INTEGRATED CIRCUITS

DATA SHEET

74LVT16373A

3.3V LVT 16-bit transparent D-type latch (3-State)

Product specification Supersedes data of 1994 Dec 15 IC23 Data Handbook

3.3V 16-bit transparent D-type latch (3-State)

74LVT16373A

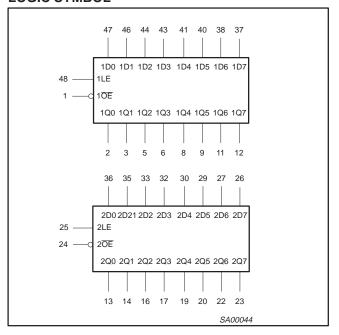
FEATURES

- 16-bit transparent latch
- 3-State buffers
- Output capability: +64mA/-32mA
- TTL input and output switching levels
- Input and output interface capability to systems at 5V supply
- Bus-hold data inputs eliminate the need for external pull-up resistors to hold unused inputs
- Live insertion/extraction permitted
- Power-up reset
- Power-up 3-State
- No bus current loading when output is tied to 5V bus
- Latch-up protection exceeds 500mA per JEDEC Std 17
- ESD protection exceeds 2000V per MIL STD 883 Method 3015 and 200V per Machine Model

DESCRIPTION

The 74LVT16373A is a high-performance BiCMOS product designed for V_{CC} operation at 3.3V.

This device is a 16-bit transparent D-type latch with non-inverting 3-State bus compatible outputs. The device can be used as two 8-bit latches or one 16-bit latch. When enable (E) input is High, the Q outputs follow the data (D) inputs. When enable is taken Low, the Q outputs are latched at the levels of the D inputs one setup time prior to the High-to-Low transition.

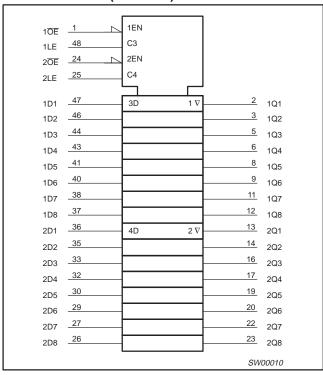

QUICK REFERENCE DATA

SYMBOL	PARAMETER	CONDITIONS T _{amb} = 25°C	TYPICAL	UNIT
t _{PLH} t _{PHL}	Propagation delay nDx to nQx	$C_L = 50pF;$ $V_{CC} = 3.3V$	1.9	ns
C _{IN}	Input capacitance	V _I = 0V or 3.0V	3	pF
C _{OUT}	Output capacitance	Outputs disabled; V _O = 0V or 3.0V	9	pF
I _{CCZ}	Total supply current	Outputs disabled; V _{CC} = 3.6V	70	μΑ

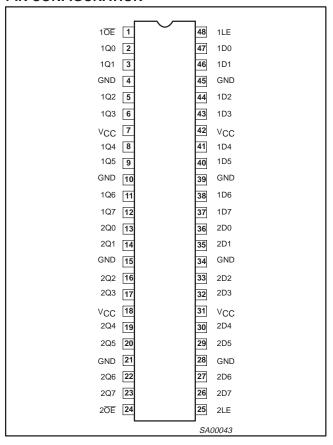
ORDERING INFORMATION

PACKAGES	TEMPERATURE RANGE	OUTSIDE NORTH AMERICA	NORTH AMERICA	DWG NUMBER
48-Pin Plastic SSOP Type III	–40°C to +85°C	74LVT16373A DL	VT16373A DL	SOT370-1
48-Pin Plastic TSSOP Type II	-40°C to +85°C	74LVT16373A DGG	VT16373A DGG	SOT362-1

