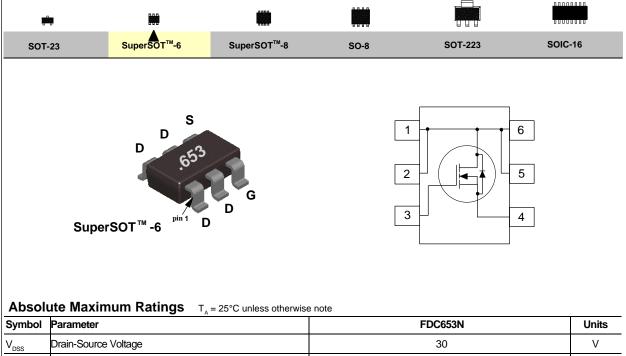
FAIRCHILD

SEMICONDUCTOR TM

November 1997


FDC653N N-Channel Enhancement Mode Field Effect Transistor

General Description

This N-Channel enhancement mode power field effect transistors is produced using Fairchild's proprietary, high cell density, DMOS technology. This very high density process is tailored to minimize on-state resistance. These devices are particularly suited for low voltage applications in notebook computers, portable phones, PCMICA cards, and other battery powered circuits where fast switching, and low in-line power loss are needed in a very small outline surface mount package.

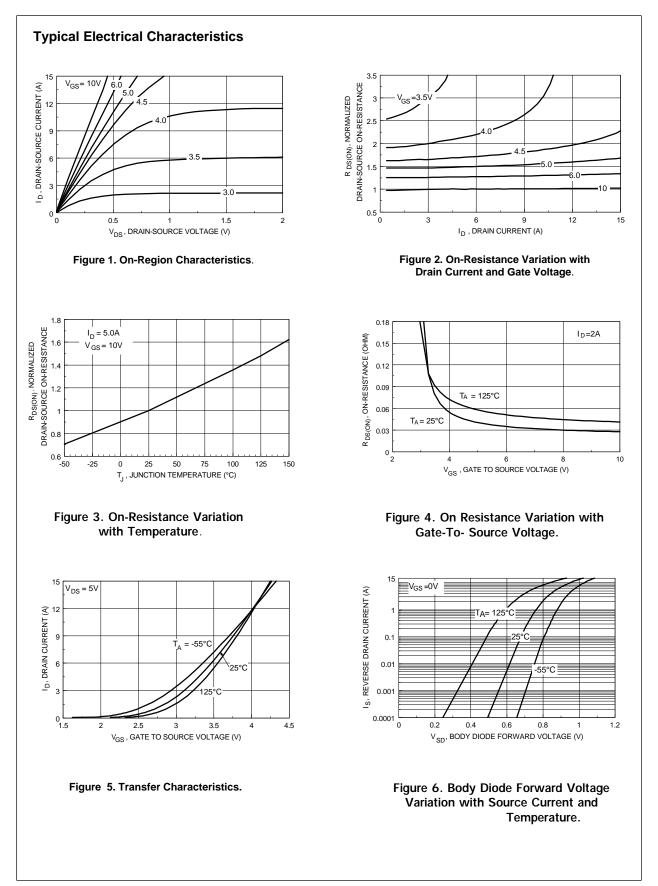
Features

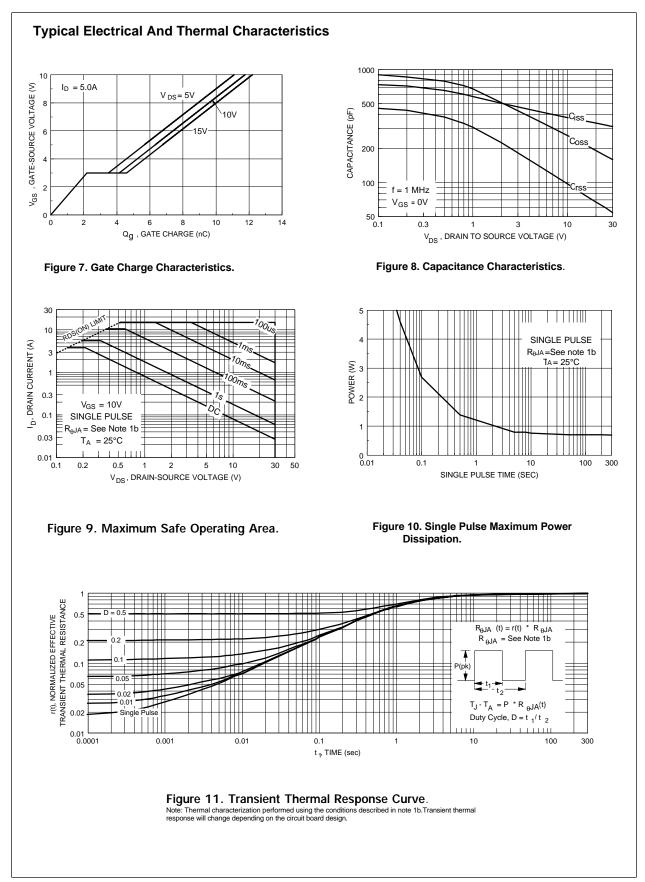
- 5 A, 30 V. $R_{DS(ON)} = 0.035 \Omega @ V_{GS} = 10 V$ $R_{DS(ON)} = 0.055 \Omega @ V_{GS} = 4.5 V.$
- Proprietary SuperSOTTM-6 package design using copper lead frame for superior thermal and electrical capabilities.
- High density cell design for extremely low R_{DS(ON)}.
- Exceptional on-resistance and maximum DC current capability.

