aligned} & \text { 召 } \\ & \text { m } \\ & \vdots \\ & \vdots \end{aligned}$	N	$\stackrel{\sim}{0}$	¢				$\stackrel{\square}{\square}$	$\stackrel{\square}{\bar{j}}$	$\stackrel{\square}{\circ}$	$\begin{aligned} & \underset{\sim}{\text { Z}} \\ & \underset{\sim}{\infty} \\ & \stackrel{2}{2} \end{aligned}$	§	$\begin{aligned} & \mathrm{O} \\ & \underset{N}{\mathrm{~N}} \end{aligned}$		玄	$\overline{\text { z }}$	$\begin{aligned} & \underset{\sim}{z} \\ & \underset{\sim}{C} \\ & \stackrel{0}{2} \end{aligned}$		
			$\begin{array}{\|l\|l} \frac{2}{m} \\ m \\ 0 \\ \frac{1}{d} \end{array}$		$\begin{aligned} & \overrightarrow{\times} \\ & \infty \\ & \\ & \end{aligned}$				$\begin{aligned} & \overline{0} \\ & \stackrel{1}{1} \\ & \times \end{aligned}$		$\begin{aligned} & \overline{0} \\ & \stackrel{1}{o} \\ & \underset{x}{2} \end{aligned}$		$\begin{aligned} & \bar{\sigma} \\ & \cdots \\ & \vdots \\ & \vdots \end{aligned}$	$\begin{aligned} & \infty \\ & \underset{0}{0} \\ & \underset{x}{1} \end{aligned}$	$\left\lvert\, \begin{aligned} & \infty \\ & 0 \\ & 0 \\ & 0> \\ & \times \end{aligned}\right.$	$\begin{array}{\|c} \infty \\ \Gamma \\ 0 \\ \\ \hline \end{array}$		\％		

 diagrams in IDL2 mode using the SCP for access to the register set. See Chapter 10 for the SCP timing

 status, and M channel data registers reside in six 4-bit wide nibble registers, one 12-bit wide nibble the control registers within the U-interface transceiver and monitoring the status registers. The control,
 cation of an event requiring service. SCP interface is supplemented with an interrupt request line, $\overline{\mathrm{RQ}}$, for external microcontroller notifidirections, and the SCP Enable signal governs when this exchange is to take place. The four-wire clock, and an enable signal. These device pins are known as SCPTx, SCPRx, SCPCLK, and SCPEN, the U-interface transceiver. The SCP interface consists of a transmit output, a receive input, a data

 SCP Mode
The MC145572

ヨON甘OヨdWI HЮIH xIdOS

\qquad sequential 8－bit SCP interface operations，as shown in Figures 5－5 and 5－6．In this case，the second The 12－bit Nibble register 6 is located at nibble register address 6 and can be accessed with two REGISTER R6 OPERATION

Freescale Semiconductor，Inc．

 SCPTx HIGH IMPEDANCE
SCPTx \longrightarrow HIGH IMPEDANCE

Freescale Semiconductor, Inc.

Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not available from Freescale for import or sale in the United States prior to September 2010: ZEUS

Freescale Semiconductor, Inc.
Figure 5－13．MCU Mode with PCP Configuration

when a change of status is detected by the MC145572．Figure $5-13$ shows pin configurations to oper－
ate the MC145572 in MCU mode using the PCP for access to the register set． cesses or one write access．An open drain IRQ output pin is provided for interrupting an external MCU
when a change of status is detected by the MC145572．Figure $5-13$ shows pin configurations to oper－ Nibble register，writes the data to be written．This initial write may be followed by up to two read ac－ MC145572．The pointer byte contains the Nibble or Byte register address and for the case of the first access is always a write cycle that writes a pointer and internal read／write indicator to the individual nibble，byte，or overlay register；a sequence of write and read operations is required．The write accesses to the data port．For an external microcontroller，such as the MC68302，to access an the internal register set．A read／write pin (R / \bar{W}) and chip select pin $(\overline{C S})$ are provided to enable read or PCP Mode
In PCP mode，

Figure 5-14. PCP Mode Nibble Register Write and Read Operations

 PCP NIbBLE REGISTER OPERATION

Freescale Semiconductor, Inc.

to 1 ，and the address of the byte register．This is followed by a read cycle to obtain the contents of
the selected byte register（see Figure 5－16）．

 Data is written to a byte register by writing two successive bytes to the PCP．The first byte must contain
the register address，write bit cleared to 0 ，and the address of the byte register．The second byte
PCP BYTE REGISTER OPERATION
Freescale Semiconductor，Inc．

	sal	OS」	0	0	1	
	ON	YŞ＇XS」	1	1	0	
	ON	YSy＇XS」	0	1	0	
	sə入		1	0	0	（ə｜！！！edmoう てLtStเow） әZ！S әшeメ」 ！！！
дәsəд әлем 	Sod	YSy＇XS」	0	0	0	（ə｜q！̣edmoう 乙 LtStเロW）
sұuәmmos	әवР！！e＾＊ HOd ןəииечつ	souks әшел」 әवृ！！！eィ	(oq)	$\begin{aligned} & \text { (દq) } \\ & \text { L४O } \end{aligned}$	$\begin{aligned} & (\varepsilon q) \\ & 9 女 0 \end{aligned}$	וםר乙

A separate D channel port is available when configured for MCU SCP operation． As a slave，the IDL2 interface of MC145572 accepts clock rates from 256 kHz to 4.096 MHz at the
DCL pin．

 As a master，the IDL2 interface of MC145572 can be configured to output $512 \mathrm{kHz}, 2.048 \mathrm{MHz}$ ，or

 frame and short frame synchronization，each with either 8 －or $10-b i t 2 B+D$ data formats．The fifth био әл sцешло eight bits of B1 channel data，eight bits of B2 channel data，and two bits of D channel data．The IDL2

 transceiver．Table 5－3 details how to configure the MC145572 for the different IDL2 interface data tion．Short frame format is compatible with the IDL interface timing used on the MC145472 U－interface After a hardware or software reset，the MC145572 IDL2 interface is configured for short frame opera－
 әчł шоィ еұер $\quad+$＋
 slave（FSR，FSX，and DCL are inputs）．The master or slave configuration is independent of NT or The IDL2 interface consists of six pins：M／／S，FSX，FSR，DCL，Din，and Dout．With the M／S pin，the
IDL2 interface can be configured as a timing master（FSR，FSX，and DCL are outputs）or a timing

 pəınб！⿰扌 be used to drive both inputs． In Slave mode，both FSX and FSR can be connected together so a single synchronization signal can

 U－interface transceivers with one exception．The MC145572 provides for two 8 kHz frame sync pins， Short frame operation is the same as the IDL interface used on the MC145472 and MC14LC5472

uolpedədo omeds ¡dOपS

0

at the time programmed in register OR2, Dout D Channel Timeslot bits. Figures 5-24 through 5-26
show the D channel port timing. are ignod dung

 output. The clock is a gated clock, based on whatever is on DCL. The clock occurs whenever the and DCHCLK (D channel clock). When the D channel port is enabled, DCHCLK is always a clock

 is enabled by setting OR8(b0), D Channel Port Enable, to a 1. After a hardware or software reset, not available, since the pins are assigned to the data bus of the parallel port. The D channel port

 When operated in MCU mode with SCP enabled, MC145572 can be configured to have a separate
and 2.56 MHz . The DCL clock rate is programmed by BR7(b2) and OR7(b4). See Table 5-4 or FSR can be used. As an IDL2 master, MC 145572 outputs data clocks of $512 \mathrm{kHz}, 2.048 \mathrm{MHz}$, simultaneously. For applications where only one output synchronization pulse is required, either FSX each signal coincides with each other. The 2B+D data transfer into Din and out of Dout occurs As an IDL2 master, MC145572 drives FSX and FSR simultaneously, so that the active high time of

 NT configuration. A logic 1 selects IDL2 master operation and a logic 0 selects IDL2 slave operation. The MC145572 can be configured for IDL2 master or IDL2 slave operation independently of LT or Master and Slave Mode Operation

都 $\stackrel{\square}{C}$邫

Freescale Semiconductor, Inc.
 Freescale Semiconductory Inea

忍 \square嘘 \square
\square

рәләsəy	рәләsəy	рәләsəу	әqеuヨ әроW IЭ૭		əŋฆuヨ 0 VS	$\begin{gathered} \text { әүqeuヨ 乙g } \\ \forall S \perp \end{gathered}$	әๆఇuヨ เя VS」	9 CO
								Gyo
								七บ0
								عบ०
								乙पО
								140
								0 yO

 programmed in Overlay registers OR2 or OR5．This is also true when IDL2 GCI 2B＋D mode has been

 Enabling the timeslot assigner overrides all other IDL2 frame formats with the exception of $\mathrm{GCl} 2 \mathrm{~B}+\mathrm{D}$ ．

 LO\＄＝ટบO

The register programming for Figure 5－27 is as follows timeslot is disabled，data appearing at the $D_{\text {in }}$ pin is ignored and the Dout pin is high impedance．
Table $5-5$ details the timeslot assigner registers in the overlay register set．See Figures $5-27$ and
$5-28$ for timeslot format examples．
 to start on every fourth timeslot or eighth DCL clock．Data is transferred between MC145572 and the is always eight contiguous DCL clocks or four timeslots in duration．B channel timeslots may be pro－
grammed to start in any timeslot，though in normal applications，B channel timeslots are programmed The D channel data is always two contiguous $D C L$ clocks or one timeslot in duration．B channel data
is always eight contiguous DCL clocks or four timeslots in duration．B channel timeslots may be pro－ ৷әı！！மə» timeslot．This DCL count is divided by two and the resulting value is written to the appropriate timeslot clocks after the appropriate frame sync where it is desired to place the start of the B or D channel
 can occur at different times，DCL clocks are counted referenced to either FSX or FSR depending on occurs during the first two DCL clocks following FSX or FSR．DCL clocks are numbered starting from
 dently programmable for both transmit and receive directions．

 FSX \qquad

FSR \qquad \square

FSR \qquad \square

TSN2	TSN1	TS0	TS1	TS2	TS3	TS4	TS5	TS6	TS7	TS8	TS9	TS10	TS11	TS12	TS13	TS14	TS15

Figure 5-29. Timeslot Assigner Example with D Channel Port Enabled
DCL

	TS0	TS1	TS2	TS3	TS4	TS5	TS6	TS7	TS8	TS9	TS10	TS11	TS12	TS13	TS14	TS15	TS16

Din

| B2 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

FSR \qquad

TSN2	TSN1	TSO	TS1	TS2	TS3	TS4	TS5	TS6	TS7	TS8	TS9	TS10	TS11	TS12	TS13	TS14	TS15

| B2 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

DCHCLK \qquad

$\mathrm{DCH}_{\text {out }}$ \qquad -
$\mathrm{DCH}_{\text {in }}$

NOTE: D Channel is in TS8 referenced to FSR.
The TSEN function is available when the timeslot assigner is enabled
ヨION

 Registers OR0 - OR5 are programmed in the above fashion
 Any B channel must be assigned to a timeslot at or before TSn - 4. Where TSn-1 is the maximum
timeslot number for the current operating data clock. The three timeslots following any B channel where the x of TS x is the value programmed into a register. All numbers are programmed in hex.
B and D channel registers are programmed with the following formula.

$$
\frac{\mathrm{fDCL}}{16 \mathrm{kHz}}=\text { Maximum Number of Timeslots }
$$

The following formula calculates the maximum number of timeslots for other values of DCL frequency.
 timeslot is on a two clock boundary, and is named TSO to TS $n-1$, where n is the maximum number Figure 5-30 shows the relationship of the FSR and FSX pulses, DCL, and timeslot locations. Each

Table 5-6. Maximum Number of Timeslots vs DCL Frequency pulses later, counted from the rising edge. The MC145572, operating at a DCL clock of 4.096 MHz , allows up to 256 start times for data channels

$$
\text { This happens once every } 96 \mathrm{GCI} \text { frames. }
$$

 When configured for Master mode and either LT or NT operation, reception of the first 2B+D data the MC145572 aligns the outgoing U-interface superframe alignment (see Figure 5-33). is the first $2 B+D$ frame transmitted onto the U-interface. If superframe alignment is not input to FSC, The transmit superframe alignment is set by driving FSC with a one DCL clock wide pulse once every
96 GCl frames. The 2B+D data read into the $\mathrm{Din}_{\text {in }}$ pin, corresponding to the single clock wide FSC,

 When configured for IDL2 GCI 2B+D data format, OR6(b3) $=$ 1, the MC145572 uses the FSC signal
to indicate superframe alignment. Inputs on SFAX are ignored. GCI 2B+D MODE SUPERFRAME ALIGNMENT (see Figures 5-31b and 5-32b). In IDL2 long frame format, SFAX and SFAR indicate the IDL2 frame corresponding to the first 2B+D
block in the U-interface superframe by pulsing high for the duration of FSX and FSR, respectively
(see Figures 5-31b and 5-32b) IDL2 LONG FRAME MODE SUPERFRAME ALIGNMENT on the falling edge of DCL. input, SFAX must be driven high for the DCL clock period immediately following FSX and it is sampled following the IDL2 frame syncs FSX and FSR (see Figures 5-31a and 5-32a). When configured as an block in the U-interface superframe by pulsing high for one DCL clock time. This occurs immediately In IDL2 short frame format, SFAX and SFAR indicate the IDL2 frame corresponding to the first 2B+D

IDL2 SHORT FRAME MODE SUPERFRAME ALIGNMENT
superframe.
$125 \mu \mathrm{~s}$ in duration, this corresponds to $12 \mathrm{~ms}(96 \times 125 \mu \mathrm{~s})$, which is the duration of a U-interface The superframe alignment signal(s) occur once every 96 IDL2 or GCI frames. Since frames are When configured for GCI 2B+D operation, the FSC signal is used to indicate superframe alignment. 1 on the U-interface. SFAR is always an output when enabled. the IDL2 frame that outputs 2B+D data from the MC145572 that arrived at the start of basic frame
 input, the MC145572 selects the starting point of the transmitted superframe when in LT mode. SFAX Output Enable to a 1, configures SFAX as an output and indicates transfer of the first 2B+D
frame of U-interface basic frame 1 into Din of the IDL2 interface. When SFAX is not enabled as an frame of U-interface basic frame 1 into Din of the IDL2 interface. When in LT mode, setting OR8(b5),
SFAX Output Enable to a 1, configures SFAX as an output and indicates transfer of the first 2B+D used to force alignment of the outgoing superframe, as well as indicating transfer of the first 2B+D U-interface. In NT mode, SFAX is always an output. In LT mode, SFAX defaults to an input and is SFAX provides superframe alignment timing for data transmitted onto the U-interface. It is active dur-
ing the IDL 2 frame that corresponds to the $2 B+D$ data transmitted at the start of basic frame 1 on the operation. enabled by setting OR8(b1), SFAX/SFAR ENABLE to a 1 when the MC145572 is configured for IDL2 corresponds to the first 2B+D block in basic frame 1 of the U-interface superframe. This feature is long frame operation, the SFAX and SFAR pins are used to indicate the IDL2 2B+D data frame that interface and where that data is positioned in the U-interface superframe. In IDL2 short frame and

Freescale Semiconductor, Inc. the data on through to the other side, as well as looping it back. "Non-transparent" means that the
data is blocked from being passed downstream and is replaced with the idle code (all 1s). backs are available as transparent or non-transparent. "Transparent" means that a loopback passes including simultaneous loopbacks toward the U-interface and toward the IDL2 interface. These loopis selected by setting bits in the appropriate register(s). Any combination of loopbacks may be invoked Framer-to-Deframer Loopback, and 4) External Analog Loopback. Each of these loopback modes The MC145572 U-interface transceiver supports four different loopback types, each having various
modes. The four types are: 1) U-Interface Loopback, 2) IDL2 Interface Loopback, 3) Superframe

LOOPBACKS

> The total end-to-end delay is the sum of the transmit FIFO delay in the originating trans-
> ceiver and the receive FIFO delay at the destination transceiver.