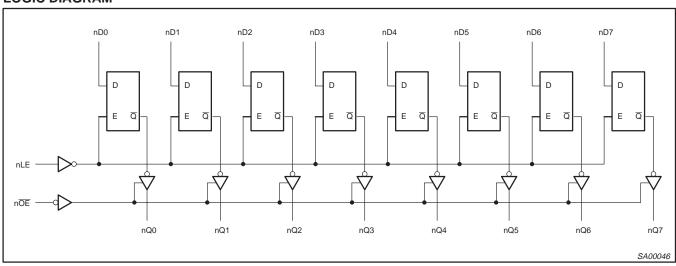
LOGIC SYMBOL


PIN DESCRIPTION

PIN NUMBER	SYMBOL	FUNCTION
47, 46, 44, 43, 41, 40, 38, 37, 36, 35, 33, 32, 30, 29, 27, 26	1D0 – 1D7 2D0 – 2D7	Data inputs
2, 3, 5, 6, 8, 9, 11, 12, 13, 14, 16, 17, 19, 20, 22, 23	1Q0 – 1Q7 2Q0 – 2Q7	Data outputs
1, 24	1 0E , 2 0E	Output enable inputs (active-Low)
48, 25	1E, 2E	Enable inputs (active-High)
4, 10, 15, 21, 28, 34, 39, 45	GND	Ground (0V)
7, 18, 31, 42	V _{CC}	Positive supply voltage


3.3V 16-bit transparent D-type latch (3-State)

74LVT16373A


LOGIC SYMBOL (IEEE/IEC)

PIN CONFIGURATION

LOGIC DIAGRAM

3.3V 16-bit transparent D-type latch (3-State)

74LVT16373A

FUNCTION TABLE

	INPUTS		INTERNAL OUTPUTS		OPERATING MODE			
nOE	nE	nDx	REGISTER	nQ0 – nQ7	OFERATING MODE			
L L	H H	L H	L H	L H	Enable and read register			
L L	\downarrow	l h	L H	L H	Latch and read register			
L	L	Х	NC	NC	Hold			
H H	L H	X nDx	NC nDx	Z Z	Disable outputs			

H = High voltage level

h = High voltage level one set-up time prior to the High-to-Low E transition

L = Low voltage level

I = Low voltage level one set-up time prior to the High-to-Low E transition

NC= No change

X = Don't care

Z = High impedance "off" state

↓ = High-to-Low E transition

ABSOLUTE MAXIMUM RATINGS1, 2

SYMBOL	PARAMETER	CONDITIONS	RATING	UNIT	
V _{CC}	DC supply voltage		-0.5 to +4.6	V	
I _{IK}	DC input diode current	DC input diode current $V_I < 0$		mA	
V _I	DC input voltage ³		-0.5 to +7.0	V	
I _{OK}	DC output diode current	V _O < 0	-50	mA	
V _{OUT}	DC output voltage ³ Output in Off or High state		-0.5 to +7.0	V	
	DC output ourroat	Output in Low state	128	mA	
lout	DC output current	Output in High state	-64	IIIA	
T _{stg}	Storage temperature range		-65 to +150	°C	

NOTES:

- 1. Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
- 2. The performance capability of a high-performance integrated circuit in conjunction with its thermal environment can create junction temperatures which are detrimental to reliability. The maximum junction temperature of this integrated circuit should not exceed 150°C.
- 3. The input and output negative voltage ratings may be exceeded if the input and output clamp current ratings are observed.

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIM	ITS	UNIT
STWIBOL	PARAMETER	MIN	MIN MAX	
V _{CC}	DC supply voltage	2.7	3.6	V
V _I	Input voltage	0	5.5	V
V _{IH}	High-level input voltage	2.0		V
V_{IL}	Input voltage		0.8	V
I _{OH}	High-level output current		-32	mA
I _{OL}	Low-level output current		32	mA
	Low-level output current; current duty cycle ≤ 50%; f ≥ 1kHz		64	
Δt/Δν	Input transition rise or fall rate; Outputs enabled		10	ns/V
T _{amb}	Operating free-air temperature range	-40	+85	°C