Symbol	Faranneter		FDG0J3N	Units
V _{DSS}	Drain-Source Voltage		30	V
V_{GSS}	Gate-Source Voltage - Continuous		±20	V
I _D	Drain Current - Continuous	(Note 1a)	5	А
	- Pulsed		15	
P _D	Maximum Power Dissipation	(Note 1a)	1.6	W
		(Note 1b)	0.8	
T_,,T _{stg}	Operating and Storage Temperature Range		-55 to 150	°C
THERMA	AL CHARACTERISTICS			
R _{θJA}	Thermal Resistance, Junction-to-Ambient	(Note 1a)	78	°C/W
R _{θJC}	Thermal Resistance, Junction-to-Case	(Note 1)	30	°C/W

© 1997 Fairchild Semiconductor Corporation

Symbol	Parameter	Conditions		Тур	Max	Units
OFF CHAR	ACTERISTICS					
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 V, I_{D} = 250 \mu A$	30			V
$\Delta BV_{DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient	$I_D = 250 \mu\text{A}$, Referenced to $25 ^{\circ}\text{C}$		31		mV /°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 24 V, V_{GS} = 0 V$			1	μA
		$T_{J} = 55^{\circ}C$;		10	μA
	Gate - Body Leakage, Forward	$V_{GS} = 20 \text{ V}, V_{DS} = 0 \text{ V}$			100	nA
I _{GSSR}	Gate - Body Leakage, Reverse	$V_{GS} = -20 \text{ V}, \text{ V}_{DS} = 0 \text{ V}$			-100	nA
ON CHARA	CTERISTICS (Note 2)	·				
V _{GS(th)}	Gate Threshold Voltage	$V_{\rm DS} = V_{\rm GS}, \ I_{\rm D} = 250 \ \mu A$	1	1.7	2	V
$\Delta V_{GS(th)} / \Delta T_J$	Gate Threshold VoltageTemp.Coefficient	I_{D} = 250 µA, Referenced to 25 °C		-4.2		mV /°C
R _{DS(ON)}	Static Drain-Source On-Resistance	$V_{GS} = 10 \text{ V}, I_{D} = 5 \text{ A}$		0.027	0.035	Ω
		T _J = 125	°C	0.042	0.056	
		$V_{GS} = 4.5 \text{ V}, I_{D} = 4.2 \text{ A}$		0.046	0.055	
I _{D(on)}	On-State Drain Current	$V_{GS} = 10 \text{ V}, V_{DS} = 5 \text{ V}$	8			Α
9 _{FS}	Forward Transconductance	$V_{DS} = 10 \text{ V}, I_{D} = 5 \text{ A}$		6.2		S
DYNAMIC C	HARACTERISTICS					
C _{iss}	Input Capacitance	$V_{DS} = 15 \text{ V}, V_{GS} = 0 \text{ V},$		350		pF
C _{oss}	Output Capacitance	f = 1.0 MHz		220		pF
C _{rss}	Reverse Transfer Capacitance			80		pF
SWITCHING	CHARACTERISTICS (Note 2)					
t _{D(on)}	Turn - On Delay Time	$V_{_{DD}} = 10 \text{ V}, \ I_{_{D}} = 1 \text{ A},$		7.5	15	ns
t _r	Turn - On Rise Time	V_{GS} = 4.5 V, R_{GEN} = 6 Ω		12	25	ns
t _{D(off)}	Turn - Off Delay Time			13	25	ns
t _r	Turn - Off Fall Time			6	15	ns
Q _g	Total Gate Charge	$V_{\rm DS} = 15 \ V, \ I_{\rm D} = 5 \ A,$		12	17	nC
Q _{gs}	Gate-Source Charge	$V_{GS} = 10 V$		2.1		nC
Q _{gd}	Gate-Drain Charge			2.6		nC
DRAIN-SOU	RCE DIODE CHARACTERISTICS					
I _s	Continuous Source Diode Current				1.3	А
V _{SD}	Drain-Source Diode Forward Voltage	$V_{GS} = 0 V, I_{S} = 1.3 A$ (Note 2)		0.75	1.2	V
		T, = 125	°C	0.6	1	


Notes:


1. R₈₀ is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. R₈₀ is guaranteed by design while R₈₀ is determined by the user's board design.

a. 78°C/W when mounted on a minimum on a 1 in² pad of 2oz Cu in FR-4 board.

b. 156°C/W when mounted on a minimum pad of 2oz Cu in FR-4 board.