Delay Path	Min	Max	Units
NT Mode FSX to U-Interface Transmission Delay	196	315	$\mu \mathrm{~s}$
NT Mode U-Interface to FSR Transmission Delay	281	400	$\mu \mathrm{~s}$
LT Mode FSX to U-Interface Transmission Delay	184	328	$\mu \mathrm{~s}$
LT Mode U-Interface to FSR Transmission Delay	281	400	$\mu \mathrm{~s}$

> Table 5-7. FIFO Delays Through the MC145572
in

4
10

 B2, or IDL2-loop 2B+D (BR6(b3:b1)) to a 1. To enable loopback of B1 channel data to the IDL2 interAn IDL2 interface loopback is selected by setting one or more of the registers IDL2-loop B1, IDL2-loop forced to idle 1s when an IDL2 interface loopback mode is enabled. When IDL2-Loop Transparent (BR6(b0)) is reset to a 0 , the data transmitted on the U-interface is the loopback is made transparent and the data input on the $\mathrm{D}_{\text {in }}$ pin is transmitted onto the U-interface. in the IDL2 interface block of the MC145572. By setting IDL2-Loop Transparent (BR6(b0)) to a 1 u!! $x \perp$ टาด। әчł łno

Figure 5-36. Superframe Framer-to-Deframer Loopback Block Diagram

əโqeu

BR12 $=89$
əz!!!qeıs of 77d əपł ıI spuooəs G t!en

$$
\begin{array}{ll}
\text { BR8 = B7 } \quad \text { Match Polynomials, Receive Window } \\
& \text { transmit Frame Control state SN3. }
\end{array}
$$

U-interface transceiver follows, with all numbers given in hexadecimalThe procedure to enable the Superframe Framer-to-Deframer loopback for a single NT-configured written to BR14(b4) enables the mode and a 0 disables the mode. In addition, Match Scrambler MC145572 and the Superframe Deframer input. In this loopback mode, the Tx Driver is disabled. A 1 Register $B R 14(\mathrm{~b} 4)$ controls the Superframe Framer-to-Deframer Loopback mode. The loopback of
B, D, and M channel data occurs between the output of the Superframe Framer block of the diagnostic purposes sends the same data back out the Dout pin and SCP. This loopback mode is intended primarily for data via the SCP, performs all of the superframe framing and subsequent deframing functions, and block diagram shows, this loopback mode takes B and D channel data in at the Din pin and M channe A Superframe Framer-to-Deframer loopback is shown in Figure 5-36. As the shaded portion of the

Superframe Framer-to-Deframer Loopback

Freescale Semiconductor, Inc.

on only one MC145572 at a time.
In either type of system architecture, the Superframe Framer-to-Deframer loopback can be done

 VSS). One UStransceiver is selected to provide a locked system clock from which is derived the System Type No. 2: All U transceivers are configured as TDM slaves (M/S pin connected to configured as TDM slaves System Type No. 1: One U transceiver is configured as the TDM master and the others are Systems having multiple NT mode U transceivers on a TDM bus come in two types of architectures. In LT mode configurations, this is normally not a problem, since all of the MC145572s have their
20.48 MHz oscillators locked to system backplane timing. There will never be any clock slips. signals and the 20.48 MHz clock of MC 145572 device under test. be traceable to another MC145572. This ensures that clock slips do not occur between the DCL/FSR
 when all the transceivers are deactivated. Thus, when performing a Superframer Framer-to-Deframer In NT systems, the 20.48 MHz clocks of the individual MC145572s are not synchronized to each other loopback is being performed is derived from that same MC145572. this section is to ensure that the DCL and FSR signal timing to the MC145572 device on which the equipment having four tio eight MCs
This time division mutliplex bus is connected to either an MPC 860 MH or 68 MH 360 . The purpose of where multiple MC145572s are normally operated in NT mode. A typical application is remote access This section describes how to enable the Superframer Framer-to-Deframer loopback in applications

Multiple MC145572s

U-interface transceiver follows, with all numbers given in hexadecimal. The procedure to enable the Superframe Framer-to-Deframer loopback for a single LT-configured

$$
\begin{aligned}
& \text { System Type No. 1: The transceiver on which the loopback test is performed is put into TDM } \\
& \text { master mode. This is done by connecting the M// pin to VDD or setting BRR(b1) to a } 1 \text {, in the } \\
& \text { case of the M/S pin hardwired to VSS. The other MC145572s are put into slave mode. } \\
& \text { System Type No. 2: Enable the mux to select its reference clock source from the transceiver on } \\
& \text { which the loopback test is being performed. }
\end{aligned}
$$

O
0
0

Systems having multiple NT mode U transceivers on a TDM bus come in two types of architectures.
System Type No. 1: One U transceiver is configured as the TDM master and the others are
configured as TDM slaves.
System Type No. 2: All U transceivers are configured as TDM slaves. One U transceiver is
selected to provide a locked system clock from which is derived the DCL and FSR/FSX signals
that are provided to all U transceivers. Typically, in these systems there is a mux that allows
the locked clock to be selected from one of the U transceivers. This allows any transceiver to
provide the master clock. The clock source can come from the FREQREF pin (see OR8(b4)
description), BUFXTAL pin, or SYSCLK pin. See Section 5.6 .4 for further background material.
The external analog loopback can be done on only one MC145572 at a time.
System Type No. 1: The transceiver that the loopback test is performed on is put into master
mode. The others are put into slave mode.
System Type No. 2: Enable the mux to select its reference clock source from the transceiver on
which the loopback test is being performed.
Procedure to perform the MC145572 external analog loopback while in NT slave mode.
Make sure that there is a 10 k Ω pulldown resistor on the SFAX pin.
Set BR8(b0) $=1$, to put the selected MC145572 into LT mode.
Wait 5 seconds for the MC145572 on-chip PLL to stabilize.
BR10 $=\$ 01$
OR9 $=\$ 20$
BR10 $=\$ 00$

NR2 $=\$ 01$ | Configure the IDL bus or timeslot assigner for the bus format required to send/receive data with |
| :--- |
| the MC145572. |
| The MC145572 is ready for loopback test when NR1 reads as $\$ 0 B$. |
| To turn off the loopback. |
| BR10 $=\$ 01$ |
| OR $=\$ 00$ |
| BR10 $=\$ 00$ |

sZLSStIDW
 External Analog Loopbacks in Systems Having Multiple

$$
\begin{array}{r}
00 \$=0 \text { tษg } \\
00 \$=6 \mathrm{CO}
\end{array}
$$

$$
\begin{aligned}
& \mathrm{BR} 10=\$ 01 \\
& \mathrm{OR} 8=\$ 00
\end{aligned}
$$

$$
\begin{aligned}
& \text { NOTE }
\end{aligned}
$$ in conjunction with this text to understand the activation sequence.

 SL3, are the 2B+D channels of data capable of being transmitted over the U-interface. when the U-interface is fully activated, with the NT transmitting signal SN3 and the LT transmitting

 basic frames of signal TL are transmitted by the LT when it wants to wake up the NT. When the NT
 ANSI T1.601-1992 defines ten activation signals, described in Tables 6-1 and 6-2, for the U-interface
transceivers to use during the activation procedure. For instance, six basic frames of signal TN are a deactivation procedure. ceivers at each end of the transmission line. Only the LT mode U-interface transceiver may initiate Deactivation is the process used to gracefully end communication between the U-interface transor warm start, may occur. The MC145572 is capable of automatically supporting both types echo cancellers at each end of the transmission line takes place. Two types of activation, cold start pue sıəz!ן munications channel. This process, which may be initiated from either the LT or NT mode U-interface
 including the activation and deactivation time flow diagrams. operation is to be used. Chapter 8 gives a detailed functional description of the GCl mode operation is useful for all applications. It is strongly recommended that this chapter be read when the GCl mode This chapter describes the activation and deactivation procedure for the MC145572. It is assumed
that MC145572 is configured for the IDL2 mode of operation. The material covered in this chapter

NOIIOnGO4NI

NOILVAILOVEG ONV NOILVNILOV EOOW NOW
9

 	ENS
	ZNS
	tNS
	ONS
	N \perp
uo!!d!ısəa	uollets ио!!ешлояй

desired to generate signals for test purposes

 ACTIVATION SIGNALS FOR NT MODE $\begin{array}{cl}\text { Time } & \text { Description of Event or State } \\ \text { T0 } & \text { RESET state. } \\ \text { T1 } & \text { Network and NT are awake. } \\ \text { T2 } & \text { NT discontinues transmission, in } \\ \text { T3 } & \text { Network responds to termination } \\ \text { T4 } & \text { Network begins transmitting SL2 } \\ \text { T5 } & \text { NT begins transmitting SN2 tow } \\ \text { T6 } & \text { NT has acquired superframe ma } \\ \text { T7 } & \text { Network has acquired superfram } \\ & \\ & \text { Figure 6-1. ANSI U }\end{array}$

Freescale Semiconductor, Inc.
 From Figure 6-1, it can be seen that the NT transceiver has a period of time during activation where while the echo cancellers are trained. in Progress (NR1(b0)) to a 1. Transmission of TN is immediately followed by transmission of SN1 of six frames (9 ms) toward the LT. At this time, the NT U-interface transceiver also sets Activation NT U-interface transceiver initiates activation of the U-interface by transmitting TN for a time period NT mode activation initiation is accomplished by setting Activation Request (NR2(b3)) to a 1. The

ACTIVATION OF U-INTERFACE BY NT

Some applications, such as U-repeaters, may require longer than 15 seconds of activation time. The
$15-$ second activation timer can be disabled by setting Activation Timer Disable (BR11(b0)) to a 1 . ters (NR1(b0)) $=1$. In GCI mode, the MC145572 automatically initializes the maintenance channel regisWhen configured for MCU mode, all appropriate maintenance channel registers should be initialized
prior to setting Activation Request (NR2(b3)) or immediately after detecting Activation in Progress activates from the point where it detects the incoming TN tone from the NT transceiver. self-activates. Regardless of how activation is initiated, the LT U-interface transceiver automatically to the TL tone by sending a TN tone back to the LT U-interface transceiver. Otherwise, the LT U-inter-

face transceiver waits for an unsolicited incoming TN tone from the NT U-interface transceiver and tion Request bit is set to a 1 by an external microcontroller. The NT U-interface transceiver responds An LT configured U-interface transceiver initiates activation by sending the TL tone when the Activa| 0 |
| :--- |
| 0 |
| \sim |

 result of the activation to the external microcontroller by setting status bits in NR1 to \$B. being detected, the U-interface transceiver proceeds with activation automatically and signals the 10 kHz wake-up tone is detected. In either case, Activation Request being set or a wake-up tone wake-up tone. An NT configured U-interface transceiver searches for an LT sending the TL wake-up
tone. In IDL2 mode, the Activation in Progress status bit (NR1(b0)) is set to a 1 when an incoming 10 kHz wake-up tone. An LT configured U-interface transceiver searches for an NT sending the TN

ACTIVATION INITIATION

Information Station	Description
TL	A 10 kHz tone consisting of alternating four +3 quats followed by four -3 quats for a time period of two frames.
SL0	No signal transmitted.
SL1	Synchronization word present, no Superframe Synchronization word (ISW), and 2B+D+M $=1$.
SL2	Synchronization word present, Superframe Synchronization word (ISW) present, 2B+D $=0$, and M $=$ Normal.
SL3	Synchronization word present, Superframe Synchronization word (ISW) present. M channel bits active. Transmitted $2 \mathrm{~B}+\mathrm{D}$ data operational when M4 act bit $=1$. When M4 act $=0$, transmitted $2 \mathrm{~B}+\mathrm{D}$ data $=0$.

 desired to generate signals for test purposes. scribed later in this chapter. Section 4.4 .9 describes how to control the transmit framer when it is

Freescale Semiconductor, Inc

Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not available from Freescale for import or sale in the United States prior to September 2010: ZEUS

Freescale Semiconductor, Inc.
 lost, but loss of data transparency does not always mean that Superframe Synchronization is lost. an interrupt. Note that loss of Superframe Synchronization always means that data transparency is rate becomes too large, MC145572 loses data transparency and NR1 changes to \$A or \$8 and issues The MC145572 continually monitors the error on its recovered signal. If the internally monitored error a 1 when NR1 returns to $\$ \mathrm{~B}$ $\$ B$ and an interrupt is generated if enabled. It is not necessary to set Customer Enable (NR2(b0)) to causing loss of Superframe Synchronization goes away before 480 ms has elapsed, NR1 returns to tivates and sets NR1 = \$4 error indication, and issues an interrupt if enabled. When the error condition terrupt is generated if enabled. This indicates that loss of Superframe Synchronization has been Whenever the MC145572 detects loss of Superframe Synchronization, NR1 becomes \$8 and an infor more details on Verified act/dea and control of M4 channel bits enabled. This must be done after activation from the receive RESET state. Refer to Section 4.4.10, that Customer Enable (NR1(b0)) be set to a 1 when the M4 channel verified act/dea mode is not When the LT U-interface transceiver is activated and ready to pass $2 \mathrm{~B}+\mathrm{D}$ data, the M 4 channel act
bit should be set per ANSI T1.601-1992. This is done by setting BRO(b7) to a 1 . Also, it is required active, Superframe Sync (NR1(b1)) and Linkup (NR1(b3)) are set to a 1 as an LT, this corresponds to LT transmitting SL3 and receiving SN3. When the U-interface is fully as an NT, this corresponds to NT transmitting SN3 and receiving SL3. With MC145572 configured The Linkup status bit (NR1(b3)) is used to signify that the loop is active. With MC145572 configured

ACTIVATION INDICATION

 tion in Progress (NR1(b0)) is set to a 1. Activation Request (NR2(b3)) is internally reset to a 0 when If activation continues for more than 15 seconds it is aborted, Error Indication (NR1(b2)) is set to a SL3 is transmitted with the M channel bits active. The 2B+D channels become active when CustomerEnable (NR2(b0)) is set to a 1 . operation. When full duplex operation has been achieved, NR1 (b3, b1, b0) are each set to a 1 and looks for a far-end signal. The MC145572 then recovers timing information and trains for full duplex to train its echo cancellers during the transmission of SL1 and part of SL2. During SL2, the MC145572 of time during activation where the NT end is guaranteed to be quiet. This is to permit the MC145572 end echo cancellers are trained. From Figure 6-1, it can be seen that the LT transceiver has a period for loss of the far-end signals, TN and SN1 LT stops sending TL, the NT transmits TN and SN1 and trains its echo cancellers. The LT then waits At this time, the LT U-interface transceiver also sets Activation in Progress (NR1(b0)) to a 1. After initiates activation of the U-interface by transmitting TL for a period of two frames (3 ms) toward NT. T mode activation initiation is accomplished by setting Activation Request (NR2(b3)) to a 1. The LT
when Activation in Progress (NR1(b0)) is set to a 1. The Activation Request bit (NR2(b3)) is internally
reset to a 0 when Activation in Progress (NR1(b0)) is set to a 1 . is set to a 1, and bits NR1 (b3, b1, b0) are each reset to a 0 . The 15-second activation timer is started
when Activation in Progress (NR1(b0)) is set to a 1. The Activation Request bit (NR2(b3)) is internally If SN3 is not reached within 15 seconds, activation is automatically aborted, Error Indication (NR1(b2)) act.

 has been achieved, bits NR1 (b3, b1, b0) are each set to a 1 and SN3 is enabled for transmission. SN3 After the MC145572 ends transmission of SN1 it waits up to 480 ms for LT to transmit a signal, SL1 or
SL2. The MC145572 then recovers timing information and transmits SN2. When full duplex operation
bits and their control the D channel. See BR0 - BR3 and BR9 descriptions for a full description of the maintenance channel linkup has been attained. The Customer Enable bit (NR2(b0)) affects only the two B channels and

Sł! |euueys oэuevoңu|ew

s3ION 7VNOILIadV

 face corresponds to data in the B1 channel timeslot on the IDL interface. Data on the B2 channel from
the U-interface corresponds to data on the B2 channel timeslot on the IDL interface. The B1 and B2

 sponds to Customer Enable (NR2(b0)) reset to 0 . When the M4 channel Verified act/dea mode is not The MC145572 comes out of hardware or software reset with customer data disabled. This corre-