1998 Feb 19 4

3.3V 16-bit transparent D-type latch (3-State)

74LVT16373A

DC ELECTRICAL CHARACTERISTICS

					LIMITS		
SYMBOL	PARAMETER	TEST CONDITIONS		Temp =	UNIT		
			MIN	TYP ¹	MAX	1	
V _{IK}	Input clamp voltage	$V_{CC} = 2.7V; I_{IK} = -18mA$			85	-1.2	V
		$V_{CC} = 2.7 \text{ to } 3.6 \text{V}; I_{OH} = -100 \mu\text{A}$		V _{CC} -0.2	V _{CC}		
V_{OH}	High-level output voltage	$V_{CC} = 2.7V; I_{OH} = -8mA$		2.4	2.5		V
		$V_{CC} = 3.0V; I_{OH} = -32mA$		2.0	2.3		1
		$V_{CC} = 2.7V; I_{OL} = 100\mu A$			0.07	0.2	
		V _{CC} = 2.7V; I _{OL} = 24mA			0.3	0.5	1
V_{OL}	Low-level output voltage	$V_{CC} = 3.0V; I_{OL} = 16mA$			0.25	0.4	V
		$V_{CC} = 3.0V; I_{OL} = 32mA$			0.3	0.5	1
		V _{CC} = 3.0V; I _{OL} = 64mA		0.4	0.55	1	
V _{RST}	Power-up output Low voltage ⁵	$V_{CC} = 3.6V$; $I_O = 1mA$; $V_I = GND$ or V_{CC}			0.1	0.55	V
		$V_{CC} = 3.6V$; $V_I = V_{CC}$ or GND	Control pins		0.1	±1	
	Input leakage current	$V_{CC} = 0 \text{ or } 3.6V; V_{I} = 5.5V$	•		0.4	10	μΑ
Η	input leakage current	$V_{CC} = 3.6V; V_{I} = V_{CC}$	Data pins ⁴		0.1	1	
		$V_{CC} = 3.6V; V_I = 0$	Data pins		-0.4	-5	
I _{OFF}	Output off current	$V_{CC} = 0V$; V_{I} or $V_{O} = 0$ to 4.5V			0.1	±100	μΑ
		$V_{CC} = 3V; V_I = 0.8V$	75	135			
I_{HOLD}	Bus Hold current D inputs ⁷	$V_{CC} = 3V; V_I = 2.0V$	-75	-135		μΑ	
		$V_{CC} = 0V \text{ to } 3.6V; V_{CC} = 3.6V$	±500				
I _{EX}	Current into an output in the High state when V _O > V _{CC}	$V_O = 5.5V$; $V_{CC} = 3.0V$			50	125	μА
I _{PU/PD}	Power up/down 3-State output current ³	$V_{CC} \le 1.2V$; $V_O = 0.5V$ to V_{CC} ; $V_I = GND$ $OE/\overline{OE} = Don't$ care	or V _{CC} ;		1	±100	μΑ
I _{OZH}	3-State output High current	$V_{CC} = 3.6V; V_{O} = 3.0V; V_{I} = V_{IH} \text{ or } V_{IL}$			0.5	5	μΑ
I _{OZL}	3-State output Low current	$V_{CC} = 3.6V; V_{O} = 0.5V; V_{I} = V_{IH} \text{ or } V_{IL}$			0.5	- 5	μΑ
I _{CCH}		$V_{CC} = 3.6V$; Outputs High, $V_{I} = GND$ or		0.07	0.12	mA	
I _{CCL}	Quiescent supply current	$V_{CC} = 3.6V$; Outputs Low, $V_I = GND$ or $V_I = GND$		4.0	6		
I _{CCZ}		$V_{CC} = 3.6V$; Outputs Disabled; $V_I = GNE$	O or V_{CC} , $I_{O} = 0^6$		0.07	0.12	
Δl _{CC}	Additional supply current per input pin ²	V_{CC} = 3V to 3.6V; One input at V_{CC} -0.6V Other inputs at V_{CC} or GND	/,		0.1	0.2	mA