2. Pulse Test: Pulse Width \leq 300µs, Duty Cycle \leq 2.0%.

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™ Bottomless™ CoolFET™ CROSSVOLT™ DenseTrench™ DOME™ **EcoSPARK™** E²CMOS[™] EnSigna™ FACT™ FACT Quiet Series™ FAST ® FASTr™ FRFET™ GlobalOptoisolator[™] POP[™] GTO™ HiSeC™ ISOPLANAR™ LittleFET™ MicroFET™ MicroPak™ MICROWIRE™

OPTOLOGIC™ OPTOPLANAR™ PACMAN™ Power247™ PowerTrench[®] QFET™ QS™ QT Optoelectronics[™] Quiet Series[™] SILENT SWITCHER®

SMART START™ VCX™ STAR*POWER™ Stealth™ SuperSOT[™]-3 SuperSOT[™]-6 SuperSOT[™]-8 SyncFET™ TinyLogic™ TruTranslation[™] UHC™ UltraFET[®]

STAR*POWER is used under license

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY. FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.
	In Design First Production Full Production

BUY

Datasheet

datasheet

PDF X

<u></u> =- '

This page

Download this

Home >> Find products >>

FDC653N

N-Channel Enhancement Mode Field Effect Transistor

Contents

 General description Features Product status/pricing/packaging •Order Samples

 Models Qualification Support

General description

This N-Channel enhancement mode power field effect transistors is produced using Fairchild's proprietary, high cell density, DMOS technology. This very high density process is tailored to minimize on-state resistance. These devices are particularly suited for low voltage applications in notebook computers, portable phones, PCMICA cards, and other battery powered circuits where fast switching, and low in-line power loss are needed in a very small outline surface mount package.

back to top

Features

- 5 A, 30 V. RDS(ON) = 0.035 Ω @ VGS = 10 V, RDS(ON) = 0.055 $\Omega @ VGS = 4.5 V.$
- Proprietary SuperSOTTM-6 package design using copper lead frame for superior thermal and electrical capabilities.
- High density cell design for extremely low RDS(ON).
- Exceptional on-resistance and maximum DC current capability.

back to top

Product status/pric

cing/packaging	BUY
----------------	-----

Product	Product status	Pb-free Status	Pricing*	Package type	Leads	Packing method	Package Marking Convention**

Related Links

Request samples

- How to order products
- Product Change Notices (PCNs)

Support

- Sales support
- Quality and reliability

Design center

Print version

e-mail this datasheet

This product Use in FETBench

-F

Analysis

FDC653N	Full Production	Full Production	\$0.372	<u>SSOT-6</u>	6	TAPE REEL	Line 1: &E& Y (Binary Calendar Year Coding) Line 2: .653
FDC653N_NB3E005A	Full Production	Full Production	N/A	<u>SSOT-6</u>	6	TAPE REEL	Line 1: &E& Y (Binary Calendar Year Coding) Line 2: .653
FDC653N_NF073	Full Production	Full Production	N/A	<u>SSOT-6</u>	6		Line 1: &E& Y (Binary Calendar Year Coding) Line 2: .653

* Fairchild 1,000 piece Budgetary Pricing ** A sample button will appear if the part is available through Fairchild's on-line samples program. If there is no sample button, please contact a <u>Fairchild distributor</u> to obtain samples

Indicates product with Pb-free second-level interconnect. For more information click here.

Package marking information for product FDC653N is available. Click here for more information .

back to top

Models

Ø

Package & leads	Condition	Temperature range	Software version Revision date					
PSPICE								
SSOT-6-6 Electrical 25°C to 125°C Orcad 9.1 Oct 4, 2002								

back to top

Qualification Support

Click on a product for detailed qualification data

Product								
FDC653N								
FDC653N_NB3E005A								
FDC653N_NF073								

© 2007 Fairchild Semiconductor

Products | Design Center | Support | Company News | Investors | My Fairchild | Contact Us | Site Index | Privacy Policy | Site Terms & Conditions | Standard Terms & Conditions (