INITIAL STATE OF B1 AND B2 CHANNELS

T1.601-1992

with the M4 channel dea bit reset to a 0 . The U-interface transceiver then deactivates per ANSI then updates the maintenance channel Superframe Framer bits and sends exactly three superframes re-enable maintenance channel updates and initiate deactivation. The LT U-interface transceiver M4 channel dea bit (BRO(b6)) to a 0 to indicate that the LT initiated deactivation. Reset Superframe
Update Disable (NR2(b1)) to a 0 and simultaneously set Deactivation Request (NR2(b2)) to a 1 to Set Superframe Update Disable (NR2(b1)) to a 1 to disable maintenance channel updates. Reset the sent for exactly three superframes before deactivation occurs. This is done in the following manner.
 L e of ((己q)乙पN) bit towards NT for at least three superframes. Then, deactivate LT by setting Deactivation Request Prior to deactivating, LT should notify NT of the pending deactivation by clearing the M4 channel dea by setting Deactivation Request (NR2(b2)) to a 1. ANSI T1.601 specifies that only LT can deactivate the U-interface. This is done in the MC145572

 tion. See BR9(b5:b4) and OR7(b0) for more information. of activation and deactivation. So when LT deactivates the line, NT deactivates to a warm start condivation Request is automatically set if the M4 maintenance bits are operated with automatic verification face, MC145572 deactivates to a cold start condition and gives an error indication interrupt. Deactiloop is active. If Deactivation Request (NR2(b2)) is not set to a 1 before LT deactivates the U-interface. This should be done in response to the M4 channel dea bit being received as 0 by NT when the ANSI T1.601 specifies that NT can not initiate deactivation. The MC145572 deactivates to a warm NT DEACTIVATION PROCEDURES AND WARM START away, NR1 returns to \$B and an interrupt is generated, if enabled. on NR1 reading as $\$ 8$. ANSI T1.601 only indicates that U-interface transceivers must deactivate when limit on how long NR1 may read as \$A when data transparency is lost. There is a 480-ms time limit

Freescale Semiconductor, Inc

 the MC145572 register interface，it can easily be used in proprietary applications The text in this chapter is based on an ANSI T1．601 compliant application．Due to the flexibility of is asserted when the appropriate interrupts have been enabled． tions．Figure $7-1$ shows the relationship between the received superframe and when the interrupt line mance monitoring Line Unit Like－NT1）type line cards for use in digital loop carrier systems using end－to－end perfor－ Sections 7.5 and 7.6 provide information of interest to designers of LULT／LUNT（Line Unit Like－LT／ is set to a 1 ． nel dea bit，BR1（b6），can also be configured to automatically issue a deactivation request in NT mode to automatically enable or disable customer data when in NT or LT mode of operation．The M4 chan－ is detected between successive superframes，when a bit changes，or when two or three successive
superframes of a new value are detected．The M4 channel act bit，BR1（b7），can also be configured nel register is updated．Maintenance channel registers can be configured to update when a new value
is detected between successive superframes，when a bit changes，or when two or three successive interfaces．Interrupts to an external microcontroller can be enabled when an eoc，M4，M5，or M6 chan－ An external microcontroller can read from or write to the maintenance channel via the SCP or PCP febe，act，and dea，are contained in subchannels M4，M5，and M6． sisting of 8 bits per superframe．The eoc consists of $M 1, M 2$ ，and $M 3$ ．The overhead bits，such as crc， of a superframe．These 48 bits are divided into 6 subchannels，designated M1 through M6，each con－ 4 kbps maintenance channel（M channel），defined in ANSI T1．601－1992．The maintenance channel When configured for MCU mode operation，the MC145572 provides a very flexible interface to the NOILOnaO41NI

 boundary, not the next superframe boundary. The recommended procedure is for firmware in NT1 to When Customer Enable, NR2(b0), is set to a 1, data transparency occurs on the next IDL frame to a 1 to permit transmission of $2 \mathrm{~B}+\mathrm{D}$ data onto the U -interface. cally enabled. If the Verified act/dea mode is not enabled, Customer Enable, NR2(b0), must be set is a 1 and the M4 channel is configured in the Verified act/dea mode, data transparency is automatiof Verified act, BR3(b3), and Customer Enable, NR2(b0). This means when the received M4 act bit In either the LT or NT modes of operation, customer data transparency is achieved by the logical OR bits when OR7(b0) is a 1 . See Table 4-7 and Sections 4.4.10 and 4.5.8. Note that the Verified act/dea mode BR9(b5, b4) $=0,0$ operates on trinal-checked M4 act and dea The remaining bits in BR1 are updated according to the programmed M4 Control bits in BR9(b5, b4). When OR7(b0) is set to a 1, the received M4 bit positions in BR1 corresponding to act, dea, sai, uoa can be configured for trinal-checking by setting OR7(b0) to a 1 state for two consecutive superframes. The M4 maintenance subchannel bits act, dea, sai, and Superframe Deframer detects that an M4 channel bit has changed state and has remained in that act bit in LT and NT modes and automatic verification of the M4 dea bit in NT mode. In this mode, M4 Control mode 0,0 is the dual consecutive mode of operation with automatic verification of the M4
 bit, OR7(b0), configures the M4 uoa, sai, dea, and act bits to be updated after a trinal-check. See tion 4.4.4 for more details on the M4 channel register operations. When set to a 1 , the M4 Trinal Mode ister BRO. See BR9 in Section 4.4.10 and Verified act and Verified dea, BR3(b2:b1), in SecThe M4 subchannel operates in one of four modes set in $\mathrm{BR9}$ (b5:b4). The received M4 data from the

M4 SUBCHANNEL AND DATA TRANSPARENCY

Regardless of the mode of operation, an update of R6 generates an interrupt whenever Enable $\overline{\mathrm{IRQ2}}$,
NR4(b2), is set to a 1 . sages when the Automatic eoc Processor is enabled in NT mode. R6 is updated at the mid-point
or at the end of a superframe. R6 is updated in all modes of operation. This permits an external microcontroller to monitor eoc mes-

NOI \perp กVO

eoc frames. This mode must be used for proprietary and non-ISDN basic rate applications. $\mathrm{BR9}$ (b7:b6), each to a 1. The update occurs every 6 ms , even if no change has been detected between R6 can be configured to update on every eoc frame by setting eoc Control 1 and eoc Control 0 , -pәıepdn s! is operating as an NT, the decoded eoc is acted on when a valid trinal-check has occurred and R6 In Trinal-Check mode, R6 is updated when three consecutively received eoc frames are the same.
When the automatic eoc mode with trinal-check has been selected and the U-interface transceiver modes are selected by eoc Control 1 and eoc Control 0, BR9(b7:b6) Framer on the next eoc frame boundary, assuming the automatic eoc mode is not enabled. These

 an interrupt generated on every received eoc frame, and on a successful trinal-check of a new eoc The eoc subchannel can operate in one of three modes. The eoc register, R6, can be updated and
 end of each superframe. The Computed nebe is reset to a 0 when a crc error is detected, and is The computed nebe of the last completed superframe is available in Computed nebe, BR3(b3). This information. is transmitted at the end of basic frame 2. See Figure 7-1 and Section 7.7 for interrupt timing status received from the digital carrier system and the febe transmitted on the U-interface. The febe always configure $\mathrm{BR} 2(\mathrm{~b} 4)$ for the correct outgoing febe once each superframe. In digital loop carrier set to a 1 at the end of reception of basic frame 8 when no outgoing febe is required. Software should end of reception of basic frame 8 when it is desired to force an outgoing febe. BR2(b4) must be In NT and LT mode operation when BR9(b1) is set to a 1, BR2(b4) must be cleared to a 0 at the ?!!q əqəғ bu!
of operation and no intervention is required by an external MCU for the MC145572 to send the outgoif febe input, BR2(b4), is active. In this case, "active" means 0 . BR9(b1) reset to 0 is the normal mode When BR9(b1) is reset to a 0 , the transmitted febe is set active, if the computed nebe is active or The febe/nebe Control bit, BR9(b1), controls operation of the transmitted febe status bit. When set to a 1 is updated at the end of each superframe when both Superframe Sync and Linkup, NR1(b3, b1), are The received febe from the last completed superframe is available in Received febe, BR3(b4). It dent febe and nebe counters are available for performance monitoring purposes. computed nebe and of the received febe is available through the register interface. Also, two indepenThe MC145572 has extensive febe and nebe maintenance capabilities. The state of the received SHIE əqəu aNV əqə戸
have to comply with ANSI T1.601.
to 1 s . The M5 and M6 maintenance channels are available for proprietary applications which do not As defined by ANSI T1.601-1992, these are reserved maintenance channels and should be initialized as a pair. An interrupt is generated when BR2 is updated and Enable $\overline{I R Q 0}, N R 4(b 0)$, is set to a 1. verification mode. The received M5 and M6 data from the Superframe Deframer is available in BR2. The M5 and M6 channels operate in the same modes as the M4 channel bits, except for the automatic

M5 AND M6 CHANNELS

$$
\text { An interrupt is generated at this time, if Enable IRQ1, NR4(b1), is set to a } 1 .
$$ mode, the Superframe Deframer does not check for a change in data between received M4 frames. M4 Control mode 1,1 updates the M4 channel register BR1 on every received superframe. In this ated at this time, if Enable IRQ1, NR4(b1), is set to a 1. M4 channel data whenever any single bit changes between received M4 frames. An interrupt is generM4 Control mode 1,0 is the delta mode of operation. The M4 channel register is updated with new

 two consecutive superframes and Superframe Sync, NR2(b1), is set to a 1. An interrupt is generated Deframer detects that an M4 subchannel bit has changed state and has remained in that state for An interrupt is generated when BR1 is updated, if Enable IRQ1, NR4(b1), is set to a 1. in a controlled manner and will reactivate in warm start mode on a subsequent activation attempt. BR3(b1), and deactivation Request, NR2(b2), ensures that the NT U-interface transceiver deactivates In the NT mode of operation the M4 dea bit is checked for a 0 and the logical OR of Verified dea, ANSI T1.601-1992 indicates that data transparency may occur during the last superframe having its
act bit equal to 0 or during the first superframe having its act bit equal to 1 .

 correspondence between the corrupt crc status received from a digital carrier system and the BR8(b3), since it is cleared automatically at the end of the transmitted superframe. This guarantees frame. See Figure $7-3$. When crc Corrupt mode, OR7(b2), is set to a 1 , it is not necessary to clear
 end of reception of basic frame 8 and must be cleared at the end of reception of basic frame 8 . This

 BR8(b3), since it is cleared automatically at the end of the transmitted superframe. This guarantees frame. See Figure $7-2$. When crc Corrupt mode, OR7(b2), is set to a 1 , it is not necessary to clear inverts the outgoing crc in transmitted basic frames $4,5,6$, and 7 of the current transmitted superend of reception of basic frame 4 and must be cleared at the end of reception of basic frame 8 . This of digital loop carrier system LULT and LUNT type line cards.
 crc is corrupted when BR8(b3) is set to a 1 . The crc corruption is accomplished by inverting the

FORCE CORRUPT crc

crc error has been detected on the received superframe data. The Computed nebe is available in BR3(b3) and is a 0 when a frame Sync and Linkup in NR1(b1, b3) are set to a 1 and when an error is detected in the received done by the external microcontroller writing 00 to BR5. The count is incremented when both Supercounting from 0 . Also, BR5 should be reset to 00 after Linkup is detected during activation. This is when the count reaches \$FF. When OR7(b1) is a 1, the nebe counter wraps around and continues 0 when Linkup, NR2(b3), is set to a 1. When OR7(b1) is a 0 , the nebe counter does not wrap around once per superframe during loss of synchronization, i.e., if Superframe Sync, NR2(b1), drops to a puted nebe bit is detected active (0) at the end of the superframe. The count is also incremented (he count is maintained in BR5. The count in BR5 is incremented only when the bit is a 0 . Received febe is available in $B R 3(b 4)$ and is a 0 when active
 ค.

 The current febe count is maintained in BR4. The count in BR4 is incremented only when the re-

Freescale Semiconductor, Inc.

Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not available from Freescale for import or sale in the United States prior to September 2010: ZEUS

Freescale Semiconductor, Inc.

әq \downarrow snm би! $6!!$ s!

 NR1, was read immediately following the previous M4 channel interrupt. When eoc interrupt and NR3(b2), is set and M4 channel interrupt status bit, NR3(b1), is clear assuming that M4 channel regis-

 to the registers for the outgoing superframe (BR0, BR2, or R6) the maintenance channel data that has been received from the digital loop carrier system can be written

 message twice each superframe. The MC145572 should be configured so that interrupts are generated Byte register 9. Note that the eoc maintenance subchannel R6 is updated with a new received eoc transmit the messages upstream or downstream on a frame-by-frame basis. See explanations for reason for this, is intermediate nodes need to do local processing of the eoc messages and must For digital loop carrier applications, maintenance channel registers R6, BR1, and BR3 must be proer transfers data from the maintenance channel registers into the transmitted superframe when the
MC 145572 is configured for LT mode.

 The receive and transmit registers for the maintenance channels are double buffered. Figure 7-2 indi4 or at the end of basic frame 8. See register description for BR9 for more details. When the eoc subchannel is configured to update on every received eoc frame, the update interval
is 6 ms , or twice each superframe. The eoc receive data interrupt can occur at the end of basic frame BR9 description for more details occurs at the end of the superframe or basic frame 8 . See Figures $7-1,7-2$ and $7-3$, and register the M5/M6 subchannel occurs at the end of basic frame 4. The receive data interrupt for the M4 channel tions. When the M4 or $\mathrm{M} 5 / \mathrm{M} 6$ subchannels are configured to update on every received frame in the
subchannel, the update interval is 12 ms or once every superframe. The receive data interrupt for The $\mathrm{M} 4, \mathrm{M} 5 / \mathrm{M} 6$, and eoc maintenance subchannels can be used for signalling in proprietary applicaare numbered from 1 through 8. The Quats in each basic frame are numbered from 1 through 120. loop carrier systems. The basic frames and Quat positions are numbered as in the ANSI T1.601 specifi-
cation. A Quat is the ANSI T1.601 term for the symbols transmitted over the U-interface. Basic frames superframe. This information is particularly useful when designing LUNT and LULT line cards for digital
loop carrier systems. The basic frames and Quat positions are numbered as in the ANSI T1.601 specifiFramer reads maintenance channel registers to include their contents in the outgoing transmitted This section provides details on when interrupts are generated and when the internal Superframe

 superframe.
 a one-to-one correspondence between cre received from the digital loop carrier system and cres digital loop carrier applications, since software does not have to clear BR8(b3) in order to guarantee
 рәı!