- All typical values are at V_{CC} = 3.3V and T_{amb} = 25°C.
 This is the increase in supply current for each input at the specified voltage level other than V_{CC} or GND.
 This parameter is valid for any V_{CC} between 0V and 1.2V with a transition time of up to 10msec. From V_{CC} = 1.2V to V_{CC} = 3.3V ± 0.3V a transition time of 100µsec is permitted. This parameter is valid for T_{amb} = 25°C only.
 Unused pins at V_{CC} or GND.
 For valid test results, data must not be loaded into the flip-flops (or latches) after applying power.

- 6. I_{CCZ} is measured with outputs pulled to V_{CC} or GND.
 7. This is the bus hold overdrive current required to force the input to the opposite logic state.

3.3V 16-bit transparent D-type latch (3-State)

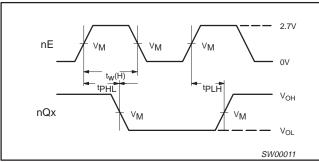
74LVT16373A

AC CHARACTERISTICS

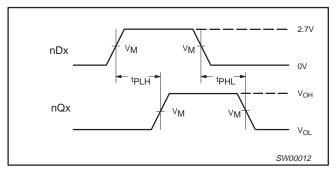
GND = 0V; $t_R = t_F$ = 2.5ns; C_L = 50pF; R_L = 500 Ω ; T_{amb} = -40°C to +85°C.

SYMBOL	PARAMETER	WAVEFORM	V _C	$_{\rm C}$ = 3.3V ± 0	.3V	V _{CC} = 2.7V	UNIT
			MIN	TYP ¹	MAX	MAX	
t _{PLH} t _{PHL}	Propagation delay nDx to nQx	2	0.5 0.5	1.8 1.9	3.9 3.9	4.5 4.5	ns
t _{PLH} t _{PHL}	Propagation delay nE to nQx	1	0.5 0.5	2.1 2.2	4.8 4.8	5.4 5.4	ns
t _{PZH} t _{PZL}	Output enable time to High and Low level	4 5	0.1 0.1	2.8 2.6	4.5 4.3	5.1 4.7	ns
t _{PHZ} t _{PLZ}	Output disable time from High and Low Level	4 5	0.1 0.1	3.3 3.0	4.5 4.3	5.1 4.7	ns

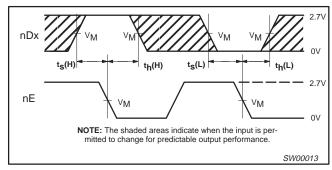
NOTE:

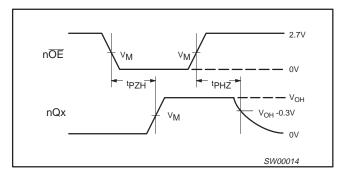

AC SETUP REQUIREMENTS

GND = 0V; $t_R = t_F$ = 2.5ns; C_L = 50pF; R_L = 500 Ω ; T_{amb} = -40°C to +85°C.


SYMBOL	PARAMETER	WAVEFORM	V _{CC} = 3.3	3V ±0.3V	$V_{CC} = 2.7V$	UNIT
			MIN	TYP	MIN	
t _S (H) t _S (L)	Setup time nDx to nE	3	1.5 2.0	0.1 0.2	1.0 2.0	ns
t _h (H) t _h (L)	Hold time nDx to nE	3	1.0 1.5	0 0	1.0 2.0	ns
t _W (H)	nE pulse width High	1	1.5	0.5	1.5	ns

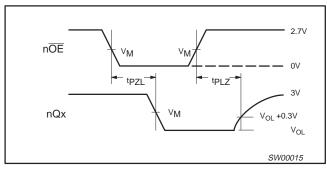
AC WAVEFORMS


For all waveforms, $V_M = 1.5V$.