derived from the interrupts generated when the receive maintenance subchannel registers are
updated. Figures $7-2$ and $7-3$ show the appropriate timings. It is possible to configure the TxSFS/
SFAX/S0 pin as SFAX and use the pulse to generate a $12-$ ms periodic interrupt. Note though that
SFAX indicates the $2 \mathrm{~B}+\mathrm{D}$ frame in the IDL2 interface that will be transmitted onto the first $2 \mathrm{~B}+\mathrm{D}$
position in basic frame 1 of the U-interface superframe. Due to the internal FIFOs, it is not possible
to guarantee a fixed time between SFAX and the location of the superframe marker on the U-inter-
face.
At the NT end, the ANSI T1.601 specification requires a turnaround delay of 60 ± 2 quats. The
MC145572 has a $60-$ quat turnaround time. This means that the transmitted Superframe Sync word
occurs 60 quats later than the received Superframe Sync word. From an interrupt service routine
point of view, updating BR0, BR2, and R6, the worst case time should be assumed to be 60 quats
+117 quats $=177$ quats, or 2.2 ms. The system software designer should allow extra margin to be
safe. A quat is $12.5 \mu s$ in duration.
At the LT end of the loop, the received Superframe Sync word is $60-2+8$ quats later than the
transmit Superframe Sync word. The $2-q u a t ~ u n c e r t a i n t y ~ c o m e s ~ f r o m ~ t h e ~ A N S I ~ T 1.601 ~ s p e c i f i c a t i o n ~$
for NT turnaround time of 60 ± 2 quats on a 0 length loop. The +8 figure includes worst case propa-
gation delay on an $18,000-$ foot loop. From an interrupt service routine point of view, the worst case
assumption is that the receive Superframe Sync word occurs 68 quats after the transmitted Super-
frame Sync word. For example, from Figure $7-3$, the time between when R6 is updated with the
receive eoc data and when R6 must be updated with the transmitted eoc data, can be calculated
as follows: $117-68=49$ quats or $612.5 \mu s$. The system software designer should leave extra margin
to be safe.
The MC145572 is configurable for the General Circuit Interface or GCI operation．GCI is a time divi－
sion multiplex bus，that combines the ISDN $2 \mathrm{~B}+\mathrm{D}$ data and control／status information onto four signal
pins．There are two clocks per data bit and a single frame synchronization pulse，FSC．
In GCI mode，the MC145572 supports the full set of commands and indications over the Command／
Indicate channel．The monitor channel is used for sending and receiving maintenance channel mes－
sages and accessing the internal MC145572 registers．
As a GCI slave，the MC145572 accepts clock frequencies between 512 kHz and 8.192 MHz ．As a
GCI master，the MC145572 operates at either 512 kHz or 2.048 MHz ．Figure $8-1$ is a typical con－
figuration for the MC145572 in GCI mode．The MC145572 is configured for GCI operation when the
MCU／GCI pin is tied low．The PAR／SER pin must also be tied low．
NOILdIYOSヨG 7VNOIIONnヨ ヨaOW ID⿹

Freescale Semiconductor，Inc．

ผ

io

INTERFACE SIGNALS

 GCI FRAME STRUCTURE

Seven signal pins are available for the time division multiplex bus interface in GCl mode The GCl interface supports two types of frame formats: the single GCl channel and the multiplexed
GCl channel formats. A single GCl channel has the following subchannels: two B channels, Monitor GCl channel formats. A single GCl channel has the following subchannels: two B channels, Monitor
channel, ISDN D channel, Command/Indicate channel, and A and E bits. See Figure 8-2. Referring to Figure $8-2$, the two B channels are used to convey customer data between the
MC 145572 and other GCl devices. The Monitor channel bits are used to convey register and maintenance information between the MC145572 and other GCI devices. The D bits carry the ISDN basic MC145572 and for control functions. The A and E bits are used as handshake signals during the
transfer of monitor channel messages. A multiplexed GCl frame contains from two to eight GCl frames in each 125μ s period. Table 8-2 shows how multiple GCI frames are multiplexed into a $125 \mu \mathrm{~s}$ period. summarizes the number of GCI frames that can be multiplexed into a $125 \mu \mathrm{~s}$ period. Figure 8-3路 - Din - The MC145572 reads data from the GCl interface into this pin during the active GCI channel
selected by S2, S1, S0.

- Dout - In GCI mode, this pin is an open drain output and must be pulled to VDD through a resistor.
The MC145572 outputs data to the GCl interface from this pin during the active GCl channel
selected by S2, S1, S0.
During all other GCl channels, if present, Dout is off. Din accepts data during the channel selected
by S0, S1, and S2. During other GCl channels, if present, Din ignores any data that is present.

 Table 8-1. GCI Master Mode Clock

Freescale Semiconductor, Inc.
 Semiconductor, inc.

 MC145572 does not issue a response message. Monitor channel commands are given in Table 8-3. onto the write data to an internal MC145572 register be readron and acted upon but the
 A GCI device transmits Monitor channel commands to a receiving MC145572 to gain access to its

MONITOR CHANNEL COMMANDS

sages are interrupt indication messages. These are transmitted by the MC145572 whenever a

 a register read or write command over the Monitor channel. The third group of Monitor channel mesfor a complete description of the $M C 145572$ register set. The second group of messages areresponses from the MC145572. These responses are transmitted by the MC145572 after it receives sages are commands that read or write the internal register set of the MC145572. See Chapter 4 The MC145572 supports three basic types of Monitor channel messages. The first group of mes-
sive GCl frames. Figure $8-5$ shows an example of an delayed GCI Monitor channel message
 If the receiving GCl device does not receive the same Monitor channel byte in two consecutive GCl
frames, it indicates this by leaving $\mathrm{A}=0$ until two consecutive identical bytes are received. The last MC145572.
done. In normal GCI operation it is not necessary to read or write the internal registers of the from the U-interface change, and appropriate dual-checking or trinal-checking of bits has been issues Monitor channel messages whenever the received eoc, M4, or M5/M6 messages received activity is automatically handled by the MC145572 when configured for GCI mode. The MC145572 The entire register set of the MC145572 can be accessed via the Monitor channel. All M4 channel cleared to 0 when the second instance of the byte is received. receiving device setting A to high impedance on the first instance of the next byte, followed by A being the originating GCI device for at least two GCI frames. Successive bytes are acknowledged by the spıммоł 0 о 기!q \forall әцł бu!! it is acknowledged. See Figures 8-4 through 8-8 for details of Monitor channel procedure. transmits the first frame of the second byte. Then, the second byte is repeated with the E bit low until Once the MC145572 acknowledges the first byte, the sending device sets E to high impedance and edges receiving two consecutive GCI frames containing the same byte for at least two GCI frames, or is repeated in subsequent GCI frames, until the MC145572 acknowlE bit to 0 in the same GCI frame as the byte that is transmitted. The transmitted byte is repeated The originating GCI device transmits a byte onto the Monitor channel after receiving the A and Ebits The origing GCI An idle Monitor channel is indicated by both A and E bits being inactive for two GCl frames. The A used to acknowledge the Monitor channel byte transfer. indicates the transmission of a new Monitor channel byte. The A bit from the opposite direction is to $V_{\text {SS }}$ during their respective bit times. Pull-up resistors are required on $D_{\text {in }}$ and $D_{\text {out }}$. The E bit between the MC145572 and another GCI device. When the Monitor channel is inactive, the A and The A and E bits in the GCl channel are used to control and acknowledge Monitor channel transfers the Monitor channel is used for access to the U-interface maintenance messages. Each byte is sent twice to permit the receiving GCI device to verify data integrity. In ISDN applications, U-interface maintenance channel operations. All Monitor channel messages are two bytes in length

Freescale Semiconductor, Inc.

Freescale Semiconductor, Inc.

Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not available from Freescale for import or sale in the United States prior to September 2010: ZEUS

Table 8-3. Monitor Channel Commands
Freescale Semiconductor, Inc. are handled automatically. It is possible to set bits in the 145572 register map using Monitor chanIn normal GCI operation, the M4 channel act, dea, uoa, sai, ps1, ps2, and reserved status bits
C / I channel indications are used to notify a layer 2 device, that certain events have occurred, such
as a change in activation status. indications MC145572 to issue a C/I channel response. Table 8-6 summarizes the C/I channel commands and C / I channel commands are used to activate, or deactivate the MC145572. They are also used to imple-
ment loopbacks and perform control functions. Some C/I channel commands may cause the bits are transmitted starting with bit 4.

 Command/Indicate Channel Operation
The Command/Indicate, or C/I channel, is used to activate Freescale Semiconductor, Inc.
$\forall 70 y O 1 O W$

Freescale Semiconductor, Inc.

Freescale Semiconductor，Inc．

Freescale Semiconductor，Inc．

7
0
0
0
0
0
0
0
0
0
0
0
0.
0
0
0
0
0
0
0
0
0

Freescale Semiconductor, Inc.

7
0
0
0
0
0
0
0
0
0
0
0
3
0
0
0
0
0

Freescale Semiconductor, Inc.
be stable prior to activating the MC145572.

U-INTERFACE SUPERFRAME ALIGNMENT

configured as a master, the MC145572 drives FSC as an output. an input driven by external circuitry. FSC must be synchronized to the clock applied to DCL. When M / S is pulled high to VDD, GCI master operation is selected. When configured as a slave, FSC is The MC145572 can be configured for GCl master or GCI slave operation independently of LT or NT
configuration. When the pin M / \bar{S} is pulled low to $\mathrm{V}_{\mathrm{S}}, \mathrm{GCI}$ slave operation is selected. When the pin GCI MASTER AND SLAVE MODE OPERATION Freescale Semiconductor, Inc.

Freescale Semiconductor, Inc.
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not available from Freescale for import or sale in the United States prior to September 2010: ZEUS

Freescale Semiconductor, Inc.

Freescale Semiconductor, Inc.

Freescale Semiconductor, Inc.

Freescale Semiconductor, Inc. NOILZZITVIIINI GNV NOILVAIIOV munications.

Abstract

electrical mode timeslot assignment, block error rate calculation, and non-ISDN D channel com-

 NOIIOnaOYINI
Freescale Semiconductor, Inc. MCU MODE PROGRAMMING S

LT or NT modes. Procedure NTINIT1 in Section 9.2 .1 initializes the MC145572 for automatic eoc
operation when configured as an NT. The corresponding sample high level embedded operations Sample initialization routines are provided on how to initialize the MC145572 when operated in the
LT or NT modes. Procedure NTINIT1 in Section 9.2.1 initializes the MC145572 for automatic eoc

M5 and M6 Maintenance Channels: Data is put onto these channels by writing to BR2. Data
is read from these channels by reading BR3. Currently all bits in these channels are defined by

pinous səreэ!pu! uou!eगџ! The NT uses this channel to send its activation status to the LT. The NT also uses this channel The LT also uses this channel to tell the NT when it is intending to deactivate the U-interface. channel by reading BR1. This channel is used by the LT to signal its activation status to the NT. procedures

 eoc Channel: This channel is accessed via register R6. It is used to convey eoc messages from
the LT to the NT. The NT conveys its acknowledgment of eoc messages back to the LT on this tenance channel. These channels are

 the maintenance channels at the time activation occurs. The ANSIT1.601-1992 specification indicates
the default and operational data that should appear on these channels. A microcontroller write to the The MC145572 should be initialized so that when it activates, the correct data is present on all of initialization routines. The Software Reset bit (NRO(b3)), need only be set to a 1 , then reset to a 0 , as part of the power-up
 ensures that the correct data appears on the maintenance channels when linkup is achieved and the tion in Progress (NR1 (b0)) is first detected set to a 1, or when deactivation has been confirmed. This

 ؛əрол ォәч70

Procedure NTACT1();
/*
PURPOSE:
The activation procedure
tion routine NTINIT1, set
outline, NTISR1, is also given.
An initialization and activation procedure for an NT1 follows. A suggested interrupt service routine nal equipment (TE) or upon cycling of NT1 power. MC145572 in the above modes and are an example implementation of an NT initiated full activation
in an NT1. The NT1 initiates activation of the U-interface only when requested to do so by the termiutive times. The following three code segments: NTACT1(), NTINIT1), and NTISR1() configure the
MC145572 in the above modes and are an example implementation of an NT initiated full activation mode is used in this example. Note that only the act, dea, and uoa M4 bits are verified three consectrinal checking, decoding, and implementation of eoc messages. The M4 trinal consecutive check defined in ANSI T1.601-1992. In this mode, the external microcontroller does not need to perform The MC145572 provides a mode for trinal checking and automatic invoking of NT1 eoc functions as

NT Automatic eoc Mode Initialization and Activation

get febe counts due to the LT transceiver not having completed its activation sequence. or cold start. If the febe and nebe counters in the NT are cleared when linkup occurs, it is possible to nebe counters is when the M4 channel act bits are first exchanged after initial activation from warm count values accurately reflect CRC errors during this time. A reasonable time to clear the febe and without the U-interface transceiver going to the full reset state, it is important that the febe and nebe only clear these counters upon initial activation. When a temporary loss of frame sync or signal occurs ers, BR4 and BR5, should be cleared by the software. Provision must be made so these two registers
are not cleared if there has been a temporary dropout of data transparency or loss of frame sync; i.e., When the U-interface transceiver first activates after a cold or warm start, the febe and nebe count-
ers, BR4 and BR5, should be cleared by the software. Provision must be made so these two registers since the specific eoc handler used will respond to the incoming eoc messages from the LT to \$1FF (Return to Normal) when in the LT mode. It is not necessary to initialize R6 in the NT mode reserved bits set to 1 s . The bits in the M5 and M6 channels are all initialized to 1 s and R 6 is initialized mode indicates the act bit is not asserted, the dea bit is not asserted, and all ANSI T1.601-1988 mode. The $\$ 77$ in NT mode indicates act bit not asserted, ps1 and ps2 status normal, NT1 not in
test mode, warm start capability, and all ANSI T1.601-1988 reserved bits set to 1s. The \$7F in LT implementation specific. In this example, M4 channel is initialized to $\$ 77$ in NT mode and $\$ 7 F$ in LT
mode. The $\$ 77$ in NT mode indicates act bit not asserted, ps1 and ps2 status normal, NT1 not in written to or read from registers is in hexadecimal. User eoc, M channel, and activation handlers are The sample initialization and operation examples given here are to be used as a guide only. All data it is operated in LT mode. is also provided in Section 9.2.2 Procedure LTINIT1 in Section 9.3 initializes the MC145572 when corresponding sample high level embedded operations channel interrupt service routine, NTISR2, channel interrupt service routine, NTISR1, is also provided in Section 9.2.1. Procedure NTINIT2 in
Section 9.2 .2 initializes the MC145572 for non-automatic eoc operation when in the NT mode. The Freescale Semiconductor, Inc.
channel interrupt service routine, NTISR1, is also provided in Section
$\forall 70 ч 0 \perp 0$ W
${ }^{\text {罣 }}$

Procedure NTINIT2（）

[^2] PURPOSE： Procedure NTACT2（）；
An initialization and activation procedure for an NT1 follows with numbers in hexadecimal．A suggested
interrupt service routine outline，NTISR2，is also given． The activation procedure，NTACT2，resets the U－interface transceiver，calls the initialization routine
NTINIT2，sets activate request，and waits for interrupts． eoc command set
The eoc message processor，given as an example here，covers a very limited implementation of an dual consecutive check mode is enabled．The examples in this section configure an NT U－interface
transceiver in these modes and activate it． forms eoc frame trinal checking，thus relieving the external microcontroller of this task．The M4 channel
dual consecutive check mode is enabled．The examples in this section configure an NT U－interface The MC145572 can be operated with eoc frame trinal checking and eoc interrupts enabled so an
external microcontroller may handle all eoc commands in software．Note that the MC145572 still per－
NT Non－Automatic eoc Mode Initialization and Activation

Freescale Semiconductor，Inc．

*70yoıow

LT Mode Initialization and Activation

Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not available from Freescale for import or sale in the United States prior to September 2010: ZEUS

界 ＊／
（）uxn7əォ

END
IF NR3（b2）$=1$ THEN／＊Test for eoc channel interrupt＊

 әләч sәбиецว sn7e7s an
 last received BR1 $(\mathrm{b} 7)=0$ THEN NIפヨ্দূ
 NR2（b0）＜－1；／＊Enable data transparency at LT＊ BR5＜－00；

IF NR3（b3）$=1$ THEN 1 only if the LT is receiving M4 act bit equal to 1 from the NT．This is per ANS
T1． $601-1992$ section 6.4 .6 .4 ．If the Error Indication status bit，NR1（b2），is set to 1
appropriate measures can be taken．
It is not necessary to reset the MC145572 after an activation failure occurs．A reset only many possible implementations．Note that the M4 channel act bit towards the NT is set to a
1 only if the LT is receiving M4 act bit equal to 1 from the NT．This is per ANS
T1． $601-1992$ section 6．4．6．4．If the Error Indication status bit，NR1（b2），is set to 1 ， Correct reception is indicated when the received eoc message in R6 is the same as the eoc The interrupt service routine LTISR1 checks for Linkup with Super frame Sync or for an
Error Indication．If linkup is achieved，the febe and nebe counters are cleared and the M4
act bit is set to a 1 ．A check is made for correct reception of the eoc message by the NT1． ：\＃SO dyñ