Waveform 1. Propagation Delay, Enable to Output, and Enable Pulse Width

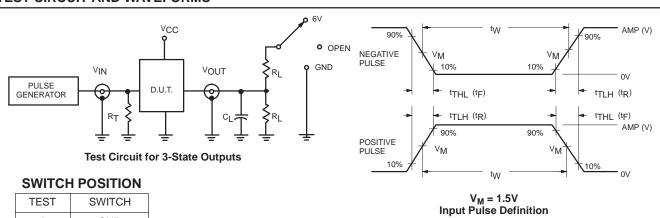
Waveform 2. Propagation Delay for Data to Outputs

Waveform 3. Data Setup and Hold Times


Waveform 4. 3-State Output Enable time to High Level and Output Disable Time from High Level

1998 Feb 19 6

^{1.} All typical values are at V_{CC} = 3.3V and T_{amb} = 25°C.


3.3V 16-bit transparent D-type latch (3-State)

74LVT16373A

Waveform 5. 3-State Output Enable Time to Low Level and Output Disable Time from Low Level

TEST CIRCUIT AND WAVEFORMS

TEST	SWITCH
t _{PHZ} /t _{PZH}	GND
t _{PLZ} /t _{PZL}	6V
t _{PLH} /t _{PHL}	open

DEFINITIONS

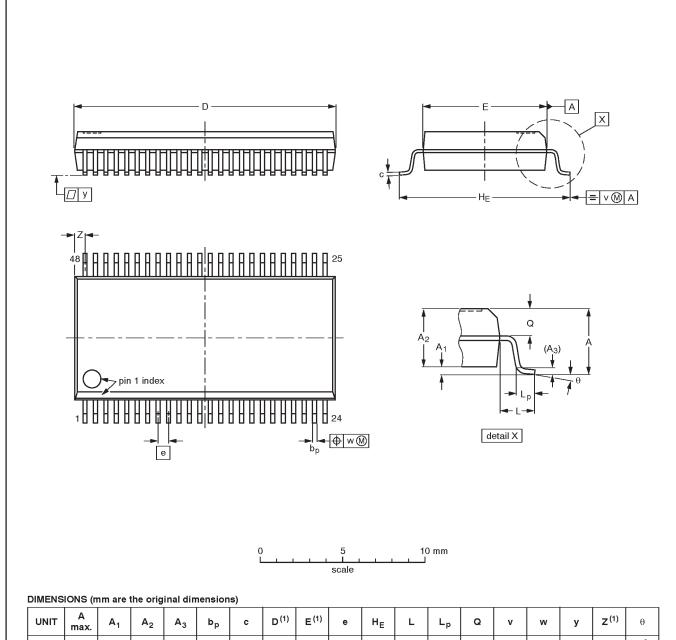
R_L = Load resistor; see AC CHARACTERISTICS for value.

 $C_L = Load$ capacitance includes jig and probe capacitance; see AC CHARACTERISTICS for value.

R_T = Termination resistance should be equal to Z_{OUT} of pulse generators.

FAMILY	IN	PUT PULSE R	EQUIRE	MENTS	
FAMILI	Amplitude	Rep. Rate	t _W	t_{R}	t _F
74LVT16	2.7V	≤10MHz	500ns	≤2.5ns	≤2.5ns

SW00003


1998 Feb 19 7

3.3V LVT 16-bit transparent D-type latch (3-State)

74LVT16373A

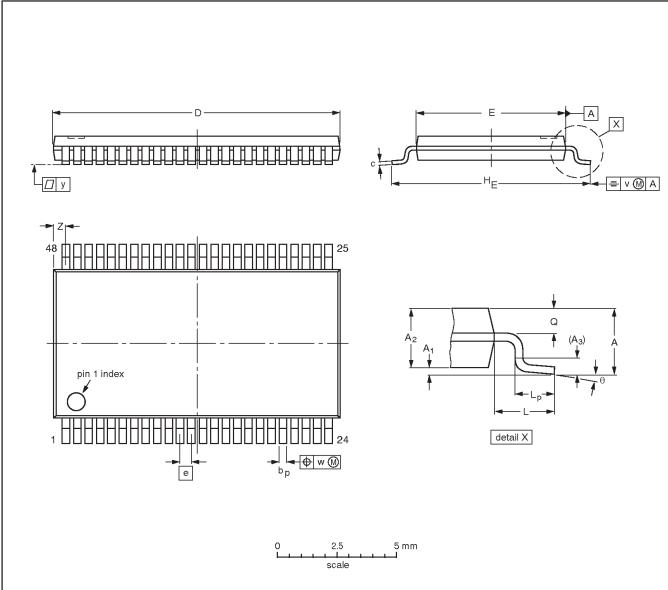
SSOP48: plastic shrink small outline package; 48 leads; body width 7.5 mm

SOT370-1

UNIT	A max.	A ₁	A ₂	A ₃	bр	С	D ⁽¹⁾	E ⁽¹⁾	е	HE	L	Lp	Q	v	w	у	Z ⁽¹⁾	θ
mm	2.8	0.4 0.2	2.35 2.20	0.25	0.3 0.2	0.22 0.13	16.00 15.75	7.6 7.4	0.635	10.4 10.1	1.4	1.0 0.6	1.2 1.0	0.25	0.18	0.1	0.85 0.40	8° 0°

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.


OUTLINE		REFER	EUROPEAN	ISSUE DATE	
VERSION	IEC	JEDEC	EIAJ	PROJECTION	ISSUE DATE
SOT370-1		MO-118AA			93-11-02 95-02-04

3.3V LVT 16-bit transparent D-type latch (3-State)

74LVT16373A

TSSOP48: plastic thin shrink small outline package; 48 leads; body width 6.1mm

SOT362-1

DIMENSIONS (mm are the original dimensions).

UNIT	A max.	Α1	A ₂	А3	bp	c	D ⁽¹⁾	E ⁽²⁾	e	HE	L	Lp	œ	v	w	у	Z	θ
mm	1.2	0.15 0.05	1.05 0.85	0.25	0.28 0.17	0.2 0.1	12.6 12.4	6.2 6.0	0.5	8.3 7.9	1	0.8 0.4	0.50 0.35	0.25	0.08	0.1	0.8 0.4	8° 0°

Notes

- 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
- 2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

OU	ITLINE		REFER	EUROPEAN	ISSUE DATE		
VE	RSION	IEC	JEDEC	EIAJ		PROJECTION	ISSUE DATE
so	T362-1		MO-153ED				-93-02-03- 95-02-10

3.3V LVT 16-bit transparent D-type latch (3-State)

74LVT16373A

Data sheet status

Data sheet status	Product status	Definition [1]
Objective specification	Development	This data sheet contains the design target or goal specifications for product development. Specification may change in any manner without notice.
Preliminary specification	Qualification	This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips Semiconductors reserves the right to make chages at any time without notice in order to improve design and supply the best possible product.
Product specification	Production	This data sheet contains final specifications. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.

^[1] Please consult the most recently issued datasheet before initiating or completing a design.

Definitions

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Disclaimers

Life support — These products are not designed for use in life support appliances, devices or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Philips Semiconductors 811 East Arques Avenue P.O. Box 3409 Sunnyvale, California 94088–3409 Telephone 800-234-7381 © Copyright Philips Electronics North America Corporation 1998 All rights reserved. Printed in U.S.A.

print code Date of release: 05-96

Document order number: 9397-750-03554

Let's make things better.