A typical arrangement of timeslots for four U-interface devices is shown in Figure 9-2. The procedure
TSACinit () shows how to configure the MC145572 as if it occupies the timeslots highlighted in Figure 9-2 to one of the TSAC registers (OR0 through OR5). is the maximum number of 2-bit timeslots. Programming the MC145572s TSAC is accomplished by Figure $9-1$ shows an 8 kHz TDM frame divided into 2 -bit timeslots labeled TSO through TSn-1. ' n '
is the maximum number of 2-bit timeslots. Programming the MC145572s TSAC is accomplished by With the MC145572s TSAC, B, and D channel timeslots can be assigned an any 2-bit boundary. on a TDM bus. a flexible Timeslot Assigner (TSAC), allowing it to transmit and receive 2B+D data in any timeslot In modern Central Office Switches (COS) or Private Branch Exchanges (PBXs), a Time Division Multi-
plex (TDM) bus may carry data from several different U-interfaces. The MC145572 is designed with TIMESLOT ASSIGNER PROGRAMMING EXAMPLE

seconds and error free seconds

 Since the superframe period is $12 \mathrm{~ms}, 100$ superframes will be transmitted or received in 1.2 se－ between interrupts． set to 1.2 seconds to guarantee that the febe／nebe counters do not roll over more than once was not available in the MC145472．When this feature is enabled，the febe／nebe counters will
rollover from $\$ F F$ to 00 instead of saturating at \＄FF．The interrupt period of this example has been of the febe／nebe bits in detail．The MC145572 adds a febe／nebe counter rollover feature which
was not available in the MC145472．When this feature is enabled，the febe／nebe counters will
 the status bits，BR4 is the febe counter and BR5 is the nebe counter．When a febe or nebe is The MC145572 has febe and nebe status bits，as well as febe and nebe counters．BR3 contains can easily be determined an interrupt from the value read in the previous interrupt，the error count over a specific time interval occurred in the last 100 superframes．By subtracting the value of the febe／nebe counters read during BLER＿ISR determine the BLER by calculating the number of far－end and near－end block errors that far－end and near－end receiver＇s performance．Using a timed interrupt，the procedures BLER＿init and This example shows how to use the MC145572 febe and nebe counters to calculate a BLock Error
Ratio（BLER）．The BLER is a useful measure of the channel quality as well as a measure of the

BLOCK ERROR RATIO CALCULATION USING febe／nebe COUNTERS累

$$
\begin{aligned}
& \text { Timeslot assignment: } \\
& \text { When the DCL clock frequency }=4.096 \mathrm{MHz} \text { there are } 8 \text { possible } 32 \text {-bit GCI timeslots. In this } \\
& \text { example we will program the MC145572 to transmit and receive in the } 4 \text { th GCI timeslot. }
\end{aligned}
$$

PURPOSE：
\quad Program GCI timeslot in IDL－2 GCI $2 \mathrm{~B}+\mathrm{D}$ data format
INITIAL CONDITIONS：
MC145572 configured for IDL－2 slave mode
DCL clock rate $=4.096 \mathrm{MHz}$ Procedure GCI2B＋Dinit（）；

GCI 2B＋D MODE PROGRAMMING EXAMPLE
This example shows how to program the MC145572 when the GCI 2B＋D format is selected instead
of IDL 8－and 10－bit modes．See Section 5.4 .3 for a description of the $G C I 2 B+D$ mode．

罻

nel communications through Overlay register OR12.

Abstract

 The following two procedures are a basic example of how to communicate over the D channel using

 routine.register OR12 has been read. This must be taken into account when writing the interrupt service
routine. same time as a D channel interrupt, it is latched and generates an interrupt to the MCU after D Channel received. This interrupt occurs every $500 \mu \mathrm{~s}$. When an activation interrupt (also IRQ3) occurs at the
same time as a D channel interrupt, it is latched and generates an interrupt to the MCU after D Channel special code is loaded into NR1 (NR1 = 1111) to indicate that a new byte of D channel data was channel data is accessible through Overlay register OR12. If IRQ3 is enabled and BR10(b1) $=1$, a the IDL interface. Once activation is achieved, transparent data is enabled and BR10(b1) is set, D In MCU mode, the MC145572 provides a means to transmit and receive D channel information through
the SCP or PCP. This allows an MCU to access the D channel without using the D channel port or Central Office Terminal (COT) and the ring detect status is transmitted from the COT to the RT (see
Figure 9-3). In pair-gain applications, the off-hook status is transmitted from the Remote Terminal (RT) to the
Central Office Terminal (COT) and the ring detect status is transmitted from the COT to the RT (see information over the D channel of the U-interface. speed status information. The MC145572 provides a simple means to transmit this type of status In non-ISDN applications, such as pair-gain multiplexing, it is often necessary to communicate lowCONTROL PORT
In non-ISDN applications,

罗
罗
$\stackrel{\rightharpoonup}{\circ}$
$\stackrel{\stackrel{\rightharpoonup}{0}}{\omega}$ $\stackrel{\rightharpoonup}{\circ}$ $\stackrel{\rightharpoonup}{\square}$

										芴
					$\underset{\substack{-1 \\ \hline 8}}{\substack{1}}$	${ }^{-1}$	$\overline{=}$	\bigcirc	号	¢
	名	$\begin{array}{\|l\|l} \text { n } \\ \text { 亏ु } \\ \underline{0} \\ \hline \end{array}$			$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & + \\ & + \\ & \text { vु } \end{aligned}$	$\left\|\begin{array}{l} 1 \\ \stackrel{\rightharpoonup}{+} \\ 0 \\ + \\ + \\ \dot{\infty} \end{array}\right\|$	$\stackrel{+}{+}$	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \vdots \\ & 0 \\ & + \\ & + \\ & 0 \\ & \omega \end{aligned}$	1 0 0 0 c i	¢
，	تُ	2			\bigcirc	\bigcirc	浐	＜	＜	$\stackrel{C}{\square}$

ABSOLUTE MAXIMUM RATINGS
（Voltages Referenced to $V_{S S}$ ）

（0．98＋Ot 0t $-=\forall_{1} \% \% \mp \mp \wedge 0.9=001$ ） 30NVWYO켴d

RECOMMENDED OPERATING CONDITIONS
（Voltages Referenced to $V_{S S}, T_{A}=-40$ to $+85^{\circ} \mathrm{C}$ ）
ELECTRICAL SPECIFICATIONS

Freescale Semiconductor, Inc.

Ref. No.	Parameter	Min	Typ	Max	Unit	Note
1	FSR or FSX Period	125	125	-	$\mu \mathrm{s}$	1
2	Delay From the Rising Edge of DCL to the Rising Edge of FSX or FSR	-	-	30	ns	
3	Delay From the Rising Edge of DCL to the Falling Edge of FSX or FSR	-	-	30	ns	
4	DCL Clock Period	391	-	1953	ns	2
5	DCL Pulse Width High, Nominal 512 kHz 2.048 MHz DCL Clock 249 Pulse Width High 2.56 MHz DCL Clock 59 Pulse Width High 2.048 MHz 2.56 MHz 512 kHz	$\begin{aligned} & 878 \\ & 210 \\ & 170 \\ & 160 \\ & 120 \\ & 825 \end{aligned}$	— — -	$\begin{gathered} 1074 \\ 265 \\ 215 \\ 315 \\ 265 \\ 1120 \end{gathered}$	ns	3
6	DCL Pulse Width Low	45	-	55	\% of DCL Period	4
7	Delay From Rising Edge of DCL to Low-Z and Valid Data on $D_{\text {out }}$	-	-	30	ns	
8	Delay From Rising Edge of DCL to Data Valid on $\mathrm{D}_{\text {out }}$	5	-	30	ns	
9	Delay From Rising Edge of DCL to High-Z on Dout	-	-	30	ns	
10	Data Valid on $\mathrm{D}_{\text {in }}$ Before Falling Edge of DCL ($\mathrm{D}_{\text {in }}$ Setup Time)	25	-	-	ns	
11	Data Valid on $\mathrm{D}_{\text {in }}$ After Falling Edge of DCL ($\mathrm{D}_{\text {in }}$ Hold Time)	25	-	-	ns	
12	Delay From Rising Edge of DCL to TSEN Low	-	-	30	ns	5
13	Delay From Falling Edge of DCL to TSEN High	-	-	30	ns	
3. The duty cycle of DCL is between 45% and 55% when operated in Master Timing mode. This duty cycle is guaranteed for all DCL clocks, except the clock that is used for making timing adjustments, in order to maintain synchronization with the received signal when operating in NT mode. In NT Master mode, the MC145572 conveys timing adjustments over the DCL clock of the device. This is done by adding or subtracting a single 20.48 MHz clock period of 48 ns to the high phase of DCL clock on two successive IDL frames, once per U-interface basic frame. The total adjustment is 96 ns distributed over the two IDL frames. When DCL is configured for 2.048 MHz or 2.56 MHz , the adjustment occurs during clock pulse number 249 after FSX/FSR. The count starts at clock pulse 0 for the DCL clock immediately following FSX/FSR. When DCL is configured for 512 kHz , the adjustment occurs during DCL pulse number 59. It is important to remember this when using the timeslot assigner, since it is possible to program it to transfer 2B or D data during the clock period where the timing adjustment is being made and this may effect setup and hold times for other components in a system.						

Freescale Semiconductor, Inc.

	N	N	N	N	N	N	N	$\stackrel{\rightharpoonup}{\bullet}$	$\stackrel{\rightharpoonup}{\infty}$	$\stackrel{\rightharpoonup}{*}$	の	ज	＋	
													10 00 0 0 00 \times 0 0 0 0 0	
$\stackrel{\text { D }}{\stackrel{\text { ® }}{\gtrless}}$	N	N	A	cr	$\stackrel{N}{A}$	1	｜	\cdots	1	｜	N	O	$\stackrel{N}{\mathrm{~N}}$	3
	｜	｜	G	ç	$\stackrel{\rightharpoonup}{\varphi}$	ω	ω	ω	ω	ω	｜	｜	1	$\underset{\substack{\text { ® }}}{\substack{\text { a }}}$
$\begin{aligned} & x \\ & \frac{x}{3} \\ & \frac{1}{3} \\ & 0 \\ & 0 \end{aligned}$	ふ	ら			戸	Ш	ふ	ぁ	ఒ	Ə	戸	Ш	ह	$\stackrel{C}{ㄷ}$
$\begin{aligned} & \vec{N} \\ & \stackrel{\rightharpoonup}{\rightharpoonup} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$					ω		N						\rightarrow	$\underset{\text { 2 }}{\text { z }}$

Freescale Semiconductor, Inc.

$$
\begin{aligned}
& \begin{array}{l}
\text { 3. In IDL 8-and 10-bit formats, TSEN is valid during the B1, B2, and D channel timeslots. TSEN will be aligned with data on } \\
\text { the } D_{\text {out }} \text { pin. } \\
\text { 4. In IDL Slave mode, DCL may be any frequency that is a multiple of } 8 \mathrm{kHz} \text { and is between } 256 \mathrm{kHz} \text { and } 4.096 \mathrm{MHz} \text { inclusive. }
\end{array}
\end{aligned}
$$

or er P ラ ふ ハ ω
$\cdots-\frac{1}{n}$

V＇	8	∞	$\stackrel{7}{7}$	8	\bigcirc	¢	¢	ก	9	8	$\begin{aligned} & \text { © } \\ & \text { © } \end{aligned}$	$\begin{aligned} & \text { G } \\ & 0 \end{aligned}$	¢	c	g	G	\％	c	
																	（әسعл」 ן		$\begin{aligned} & \text { D } \\ & \text { DN } \\ & \text { N1 } \\ & \overrightarrow{3} \\ & \stackrel{\rightharpoonup}{\mathbf{D}} \end{aligned}$
｜	｜	N	N	or	1	｜	0	0	©		$\stackrel{\rightharpoonup}{N}$	$\stackrel{\rightharpoonup}{\infty}$	N	N	N	｜	｜	1	3
W	¢	｜	｜	W	ω	W	ज	$\stackrel{\rightharpoonup}{\sim}$	c	$\stackrel{\rightharpoonup}{\mathrm{N}} \stackrel{\omega}{\sim} \stackrel{N}{\circ} \stackrel{\rightharpoonup}{\circ}$	$\stackrel{\rightharpoonup}{\mathscr{\omega}}$	$\stackrel{\rightharpoonup}{\mathscr{\omega}}$	｜	｜	｜	ω	．	L	$\underset{\sim}{\text { N }}$
ふ	い	ふ	๗	๗	ら	ज	¢	ज		๘	ぁ	い	Ш	Ш	い	Ш	い	ज	$\stackrel{C}{C}$
										の	cr	A	ω	－		N	－		$\underset{\text { Z }}{\substack{\text { ® }}}$

Freescale Semiconductor, Inc.

Freescale Semiconductor, Inc.

Ref．No．	Parameter	Min	Max	Unit	Note
71	Delay From DCL Rising Edge to DCHCLK Rising Edge	－	30	ns	
72	Delay From DCHCLK Rising Edge to Data Valid on DCH ${ }_{\text {out }}$	－	30	ns	
73	Data Valid on DCH ${ }_{\text {in }}$ Before Falling Edge of DCHCLK（DCH ${ }_{\text {in }}$ Setup Time）	25	－	ns	
74	Data Valid on $\mathrm{DCH}_{\text {in }}$ After Falling Edge of DCHCLK $\left(\mathrm{DCH}_{\text {in }}\right.$ Hold Time）	25	－	ns	

Port Timing
IDL2（Master or Slave）Short Frame Sync 8－Bit Format，D Channel

FSR

DCL

DCHCLK

Freescale Semiconductor, Inc.

	su	-	¢2	(әш! \perp plö 	82
	su	-	¢z	(әш! \perp dnıəs 	LL
	su	0ε	-		92
	su	0ε	-		GL
गำN	ท!un	xew	u!w		

Port Timing
 IDL2 (Master or Slave) Short Frame Sync 10-Bit Format, D Channel

	su	-	¢z	и!ноа) уา	28
	su	-	sz	(әய! \perp dnıə 	18
	su	0ε	-		08
	su	0ε	-		62
әำ	ทun	xew	u:N	ләәше..(-on ${ }^{\text {¢oy }}$

Port Timing
IDL2 (Master
Freescale Semiconductor, Inc.

	su	-	GZ		98
	su	-	GZ	(әш! \perp dnıəs 	98
	su	0ε	-		ャ8
	su	0ε	-	әбрヨ бu!s!y y	\&8
링N	ท!uก	xew	u!w	ләәәшеле ${ }_{\text {d }}$	

Port Timing
IDL2 (Master or Slave) Long Frame Sync 10-Bit Format, D Channel
Freescale Semiconductor, Inc.

$\forall 7 O Y O \perp O W$

10.10 SUPERFRAME TRANSMIT AND RECEIVE (SFAX/SFAR) TIMING
Freescale Semiconductor, Inc.

Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not available from Freescale for import or sale in the United States prior to September 2010: ZEUS

$\stackrel{\rightharpoonup}{\square}$	$\stackrel{\rightharpoonup}{8}$	8	∞	$\stackrel{\sim}{9}$	\＆	9	IT
N	N	\vec{N}	N	N	N	｜	3
｜	｜	｜	｜	1	｜	ω	－
戸	ぁ	亏	$\bar{\omega}$	б	б	Ш	¢
	ω	N	－				$\underset{\stackrel{\rightharpoonup}{2}}{\underset{\sim}{2}}$

Freescale Semiconductor, Inc.