Philips Semiconductors

Home About NXP News Careers Investors Order/buy Tech support Contact my.NXP

Select site: English

Type search here

Search

Advanced search / Selection guides

Latches 74LVT16373ADGG Products Logic

Applications

fields of interest

part number

Looking for

See the answers to FAQ's on certain

Find NXP's equivalent of a competitor's

74LVT16373A

Preview

Product information i

Selection guide 4

See also

Datasheet

(Product Specification) v.2, 19-Feb-98, 10 Pages, 96kB

Download datasheet Download all documentation 3.3V LVT 16-bit transparent D-type latch (3-State)

General description **Features** Products/packages Quality/reliability/chemical

Discontinued information **Applications**

All information hereunder is subject to the subsequent disclaimers

Samples

Block diagrams/pinning

Pricing/ordering/availability

Design support Parametrics/similar products Print/email

Disclaimers

View case studies on general applications or technologies

Request contact with a technical expert Find more information on NXP's Vision Find out more about our ordering

process Receive e-news on specific interest areas

General description

Hide

The 74LVT16373A is a high-performance BiCMOS product designed for $\rm V_{cc}$ operation at 3.3V.

This device is a 16-bit transparent D-type latch with non-inverting 3-State bus compatible outputs. The device can be used as two 8-bit latches or one 16-bit latch. When enable (E) input is High, the Q outputs follow the data (D) inputs. When enable is taken Low, the Q outputs are latched at the levels of the D inputs one setup time prior to the High-to-Low transition.

Back to top

Hide **Features**

16-bit transparent latch

3-State buffers

Output capability: +64mA/-32mA

TTL input and output switching levels

Input and output interface capability to systems at 5V supply

Bus-hold data inputs eliminate the need for external pull-up resistors to hold unused inputs

Live insertion/extraction permitted

Power-up reset

Power-up 3-State

No bus current loading when output is tied to 5V bus

Latch-up protection exceeds 500mA per JEDEC Std 17

ESD protection exceeds 2000V per MIL STD 883 Method 3015 and 200V per Machine Model

Back to top

Products/packages

Hide

Type number	Orderable part number	Ordering code (12NC)	Product status	Package	Packing	Marking	ECCN

22-Mar-2010 http://www.nxp.com/

74LVT16373ADGG	74LVT16373ADGG,112	9352 030 90112	Volume production	SOT362-1 (TSSOP48)	Tube	Standard Marking	
74LVT16373ADGG	74LVT16373ADGG,118	9352 030 90118	Volume production	SOT362-1 (TSSOP48)	Reel Pack, SMD, 13"	Standard Marking	
74LVT16373ADL	74LVT16373ADL,112	9351 831 10112	Volume production	SOT370-1 (SSOP48)	Tube	Standard Marking	
74LVT16373ADL	74LVT16373ADL,118	9351 831 10118	Volume production	SOT370-1 (SSOP48)	Tape reel smd	Standard Marking	

The variants in the table below are discontinued. See the table Discontinued information for more information.

Type number	Orderable part number	Ordering code (12NC)	Product status	Package	Packing	Marking	ECCN
74LVT16373ADGG	74LVT16373ADGG,512	9352 030 90512	Withdrawn Replacement product	SOT362-1 (TSSOP48)	Tube Dry Pack	Standard Marking	

Back to top

Quality/reliability/chemical content

Hide

Type number	Orderable part number	Chemical content	RoHS	Leadfree conversion date	RHF	IFR (FIT)	MTBF (hours)	MSL Lead-free
74LVT16373ADGG	74LVT16373ADGG,112	74LVT16373ADGG	EU/CN ROHSCOMPLIANT 🗵 PD	Always Pb-free	D	1,33	7,52E+08	1
74LVT16373ADGG	74LVT16373ADGG,118	74LVT16373ADGG	EU/CN ROH2COMPLIANT 🗵 PD	Always Pb-free	D	1,33	7,52E+08	1
74LVT16373ADL	74LVT16373ADL,112	74LVT16373ADL	EU/CN ROHSCOMPLIANT 🗵 PD	week 13, 2005	G	1,33	7,52E+08	1
74LVT16373ADL	74LVT16373ADL,118	74LVT16373ADL	EU/CN ROH2COMPLIANT 🗵 PD	week 13, 2005	G	1,33	7,52E+08	1

The variants in the table below are discontinued. See the table Discontinued information for more information.