Ref. No.	Parameter	Min	Max	Unit	Note
102	FSX Period	125	-	$\mu \mathrm{s}$	1
103	SFAX Period	12.0	-	ms	2
104	Delay From the Rising Edge of DCL to the Rising Edge of FSAR or FSAX	-	30	ns	3
105	Delay From the Rising Edge of DCL to the Rising Edge of FSAR or FSAX	-	30	ns	

NOTES:

1. See Section 10.7 for FSX jitter requirements and specifications.
2. SFAX and SFAR must occur every 96 FSX 8 kHz frames.
3. FAX and SFAR are one DCL clock pulse wide and occur on the next DCL clock pulse after FSX or FSR is asserted.
10.10.3 SFAX/SFAR Output Timing in IDL2 (Master or Slave) Short Frame
Mode

Freescale Semiconductor, Inc. available from Freescale for import or sale in the United States prior to September 2010: ZEUS

10.11 PARALLEL CONTROL PORT TIMING Freescale Semiconductor, Inc.

		ә૫！	 	
				S\＃10N
su	$0+$	0		\＆\＆।
su	0ε	－		て\＆เ
su	$0+$	－		1 ¢
su	$0+$	－		0 ¢
su	－	0t		621
su	－	$0+$		821
su	－	0 S		L21
su	－	OS	мо7 чрP！M Ү7כdОs	9 r
zHW	$1 \cdot t$	－		G21
su	－	02		さてト
su	－	02		\＆と卜
su	－	$0 t$		己⿱亠䒑口1
su	－	0t		121
ทun	xew	u！w		

NOTE: In byte mode read operations, the SCPTx pin is enabled when SCPCLK goes low and SCPEN has gone low.
If SCPCLK is low prior to SCPEN going low, then SCPTx remains in a high impedance state until SCPEN goes low.

* - There may be 127, 128, or 129 SYSCLK cycles per 80 kHz baud period.

ST - This is the start bit of the 30-bit word which contains the 19-bit EYEDATA word.
X - Represents unspecified data.
XX - EYEDATA is output once per received baud.
EYEDATA is held low except for the 31 clock period when it is drvien.

M ${ }^{\text {m }}$	－	1	－		Str
${ }^{\text {d }}$ d	－	七乙	－	әэиец！эедэ 	カカレ
ıd	St	－	St	әэие！！	\＆ャレ
${ }^{\text {d }}$ d	－	－	G1	zНу 8 иечд дәеәю чэпN －ヨヨּ	でト
${ }^{\text {d }}$ d	St	－	－	 	けート
\％	¢s	－	St		0ヶt
su	¢ ε	－	－		681
su	¢\＆	－	－		8\＆－
su	¢\＆	－	－		LEL
\％	¢¢	0 S	St		981
su	－	－	02	（К｜ио әроW	qseı
su	－	－	02		eget
ท！un	xew	$\mathrm{d} \mathrm{K}_{\perp}$	U！	ләәəшеле $^{\text {d }}$	－on fə辶y

Freescale Semiconductor, Inc.

Ref. No.	Parameter	Min	Typ	Max	Unit
147	2B1Q Baud Period	-	12.5	-	$\mu \mathrm{s}$
148	Start of 2B1Q Baud to Tx Baud Clock Rising Edge	-	9	-	$\mu \mathrm{s}$
149	Tx Baud Clock Width High, Rx Baud Clock TxSFS	75	90	100	ns
150	Superframe Period	-	12	-	ms

SWITCHING CHARACTERISTICS FOR BAUD CLOCKS
$\left(\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=-40\right.$ to $+85^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ;$ See Figure 10-15)
Freescale Semiconductor, Inc.

Freescale Semiconductor，Inc．

Freescale Semiconductor, Inc.
 ment of $\mathrm{S} / \mathrm{T}-$ and U-interface terminal equipment. The MC145572EVK ISDN U-Interface Evaluation Kit can be in in the hardware and software develophardware/software development. or terminal activation of the U-interface and as such provides an excellent platform for NT1 and LT nal terminal or PC. A unique combination of hardware and software features allows for standalone interface transceiver as well as in the MC145474/75 S/T-interface transceiver with the aid of an exterThe kit provides the ability to interactively manipulate status registers in the MC145572 ISDN Ucustomer premise (NT1) to the digital switch line card (LT), on a single standalone evaluation board. natively, it can be thought of as having both ends of the two wire U-interface, extending from the into two "halves". The left side of the card is the NT1, while the right side of the card is the LT. AlterThe MC145572EVK ISDN U-Interface Evaluation Kit can be physically and functionally separated tionality is left to entities such as the NT2 nance procedures. It does not, however, provide any interface to higher level protocols - this funcwith a fully functional NT1 connected to an LT. An NT1 provides transparent 2B+D data transfer
between the $U-$ and $S / T-$ interfaces. In addition, it must also provide for network-initiated mainteapproach taken to demonstrate the MC145572 ISDN U-interface transceiver is to provide the user a convenient and efficient vehicle for evaluating the MC145572 ISDN U-interface transceiver. The The MC145572EVK ISDN U-Interface Transceiver Evaluation Kit provides Motorola ISDN customers INTRODUCTION

TRANSCEIVER EVALUATION KIT
MC145572EVK ISDN U-INTERFACE

Freescale Semiconductor, Inc.

Freescale Semiconductor, Inc.

$$
\begin{aligned}
& \text { Figure A-2 is a basic functional block diagram of the MC145572EVK ISDN U-Interface Evaluation } \\
& \text { Kit. Note that the dashed line represents the physical and logical separation between the LT and the } \\
& \text { NT1 sides of the evaluation board. While the board is capable of activating "standalone", the user } \\
& \text { may decide to use a single ASCII terminal to gain total control of the MC145572EVK capabilities. } \\
& \text { Or the user may choose to split the board, allowing the LT and NT1 portions to be physically located } \\
& \text { in separate areas. }
\end{aligned}
$$

Enhanced Command Set from the MC145494EVK MC68HC05 Assembly Language Source Code Available Microcontroller Controlled or Automatic Activation/Deactivation
Access to All Maintenance Channels Device Driver for Serial Control Port Interface Standalont Firmware Monitor for Use

Standalone or Terminal Operation
N
$\stackrel{(1)}{\square}$
\qquad required to remain within specification up to the maximum loop current which may be as high as mance. It is also suggested that transformers manufactured for use in loop powered systems be the U-interface transformer
Any transformer manufactur reference schematic appears in Figure B-1. The specifications in Table B-2 apply to the design of

$$
\begin{aligned}
& \text { 1. See Caution note above. } \\
& \text { 2. Part numbers subject to change. } \\
& \text { 3. APC also manufactures line interf }
\end{aligned}
$$

Manufacturer	Part No.	Package Dimensions L x W x H	Fax No.	Contact/Phone No.
Midcom	$671-7308$	$1.05^{\prime \prime} \times 0.92^{\prime \prime} \times 0.45^{\prime \prime}$	$(605) 886-4486$	$(605) 886-4385$
Schott Corporation	67146720	$1.05^{\prime \prime} \times 0.92^{\prime \prime} \times 0.45^{\prime \prime}$	$(615) 885-0834$	$(615) 889-8800$
APC	41018	$19.6 \mathrm{~mm} \times 25.1 \mathrm{~mm}$ $\times 13.2 \mathrm{~mm}$	USA: $(201) 368-1704$ UK: $(44) 1634-290-591$	USA: $(201) 368-1750$ UK: $(44) 1634-290-588$
Pulse Engineering	PE 68628	$1.05^{\prime \prime} \times 0.92^{\prime \prime} \times 0.45^{\prime \prime}$	$(619) 674-8262$	$(619) 674-8100$
Valor Electronics	PT5062	$0.82^{\prime \prime} \times 0.82^{\prime \prime} \times 0.675^{\prime \prime}$	$(619) 537-2525$	(619) $537-2500$

Table B-1 lists sourcing information for the transformers used in the MC145572 line interface circuit.

$$
\begin{aligned}
& \text { Motorola has conducted limited evaluation of third party components for use with the } \\
& \text { MC145572. This limited review suggests that the components included here appear to be } \\
& \text { suitable for applications using the MC145572. However, the evaluation did not include all } \\
& \text { specifications or parameters that may be applicable to particular designs, and the vendors } \\
& \text { included here represent only a partial list of component manufacturers. Motorola does not } \\
& \text { guarantee that these third party components will work in all applications. It is the responsi- } \\
& \text { bility of the equipment designer to verify that these components are suitable for their } \\
& \text { intended application. } \\
& \text { TRANSFORMER SOURCES }
\end{aligned}
$$ updates on this information Contact your local Motorola representative or the Motorola factory applications staff for the latest manufacturer and information presented here is only as current as the printing of this document. This information is provided to assist in sourcing the various parts used in the application of the

MC145572 U-interface transceiver. The detailed specifications for these parts are available from the
$\stackrel{\oplus}{\omega}$

Freescale Semiconductor, Inc.

ャレト6－06L（80t）	G0¢0－ZZS（80t）	 кемулед реәшуео в9гь	smets＾s 0
0L9।－LGE（GIZ）	†¢¢ع－LSE（¢ıర）	шоэ•duенәәи！®ups！yu！！：！！eш－ə 99681 $\forall d$＇pue｜아 	
己ZLL－698（80t）	ع\＆LL－69¢（80t）	шоつ・əләsndmoo＠s ＊＇S＇\cap tZ IG6 \forall O＇əsor ues 	7 I IINWO
92 tS 9869 （ıE\＆）	カt $0 ¢ 9869$（เع®）		$7 \exists \pm$ INWO
ちてOレーくカち（て，	†てટ七－¢LE（ટ，	 	
ZLLO－GLG（01E）	ZLLO－G 29 （01E）	 	＇oul＇swəəs＇s
660t－\＆LL（ 202 ）	000t－عLL（LOL）	 	sчıомұәuә｜ә！
－0N Xe」			ィəıпэəənuew

list may not be complete
ISDN CALL CONTROL SOURCE CODE SUPPLIERS

7 0

－Kıddns ıəmod ә૫ł ио Kג！nכג！

 －əsiou pәıе！pe» イэuәnbəィ Use short，low inductance traces for digital circuitry to reduce inductive，capacitive，and radio
frequency radiated noise． radio frequency noise sensitivities． Use short，low inductance traces for the analog circuitry to reduce inductive，capacitive，and
 analog signals．The best PCB layout methods to prevent noise－induced problems are supply，noise generated by the digital circuitry on the device，and coupling digital signals into the
 the signal pins and the connector contacts． rent into or out of the device pins．Current limiting may be accomplished by series resistors between
 The device has input protection on all pins and may source or sink a limited amount of current without negative relative to the VSS pins．One method to accomplish this is to extend the ground and power
contacts of the PCB connector so that power is applied prior to any other pins having voltage applied． care should be taken to limit the voltage on any pin from going positive relative to the VDD pins，or
negative relative to the VSS pins．One method to accomplish this is to extend the ground and power board into a rack with power applied．This is referred to as＂hot－rack insertion＂．In these applications， POWER SUPPLY，GROUND，AND NOISE CONSIDERATIONS
bu！dKıoıoıd and reduce performance，especially on long loops．Wire wrap is not recommended for

 $\exists \perp O N$
care should be taken during PCB layout to assure optimum transmission performance. the task of PCB layout，but due to the wide analog dynamic range and high digital clock rate，special әseə оІ рәиб！ 84 dB dynamic range on the same monolithic chip as the digital signal coprocessors clocking at to radio frequency noise．This special attention to circuit design，results in an ADC with greater than of the MC145572 to reduce sensitivity to noise，including power supply rejection and susceptibility performance for the ADC，DAC，and Tx Driver sections．Special attention was given to the design cessors．The fully differential analog circuit design techniques used for this device result in superior mixed signal processing functions required in the device．The U－interface transceiver has a high
resolution sigma－delta ADC and a precision DAC，in addition to three high speed digital signal copro－ The MC145572 is manufactured using high speed CMOS VLSI process technology to implement the

INTRODUCTION

PRINTED CIRCUIT BOARD LAYOUT

Freescale Semiconductor，Inc．

0
H
$?$

Abstract

the layout of the 2B1Q interface be as symmetrical as possible to avoid any imbalances to this circuit. 20.480 MHz oscillator traces and the power or ground plane. Excessive parasitic capacitance between әчł иәәмұәq sәэиец!эedeo э!!! seıed әz! nents for the OScillator or PLL should have short leads and should be soldered to the PC board. Wherever possible the layout should be symmetrical, so the stray capacitances from each pin of the less than 1 pF . Other digital signals should not be routed near the crystal traces. Any passive compo- nents for the oscillator or PLL should have short leads and should be soldered to the PC board. XTAL in and XTAL out must be kept as short as possible with minimal width to keep stray capacitance All traces must be as short as possible to reduce stray capacitance and inductance. The traces to

\section*{} $$
\begin{aligned} & \text { Figure } \mathrm{C}-1 \text { shows a suggested board layout for a two layer board. This drawing is not done to scale. } \\ & \text { Trace vias are shown. Depending on the application, other pins may need to be connected to VDD } \\ & \text { or } \mathrm{V}_{\text {SS }} \text { All bypass capacitors should be located as close as possible to the } \mathrm{V}_{\text {SS }} / \mathrm{V}_{\text {DD }} \text { pins. The } \\ & \text { suggested layout shows the power feed to the MC145572 coming from a common point. This is } \\ & \text { important in a two layer implementation. The } 10 \mu \mathrm{~F} \text { electrolytic capacitor is recommended to filter } \\ & \text { out any ripple or noise that may be on the board in a two layer application. Even though the } \\ & \text { MC145572 has very high power supply rejection, good power supply decoupling is recommended. } \\ & \text { If a four layer board with full power and ground planes is used, the VDD and VSS pins can be con- } \\ & \text { nected directly to the appropriate plane by vias. } \end{aligned}
$$ $$
\begin{aligned} & \text { but special care must be taken. See Figure } \mathrm{C}-1 \text {. } \\ & \text { The } 20.48 \mathrm{MHz} \text { crystal must be located as close as possible to the MC145572 package. This } \\ & \text { is required to minimize parasitic capacitances between crystal traces and ground. } \end{aligned}
$$essentially the same as for the ground circuit. Motorola recommends that a four layer board b

әле digital and analog VDD pins to the power plane would be the optimal power distribution method. pling for the power supply. For a multi-layer PCB with a power plane, connecting all of the plane under the device, as described in item 5 above, may complete the low impedance coupending on the application, a double sided PCB with VDD bypass capacitors to the VSS ground and, with one trace, connect all of the VDD power supply pins to the $5-\mathrm{V}$ power supply. De- on the integrated circuit is the reason for multiple VSS ground leads. lowest inductance in the ground circuit. This is important to reduce voltage spikes in the ground the optimal ground configuration. These methods will result in the lowest resistance and the the application, a double sided PCB with a VSS ground plane under the device connecting all of the digital and analog VSS pins together would be a good grounding method. A multi-layer with one trace, connect all of the VSS ground pins to the power supply ground. Depending on

шш	9dZLSGt1OW	$\varepsilon \vdash$	$\varepsilon \vdash$	$9^{\circ} \mathrm{r} \times \mathrm{c}^{\circ} 0$	80	$\mathrm{d} \ddagger \mathrm{O} \mathrm{I}$ tot
งə૫วu!	NuZLS¢ttow	902\%	S02\%	¢ $20^{\circ} \mathrm{O} \times \mathrm{s} 20^{\circ}$	090\%	כวาd加
Sulun	әэ!คа	9 uo!suəu!a	\forall uoisuau!a	az!S ped	чว씨 реәา	әбеуэеd

Freescale Semiconductor, Inc.