Type number	Orderable part number	Chemical content	RoHS	Leadfree conversion date	RHF	IFR (FIT)	MTBF (hours)	MSL Lead-free
74LVT16373ADGG	74LVT16373ADGG,512	74LVT16373ADGG	EU/CN ROH2COMPLIANT 🗖 PD	week 14, 2005	G	1,33	7,52E+08	1

Quality and reliability disclaimer

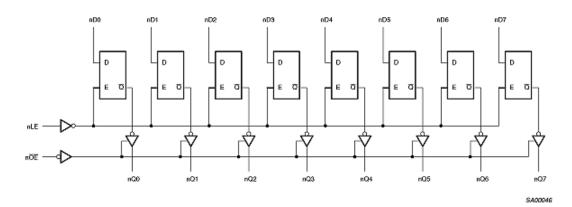
Back to top

Pricing/ordering/availability

Hide

Type number	Ordering code (12NC)	Orderable part number	Indicative price/unit(\$)	Region	Distributor	In stock	Order quantity	Inventory date	Buy online	Samples
74LVT16373ADGG	9352 030 90112	74LVT16373ADGG,112		JAPAN	CHIP ONE STOP	no		03/19/2010	Buy online	not available
74LVT16373ADGG	9352 030 90118	74LVT16373ADGG,118		JAPAN	CHIP ONE STOP	no		03/19/2010	Buy online	Order samples
74LVT16373ADL	9351 831 10112	74LVT16373ADL,112	1.1400	JAPAN	CHIP ONE STOP	no		03/19/2010	Buy online	not available
74LVT16373ADL	9351 831 10118	74LVT16373ADL,118	1.1400	JAPAN	CHIP ONE STOP	no		03/19/2010	Buy online	Order samples

Back to top


http://www.nxp.com/

Discontinued information Hide

Type number	Ordering code (12NC)	Last-time buy date	Last-time delivery date	Replacement product	DN Notice	Status	Comments
74LVT16373ADGG	935203090512				DN		

Back to top

Block diagrams/pinning Hide

Back to top

Design support Hide

Application Notes

LVT (Low Voltage Technology) and ALVT (Advanced LVT) (1998-01-01)

Simulation Support for Philips' Advanced BiCMOS Products (1993-11-01)
Test Fixtures for High Speed Logic (1998-04-02)
The Behavior Of Integrated Bus Hold Circuits (1996-03-01)

Transmission Lines and Terminations with Philips Advanced Logic Families (1998-02-01)

Back to top

Parametrics/similar products

Hide

Type number	Package	Description	Propagation Delay (ns)	Voltage	No. of Pins	Logic Switching Levels	Output Drive Capability
74LVT16373ADGG	SOT362-1 (TSSOP48)	3.3V 16-Bit D-Type Transparent Latch (3-State)	1.9@3.3V	2.7-3.6 V	48	TTL	-32/+64 mA
74LVT16373ADL	SOT370-1 (SSOP48)	3.3V 16-Bit D-Type Transparent Latch (3-State)	1.9@3.3V	2.7-3.6 V	48	TTL	-32/+64 mA

Similar products

74LVT16373A links to the similar products page containing an overview of products that are similar in function or related to the type number(s) as listed on this page. The similar products page includes products from the same catalog tree(s), relevant selection guides and products from the same functional category.

http://www.nxp.com/ 22-Mar-2010 Print/email

Hide

Back to top

Email this product information Print this product information

Back to top

Disclaimers

Hide

General product disclaimer Quality and reliability disclaimer

NXP $\,$ | Privacy policy $\,$ | Terms of use $\,$ | Sitemap $\,$ | Switch to classic mode

©2006-2010 NXP Semiconductors. All rights reserved.

http://www.nxp.com/