0
N
may be used. automatic positioner will not stabilize. DIP switches are shown but any convenient binary encoder
 switches can be changed to correctly position the 8 -bit data window. Manual positioning capability matic positioning schematic is shown in Figure D-3. Whenever the manual method is used, the DIP The manual positioning schematic is shown in Figure $\mathrm{D}-2$. The second method provides for auto-
matic or manual positioning of the 8 -bit DAC data window over the 19-bit eye data word. The automethod provides for manual positioning of the 8-bit DAC data window over the 19-bit eye data word. Two circuits are shown for decoding the eye pattern data available on the EYEDATA pin. The first the 19-bit eye data word. In this example, D16 happens to be the sign bit. the 2B1Q quats. See Figure D-1 for an example of the 8 -bit window positioned over a portion of (approximately 1 or 2 V peak-to-peak) eye pattern signal is output from the AD557 clearly showing When the resulting 8-bit window is correctly placed over the 19-bit eye data word, a full scale data including the first sign bit, but not extended sign bits or less significant bits. The 8 bits are shifted
into an 8 -bit serial-to-parallel converter and are then latched into an Analog Device's AD557 DAC. (this is sufficient for acceptable display on an oscilloscope) to display the most significant 8 bits of extended two's complement form. The eye pattern data generators described here use an 8-bit DAC The eye pattern data is output in digital form on the EYEDATA pin and is 19 bits long. It is in sign cancelling and DFE functions have been performed on the signal available at the RxP and RxN pins The eye pattern data output from the MC145572 consists of the received 2B1Q quats after the echo
clocking from the SYSCLK pin and generates an analog eye pattern for display purposes. Note that
BR14(b0) must be set to a 1 to enable the EYEDATA and SYSCLK outputs.
clocking from the SYSCLK pin and generates an analog eye pattern for display purposes. Note that
BR14(b0) must be set to a 1 to enable the EYEDATA and SYSCLK outputs. range of the DAC. The eye pattern generator takes the data available on the EYEDATA pin and the two versions of an eye pattern generator. One design requires manual scaling to the magnitude of
the eye pattern data, while the other design automatically scales to optimize the limited dynamic two versions of an eye pattern generator. One design requires manual scaling to the magnitude of

This appendix describes a circuit to receive the eye pattern word and convert it to an analog voltage
for display on an oscilloscope. digital word once every $12.5 \mu \mathrm{~s}$. Some applications may use this feature for monitoring performance. The MC145572 can provide the recovered eye pattern on a received baud-by-baud basis as a serial INTRODUCTION

8-BIT SAMPLE WINDOW FOR DAC

Freescale Semiconductor, Inc.

The window decoder is used in both manual and automatic circuits. It extracts the 8-bit data word
to be displayed and provides control signals to the 74 LS 164 serial-to-parallel converter and to the

 this analysis. Since the reactive component is so small, having an angle of only 2.20°, it can be ignored when doing $=33.7 \Omega<2.20^{\circ}$

$$
\begin{aligned}
R_{X}= & 5000 \text { * }\left(135-7.9 * 1.25^{2}-8.2-2^{*} 5+j 4\right) /\left(-j 4+8.2+7.9 * 1.25^{2}+2 * 5000 * 1.252\right. \\
& \left.\quad+2^{*} 5-135\right) \\
= & 5000 \text { * }(104.5+j 4) /(15520.5-j 4) \\
= & 5000 * 104.6<2.19^{\circ} /\left(15520.5<-0.01^{\circ}\right)
\end{aligned}
$$ we get: \quad RTP $=5 \Omega$

$$
\begin{gathered}
\mathrm{R}_{\mathrm{i}}=5000 \Omega \\
\mathrm{RTP}=5 \Omega
\end{gathered}
$$

$X_{C}=1 /\left(j^{*} 2{ }^{*} \mathrm{PI} * 40000 * 1 E-06\right)=-j 4 \Omega$ at 40 kHz

Substituting in values,
$R_{X}=R_{i}^{*}\left(R_{L}-N^{2 *} R_{p}-2^{*} R_{T P}-R_{S}-X_{C}\right) /\left(X_{C}+R_{S}+N^{2 *} R_{p}+2^{*} N^{2 *} R_{i}+2^{*} R_{T P}-R_{L}\right.$ Rearranging and solving for R_{X} gives:

The impedance looking into the secondary side of the transformer must equal $R_{L} /\left(N^{2}\right)$ in order to
terminate the line.

The analysis yields the following line interface circuit (see Figure E-4).
The nearest commercial value can be used.
„ric s.000 = LO

 transformer can be found in Appendix B ponent specifications are shown in Table E-5. Sources and specifications for the 2B1Q line interface

 － － 	 	səpo！a ε 4 Idəээe
		：Sヨ1ON
		H
0LVヨ00ELd 	$0 \angle \forall \exists 00 \varepsilon$ Id 	¢0
əuәZ \wedge 9＇s azezsNI		ャロ＇¢๐
1 17 000 Lagw	1 17 000＜agw	z0＇เロ
 	pes＠ 10 N	ty＇¢
 	 	टप＇ty
		乙）
 	 	10
	$\begin{gathered} \text { (eg-ヨ әnб!!!) } \\ \text { uoulduosəa } \end{gathered}$	ґuәuoduos

SNOILVOITddV

Freescale Semiconductor, Inc.

Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not available from Freescale for import or sale in the United States prior to September 2010: ZEUS

Freescale Semiconductor, Inc.

Freescale Semiconductor, Inc.

Freescale Semiconductor, Inc.

Freescale Semiconductor, Inc.

ヨONVWYOJ4ヨd

Freescale Semiconductor, Inc.

Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not available from Freescale for import or sale in the United States prior to September 2010: ZEUS

Freescale Semiconductor, Inc.

Freescale Semiconductor, Inc.

Freescale Semiconductor，Inc．

 test is being performed，since this may cause the on－chip PLL to force the on－chip capacitance array for this，but do not use a clock that is generated by，or derived from，the MC145572 on which the The pullability of a crystal can be measured by putting the $M C 145572$ into $L T$ mode and changing
the frequency applied to the FREQREF input pin．Any external square wave clock source can be used oscillation meet the 20.48 MHz specification．The nominal crystal load capacitance is 24 pF ． calibration load capacitance specification slightly in order to have the free running frequency of plus or minus the tolerance is measured at BUFXTALout．It may be necessary to change the crysta for the nominal center frequency point when the transceiver is deactivated．A frequency of 20.48 MHz MC145572 is set to NT mode operation．In NT mode，the on－chip variable capacitance array is set The free running frequency of oscillation of the 20.48 MHz oscillator can be characterized when the tations may change this figure slightly crystal load capacitance including board traces of about 24 pF ．Note that individual board implemen－
 Do not include the aging and temperature tolerances of the crystal when performing free running
frequency checks at room temperature．If it is desired to verify operation of the crystal oscillator over Also，the measured frequency must be verified against the make tolerance of the crystal at $25^{\circ} \mathrm{C}$ ． introduces severe errors in the measurement this output has not been turned off．Never probe the crystal pins，since the capacitance of the probe 20.48 MHz square wave signal on the BUFXTALout pin to drive a frequency counter．Make sure that

 The MC145572 can be forced to transmit SLO，SL1，SL2，SL3，SNO，TN＋SN1，SN2，SN3， 10 kHz ence，of a signal on the receive pins．Table 4－8 summarizes these signals and the control bits．
 by writing to control bits in Byte register 8．This is very useful for debugging prototypes，since the

STVNDIS LINSNVYI JO TOY\＆NOD

> exit the SCP HIDOM mode and return to normal operation. edges of SCPCLK while SCPRx is high．If $\overline{\text { SCPEN }}$ goes high，or if SCPRx goes low，the device will

Since $20.48 \mathrm{MHz}+193 \mathrm{ppm},-205 \mathrm{ppm}$ exceeds the $\pm 180 \mathrm{ppm}$ minimum crystal pull range specifi-
cation, the oscillator is working correctly. Conclusion:
$\left((|20,483,952.6 \mathrm{~Hz}-20,248,000 \mathrm{~Hz}|)^{*} 1,000,000 \mathrm{ppm}\right) / 20,248,000 \mathrm{~Hz}=+193 \mathrm{ppm}$ BUFXTALout measures as $20,483,952.6 \mathrm{~Hz}$ FREQREF connected to 4 MHz
Results: Configuration 2:
MC145572 in LT mode $\left((|20,475,801.6 \mathrm{~Hz}-20,480,000 \mathrm{~Hz}|)^{*} 1,000,000 \mathrm{ppm}\right) / 20,248,000 \mathrm{~Hz}=-205 \mathrm{ppm}$ BUFXTALout measures as $20,475,801.6 \mathrm{~Hz}$ FREQREF connected to VSS
Results: Configuration 1:
MC145572 in LT mode Example 2: Oscillator Pullability Measurement at Room Temperature
Crystal specification is $\pm 20.48 \mathrm{MHz}$ with 360 ppm or $\pm 180 \mathrm{ppm}$ pull between 15 and 45 pF . See
Section B.3. In this example, $20,480,000 \mathrm{MHz}$ is used as the nominal frequency. In a real life situation
it may be desirable to use the actual measured free run frequency when measuring pullability.
$\left((|20,480,307.2 \mathrm{~Hz}-20,480,000 \mathrm{~Hz}|)^{*} 1,000,000 \mathrm{ppm}\right) / 20,248,000 \mathrm{~Hz}=+15 \mathrm{ppm}$ BUFXTALout measures as $20,480,307.2 \mathrm{~Hz}$ Results:
Crystal specification is $20.48 \mathrm{MHz} \pm 15 \mathrm{ppm}$. See Section B.3.2
MC145572 in NT mode
Example 1: Free Running Frequency of Oscillation Measurement at Room Temperature the pullability in ppm to 4096 kHz instead of 20.48 MHz . It is also possible to use the 4.096 CLKOUT pin to do these measurement, but it is necessary to relate minimum value and thereby increases the frequency of the 20.48 MHz oscillator. Once the oscillator
has stabilized, the frequency of oscillation is measured at BUFXTAL out. exceeds the pull range of the on-chip PLL. This causes the on-chip capacitance array to go to its wave signal that can be between 8001 Hz and 20 MHz . Note that 8001 Hz is +1000 ppm , which cy measurement and to inject a high frequency clock for the high frequency measurement.
To measure the pullability towards the high frequency direction, FREQREF is driven with a square pull up resistor on FREQREF, then automatic test equipment can be programmed for the low frequen-
cy measurement and to inject a high frequency clock for the high frequency measurement. ability can be measured with a frequency counter at BUFXTAL out. If a board is designed to have a to its maximum value. Once the frequency of oscillation has stabilized, the negative direction pull- Freescale Semiconductor, Inc.
\pm

Channel Bank - Communication equipment commonly used for multiplexing voice-grade channels into a digital transmission ly capable of handling about 10,000 subscribers Central Office (CO) - A main telephone office, CCSN - Common Channel Signaling Network. CCITT - Consultative Committee for International Telephone and Telegraph; an international standards group of European
International Telecommunications Union. produce an output signal suitable for transmission. standard telephone service or the effects of noise (background and impulse) on voice-grade data service.
 band.) Broadband - A transmission facility whose bandwidth is greater than that available on voice-grade facilities. (Also called wide

 Blocking - A condition in a switching system in which no paths or circuits are available to establish a connection to the called
 physical symbols/second used within a transmission channel
Baud - A unit of signaling speed equal to the number of discrete signal conditions or events per second. This refers to the Baseband - The frequency band occupied by information-bearing signals before combining with a carrier in the modulation
process. Bandwidth - The information-carrying frequencies between the limiting frequencies of a communication line or channel. Attenuation - A decrease in magnitude of a communication signal acters relates to a fixed time frame, but the start of each character or block of characters is not related to this fixed time frame.
 Anti-Aliasing Filter - A filter (normally low pass) that band limits an input signal before sampling to prevent aliasing noise. ing that the receiver is ready to accept or has received data. Answer Back - A signal sent by receiving data-processing device in response to a request from a transmitting device, indicathalf the sample rate.
Aliasing Noise - A distortion component that is created when frequencies present in a sampled signal are greater than oneinput range. A/D (analog-to-digital) number of digital output codes, each of them exclusively voice on PCM channels. A/B Signaling - A special case of 8th-bit (LSB) signaling in a μ-law system that allows four logic states to be multiplexed with A-Law - A European companding/encoding law commonly used in PCM systems. ucts for Communications.
The list contains terms found in this and other Motorola publications concerned with Motorola Semiconductor Prod-

GLOSSARY OF TERMS AND ABBREVIATIONS

where dBr is the relative transmission level, or level relative to the point in the system defined as the zero transmission level
point. i.e., $\mathrm{dBmO}=\mathrm{dBm}=\mathrm{dBr}$
$\mathbf{d B m O}$ - Signal power measured at a point in a standard test tone level at the same point $\mathrm{dBm}=20 \times \log (\mathrm{Vrms} / 0.775)$, or
$\mathrm{dBm}=[20 \times \log (\mathrm{Vrms})]+2.22$. converted to dBm by: dBm - An indication of signal power. 1.0 mW across 600Ω, or 0.775 volts rms, is defined as 0 dBm . Any other voltage level is $20 \times \log (\mathrm{V} 1 / \mathrm{V} 2)$ for voltage measurements.
dB (decibel) - A power or voltage measurement unit, referred to another power or voltage. It is generally computed as Data Compression - A technique that provides for the transmission of fewer data bits than originally required without infor-
mation loss. The receiving location expands the received data bits into the original bit sequence. D/A (digital-to-analog) converter (DAC) - A converter that represents a limited number of different digital input codes by a
corresponding number of discrete analog output values. cations D3 - D3 channel bank; a specific generation of an AT\&T 24-channel PCM terminal that multiplexes 24 voice channels into a
1.544 MHz digital bit stream. The specifications associated with D3 channel banks are the basis for all PCM device specifiserial bit stream.
CTS - Clear to send; a control signal between a modem and a controller used to initiate data transmission over a communica-
tion line. CSN - Circuit Switched Network Crosstalk - The undesired transfer of energy from one signal path to another
Crosspoint - The operating contacts or other low-impedance-path connection over which conversations can be routed CPE - Customer Premise Equipment; this could be a POTS phone, answering machine, fax machine, or any number of other
devices connected to the PSTN
 followed by an expander at another point for restoring the original amplitude range, usually to improve the signal-to-noise ratio. Compander - A combination of a compressor at one point in a communication path for reducing the amplitude range of signals, Companding - The process in which dynamic range compression of a signal is followed by expansion in accordance with a
given transfer characteristic (companding law) which is usually logarithmic. differential-input terminals. Common Mode Rejection - The ability of a device having a balanced input to reject a voltage applied simultaneously to both COFIDEC - COder-Filter-DECoder; the combination of a codec, the associated filtering, and voltage references required to
code and decode voice in a subscriber line card. CODEC - COder-DECoder; the A/D and D/A function on a subscriber line card in a telephone exchange. information about the caller to the called party
CND - Calling Number Delivery; a subscriber feature which allows for the display of the time, date, number, and possible other CNAM - Calling Name Delivery; a subscriber feature which allows for the display of the time, date, number, and name of the CLID - Calling Line IDentification; a subscriber feature which allows for the display of the time, date, number, and possible
other information about the caller to the called party. include CND, CNAM, Message Waiting, and other features CLASS - Custom Local Area Signaling Service; a set of services, enhancements, provided to TELCO customers which may CIDCW - Calling identity Delivery on Call Waiting; a subscriber feature which allows for the display of the time, date, number,
and possible other information about the caller to the called party, while the called party is off-hook. Freescale Semiconductor, Inc.

Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not available from Freescale for import or sale in the United States prior to September 2010: ZEUS

Gain - The change in signal amplitude (increase or decrease) after passing through an amplifier, or other circuit stage. Usually
expressed in dB , an increase is a positive number, and a decrease is a negative number. suol!วәมр
 Frame - A set of consecutive digit timeslots in which the position of each digit slot can be identified by reference to a frame
alignment. The frame alignment signal does not necessarily occur, in whole or in part, in each frame. path (generally from the microphone), and one pair is for the receive path (generally from the receiver) Four Wire Circuit - The portion of a telephone, or central office, that operates on two pairs of wires. One pair is for the transmit

FDM - Frequency-Division Multiplex; a process that permits the transmission of two or more signals over a common path by ET - Exchange Termination (CO Switch). Equalizer - An electrical network in which phase delay or gain varies with frequency to compensate for an undesired amplitude
or phase characteristic in a frequency-dependent transmission line. a serial stream of PCM samples representing the analog signal. Encoder (PCM) - A device that performs repeated sampling, compression, and A/D conversion to change an analog signal to ated gate that allows communication one way at a time.
Echo Suppressor - A device used to minimize the effect of echo by blocking the echo return currents; typically a voice-operthe speaker/listener or both. Depending upon the location of impedance irregularities and the propagation characteristics of a facility, echo may interfere with A A A
Duplex - A mode of operation permitting the simultaneously two-way independent transmission of telegraph or data signals cal keypad. simultaneously to identify the number dialed. Eight frequencies have been assigned to the four rows and four columns of a typiphase changes will occur from $90^{\circ}, 180^{\circ}$, and 290° to define the digital information DPSK - Differential Phase Shift Keying; a modulation technique for transmission where the frequency remains constant but Distortion - The failure to reproduce an original signal's amplitude, phase, delay, etc. characteristics accurately back to a voice signal. (It will usually multiplex 64 kbps voice and separate data inputs at multiples of 8 kbps .) Digital Telephone - A telephone terminal that digitizes a voice signal for transmission and decodes a received digital signal DN — Directory Number.
Demodulator - A functional section of a modem that converts received analog line signals to digital form Delta Modulation - A simple digital coding technique that produces a serial bit stream corresponding to changes in analog
input levels; usually utilized in devices employing continuously variable-slope delta (CVSD) modulation. communication, but can seriously impair data transmission.) Delay Distortion - Dis representing a sample. Decoding - A process in which one of a set of reconstructed analog samples is generated from the digital character signal dBrnc0 - Noise measured in dBrnc referenced to zero transmission level U.S., where psophometric weighting is rarely used.) dBrnC - Indicates dBrn measurement made with a C-message weighting filter. (These units are most commonly used in the $1 \mathrm{pW}=-90 \mathrm{dBm}$. dBmp - Indicates dBm measurement made with a psophometric weighting filter (•dmgp pue owgp әәs) •dmgp u! pəssəıdxә ләмод әл!!е|әу — domgp

Freescale Semiconductor, Inc.

Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not available from Freescale for import or sale in the United States prior to September 2010: ZEUS
Off-Hook - The condition when the telephone is connected to the phone system, permitting loop current to flow. The central
office detects the dc current as an indication that the phone is busy.

 Multiplex - To simultaneously transmit two or more messages on a single channel. Modem - MOdulator-DEModulator; a unit that modulates and demodulates digital information from a terminal or computer port
to an analog carrier signal for passage over an analog line.
 Mu-Law - A companding/encoding law commonly used in U.S. (same as μ-law) MCU - MicroComputer Unit (also MicroController Unit)
MPU - MicroProcessor Unit. LT - Line Termination (Line Card). Loop Current - The dc current that flows through the subscriber loop. It is typically provided by the central office or PBX, and
ranges from 20 to 120 mA . Loopback - Directing signals back toward the source at some point along a communication path. Loop - The loop formed by the two subscriber wires (Tip and Ring) connected to the telephone at one end, and the central
office (or PBX) at the other end. Generally it is a floating system, not referred to ground, or ac power. Longitudinal Balance - The common-mode rejection of a telephone circuit. an indication of the line length. receive paths, within a telephone, to compensate for different signal levels at the end of different line lengths. A short line (close
to the CO) will attenuate signals less, and therefore less gain is needed. Compensation circuits generally use the loop current as Line Length Compensation - Also referred to as loop length compensation, it involves changing the gain of the transmit and
receive paths, within a telephone, to compensate for different signal levels at the end of different line lengths. A short line (close Line - The portion of a circuit external to an apparatus that consists of the conductors connecting the apparatus to the
exchange or connecting two exchanges. network.
 Key System - A miniature PABX that accepts 4 to 10 lines and can direct them to as many as 30 telsets.
 Jitter - A type of analog communication line distortion caused by abrupt, spurious signal variation from a reference timing
 IRED - Infrared. Used as a wireless link for remote control or to transfer data Intermodulation Distortion - An analog line impairment when two frequencies interact to create an erroneous frequency, in
turn distorting the data signal representation Intermodulation - The modulation of the components of a complex wave by each other (in a nonlinear system) the device or channel is grounded (often a wide-band noise measurement using a C-message weighting filter to band-limit the
output noise). Idle Channel Noise (ICN) - The total signal energy measured at the output of a device or channel under test when the input of the switch was activated by lifting the receiver off and onto a hook on the side of the phone. Hookswitch - A switch that connects the telephone circuit to the subscriber loop. The name derives from old telephones where to mouth and ear Handset - A rigid assembly providing both telephone transmitter and receiver in a form convenient for holding simultaneously switches, and voice-activated speakerphones, are half duplex
Half Duplex - A transmission system that permits communication in one direction at a time. CB ratios, with "push-to-talk"

 speak properly while using a handset. mission sequence on a communication line
Sampling Rate - The frequency at which A minimum REN of $0.2(40 \mathrm{k} \Omega)$ is required by the Bell system. sions in digital transmission systems. -бu!ןе!р
 PSN - Packet Switched Network POTS - Plain Old Telephone Service. PLL - Phase-Locked Loop. to pass, and rejects all frequencies outside the channel. Pair - The two associated conductors that form part of a communication channel nal station-to-station dialing on-hook phone as available for ringing.

Signal-to-Distortion Ratio (S/D) - The ratio of the input signal level to the level of all components that are present when the

 ranges from 300 to 3400 Hz , so a sampling rate of 8 kHz provides dc to 4000 Hz reproduction.
 theorem states that if a band-limited signal is sampled at regular intervals and at a rate equal to or greater than twice the highest
 used by operators (in older equipment) to make the connection. Ring is traditionally negative with respect to Tip.

 Repeater - An amplifier and associated equipment used in a telephone circuit to process a signal and retransmit it. REN of 1.0 equals about $8 \mathrm{k} \Omega$. The Bell system typically permits a maximum of $5.0 \mathrm{REN}(1.6 \mathrm{k} \Omega)$ on an individual subscriber line.

Quantizing Noise - Signal-correlated noise generally associated with the quantizing error introduced by A / D and D / A conver-
Pulse Dialer - A device that generates pulse trains corresponding to digits or characters used in impulse or loop-disconnect Psophometric Weighting - A frequency weighting similar to C -Message weighting that is used as the standard for European
telephone system testing. Propagation Delay - The time interval between specified reference points on the input and output voltage waveforms PLL Frequency Synthesizer - Phase-locked loop frequency synthesizer. A frequency synthesizer utilizing a closed loop, as
opposed to DDS (direct digital synthesis) which is not a closed loop. Phase Jitter - Abrupt, spurious variations in an analog line, generally caused by power and communication equipment along
the line that shifts the signal phase relationship back and forth. PCM - Pulse Code Modulation; a method of transmitting data in which signals are sampled and converted to digital words that PBX - Private Branch Exchange; a class of service in standard Bell System terminology that typically provides the same ser
vice as PABX. Pass-Band Filter - A filter used in communication systems that allows only the frequencies within a communication channel

PABX — Private Automatic Branch Exchange; a customer-owned, switchable telephone system providing internal and/or exter
On-Hook - The condition when the telephone's dc path is open, and no dc loop current flows. The central office regards an
Freescale Semiconductor, Inc.

Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not available from Freescale for import or sale in the United States prior to September 2010: ZEUS

Freescale Semiconductor, Inc.
 Two Wire Circuit - Refers to the two wires connecting the central office to the subscriber's telephone. Commonly referred to as
Tip and Ring, the two wires carry both transmit and receive signals in a differential manner. Twist - The amplitude ratio of a pair of DTMF tones. (Because of transmission and equipment variations, a pair of tones that
originated equal in amplitude may arrive with a considerable difference in amplitude.)
 TSIC - Timeslot Interchange Circuit; a device that switches digital highways in PCM based switching systems; a "digital" crossTSAC - Timeslot Assigner Circuit; a circuit that determines when a CODEC will put its 8 bits of data on a PCM bit stream.
 alerts the subscriber that someone is calling. Ringing voltage is typically $80-90$ volts $\mathrm{rms}, 20 \mathrm{~Hz}$. Tone Ringer - The modern solid state equivalent of the old electromechanical bell. It provides the sound when the central office
 children.

Time-Division Multiplex - A process that permits the transmission of two or more signals over a common path by using a
different time interval for each signal. with teletex.)

TELETEXT - The name usually used for broadcast text (and graphics) for domestic television reception. (Not to be confused introduction of the digital network. (Not to be confused with teletext.) TELETEX - A text communication service between entirely electronic workstations that will gradually replace TELEX with the TE2 - Terminal Equipment 2 (Non-ISDN Terminal) TE1 - Terminal Equipment 1 (ISDN Terminal)

Telephone Exchange - A switching center for interconnecting the lines that service a specific area Tandem Trunk - See trunk. Talkoff - False detections caused by speech. Commonly used to describe the performance of a DTMF receiver when speech,
emulating DTMF, causes the receiver to believe it has detected a valid DTMF tone. it fails to recognize a valid DTMF tone due to cancellation of that tone by speech. Talkdown - Missed signals in the presence of speech. Commonly used to describe the performance of a DTMF receiver when TA - Terminal Adapter. T1 Carrier - A PCM system operating at 1.544 MHz and carrying 24 individual voice-frequency channels Synchronous Modem - A modem that uses a derived clocking signal to perform bit synchronization with incoming data Syn (Sync) - (1) A bit character used to synchronize a time frame in a time-division multiplexer. (2) A sequence used by a
synchronous modem to perform bit synchronization or by a line controller for character synchronization. Switchhook - A synonym for hookswitch. dedicated to that subscriber (also referred to as a loop) Subscriber Line - The system consisting of the user's telephone, the interconnecting wires, and the central office equipment current interface. Speech Network - A circuit that provides 2-to-4 wire conversion, i.e., connects the microphone and receiver (or the transmit the body.
SOJ Package - Small-Outline J-lead package; formerly SOIC with J leads. This package has leads which are tucked under from the body. SOG Package - Small-Outline Gull-wing package; formerly SOIC with gull-wing leads. This package has leads which fold out

Weighting Network - A network whose loss varies with frequency in a predetermined manner

Baud Clock，4－29
Byte Register，5－9

> Crystal Oscillator and Phase Locked Loop (PLL)
> Pins, 3-12
 Command／Indicate Channel，8－11 Clock Reference，3－12

Ω

> Pair Gain Application, Central Office Terminal, $\quad 2-3$ Pair Gain Application, Remote Terminal, 2-3 Repeater Applications, 6-6 Smart NT1, F-4 Typical ISDN Applications, 2-2 U-Terminal, F-3

$\stackrel{1}{+}$
$\substack{1 \\ 0 \\ 0 \\ \hline}$

$\boldsymbol{\infty}$

$>$
 Received febe，4－13
FIFOs，1－2，5－30 BR4，4－14
febe and nebe Bits，7－3
febe，4－24，9－11 \pm
Eye Data, 4-29, 10-31 てート ‘080 บைコ IS」ヨ Return to Normal，4－6 eoc Trinal－Check Mode（b7，b6＝1，0），4－22 eoc Processor Functions，4－22 crc Corrupt，4－20 Don＇t Care），4－22 Echo Canceller，4－27
BR13，4－27
eoc，4－20，5－7，7－2，
Π
D Channel，4－7，4－35，5－20，9－13，10－15，10－17，
$10-19$
D Channel Interrupt，4－7
D Channel Port，5－20
Select DCH Access，4－25
dea，6－5
dea Bit，4－14
\quad Verified dea，4－14
Deactivation，4－8，6－1，8－12
LT Deactivation，6－5
NT Deactivation，6－5
Superframe Update Disable，4－8
Digital Loop Carrier Systems，4－20

meex

Freescale Semiconductor，Inc．

S－t ‘имод－ләмод	
	てレーナ＇tW
	$\varepsilon-L$＇s！！g әqәu pue әqә！
	乙－L＇əəuиечэ्qns suo！！eaədo pəppəquヨ
8－ع＇suld әэедәуи snieis／［одиоо	
	W
เ－\downarrow＇suo！̣d！ussəa uld	
เع－ь ‘6\％	GL－t＇queredsuex dool－ก
	s－ナ＇zg doo7－n
	sl－t＇rg dool－n
uo！！exn6！！uoう uld	S上－t ‘a＋az dool－ก
	Gl－t＇\}ueredsuexı doo7-z7al
	Sl－t＇zя dool－zרa
d	Sl－t＇tя dool－zาal
	Sl－t＇a＋gz doo7－zาal
	S1－ヤ＇949
	82－ヤ＇ャレy
0	
$\varepsilon-L$＇s！！g әqәu pue әqә！	
عا－ヵ ‘əqəu pəındmoう	
カーナ ${ }^{\text {ctaga }}$	
เ上－6＇ゅて－†＇əqəu	
	6－ナ＇tuy
N	6－t＇ε ¢
	L－L＇sıdnıәәиu｜
	9－6＇t－6＇z－6＇uo！̣ez！｜e！！u｜
レて－丈 ‘əpow	
	91－G＇uo！peredo әme入」 Hous
t－s＇ट－s＇乙Lts	8－－G＇uolperedo әwex ${ }^{\text {¢ }}$
81－ナ ‘əле｜S／גə！sew	
61－8＇02－9 ¢əəsew	LZ－G＇әшедәəns
01－†＇9	61－G＇uо！̣eגədo a＋az IOפ
عเ－ナ＇とษย	Lट－G ¢¢ ${ }^{\text {¢ }}$
	¢t－g ¢
てト－ナ 0 ¢タ	
s－9＇ટL－ヵ＇st！g әәиеиәди！ew	I
ε－＇sıəииеиつ 9w pue sw	
	5

Register Maps, 4-1, 4-2, 4-3
Reset, Power-Down
Absolute Power-Down, 4-6
NR0, 4-5
Power-Down Enable, 4-5
Reset, 4-5
Revision Number, 4-29
\quad S
Serial Control Port, 5-4, 5-5, 10-30
Slave, 5-20, 8-19
Superframe, 4-11, 5-27, 8-19, 10-33
LT - NT, 4-11
NT - LT, 4-11

(612)331-6350

$\begin{array}{ll}\sigma & \varrho \\ \vec{y} & \infty \\ \omega & 0 \\ 0 & 0 \\ 0 & 1 \\ \omega_{0}^{\infty} & 1 \\ 0 & 0\end{array}$

Jackson
Newark...
MISSOURI
Earth City
Hamilton/H
St. Louis

$\underset{\sim}{\text { ¢ }} \stackrel{\text { P }}{\text { P }}$	$\xrightarrow{\text { G }}$	$G G O$			OOO	$\stackrel{G}{9}$	$\stackrel{\square}{\square}$			OO	ob or	
	Е	$\pm \pm \pm \pm$	－		\bigcirc	$\stackrel{\square}{\bullet}$	ω			O		
$\infty 0$	山్ల	$\stackrel{\omega}{\omega}$ 잉	ふj	N్N心N N్N	co	ه্ণ	Moc	＋${ }^{\circ}$	A ${ }^{\text {do }}$	চ্ণ		＋${ }^{\circ}$
	$\underset{\sim}{\infty}$	1				M	N					
8	$\stackrel{\rightharpoonup}{+}$	$\stackrel{\rightharpoonup}{8}$			N	N	סo	$\stackrel{\text { N }}{\sim}$		M	¢	－
\％v	$\stackrel{\infty}{\infty}$	○○ソ	∞	$\bigcirc \bigcirc \bigcirc$	∞_{∞}^{∞}	\bigcirc	¢	\checkmark		O	c）	¢

Freescale Semiconductor, Inc.

[^0]:
 In NT mode, the MC145572 synchronizes its DCL clock output pin to the recovered timing from the In addition, the very low frequency response (1 Hz) of the internal PLL loop filter limits jitter present
 in the frequency reference. transmitted 2B1Q signal is synchronized to the frequency reference supplied at the FREQREF pin.

[^1]: Because of an order from the United States International Trade Commission，BGA－packaged product lines and part numbers indicated here currently are not

[^2]: The activation procedure NTACT2 resets the U－interface transceiver，calls the initializa－
 tion routine NTINIT2，sets activate request，and waits for interrupts．

