SCES004C - JANUARY 1995 - REVISED AUGUST 1999

- State-of-the-Art Advanced BiCMOS Technology (ABT) Design for 3.3-V (TOP VIEW) **Operation and Low Static-Power** Dissipation DIR [20 V<u>с</u>с **High-Impedance State During Power Up** A1 🛛 and Power Down Support Mixed-Mode Signal Operation (5-V Input and Output Voltages With 3.3-V V_{CC}) **Support Unregulated Battery Operation** Down to 2.7 V Power Off Disables Outputs, Permitting • Live Insertion Typical V_{OLP} (Output Ground Bounce) < 0.8 V at V_{CC} = 3.3 V, T_A = 25°C Latch-Up Performance Exceeds 500 mA Per S **JESD 17** ESD Protection Exceeds 2000 V Per MIL-STD-883, Method 3015; Exceeds 200 V
- Using Machine Model (C = 200 pF, R = 0) **Package Options Include Plastic** Small-Outline (DW), Shrink Small-Outline (DB), and Thin Shrink Small-Outline (PW) Packages, Ceramic Chip Carriers (FK), Ceramic Flat (W) Packages, and Ceramic (J) DIPs

SN54LVT245B . . . J OR W PACKAGE SN74LVT245B . . . DB. DW. OR PW PACKAGE

A2 [3		18		B1	
A3 [4		17		B2	
A4 [16		В3	
A5 [6		15		Β4	
A6 [7		14		B5	
A7 [13		B6	
A8 [12		Β7	
GND [10		11		B8	
				1		
N54LVT2	45B (TOP				٩СК	AG
	•					
A2	A1	DIR	> 0	Ш О		
	2	1	 20] 18 [17 [B

GE

	A2 A1 DIR <u>VC</u> C	
A3	3 2 1 20 19 4 18	B1
A3 A4 A5 A6 A7	5 17	B2
A5	6 16	B3
A6	7 15	Β4
A7		B5
1	B B B B B B B B B B B B B B B B B B B	

description

These octal bus transceivers are designed specifically for low-voltage (3.3-V) V_{CC} operation, but with the capability to provide a TTL interface to a 5-V system environment.

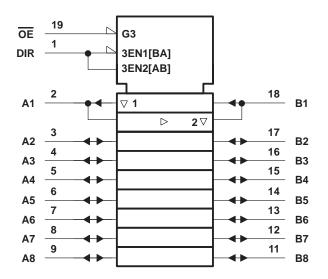
These devices are designed for asynchronous communication between data buses. They transmit data from the A bus to the B bus or from the B bus to the A bus, depending on the logic level at the direction-control (DIR) input. The output-enable (\overline{OE}) input can be used to disable the devices so the buses are effectively isolated.

When V_{CC} is between 0 and 1.5 V, the device is in the high-impedance state during power up or power down. However, to ensure the high-impedance state above 1.5 V, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

The SN54LVT245B is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74LVT245B is characterized for operation from -40°C to 85°C.

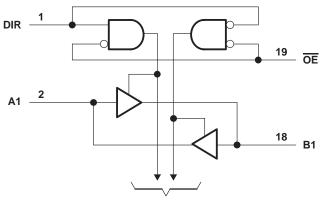
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

UNLESS OTHERWISE NOTED this document contains PRODUCTION DATA information current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters


Copyright © 1999, Texas Instruments Incorporated

SCES004C - JANUARY 1995 - REVISED AUGUST 1999

FUNCTION TABLE


INP	UTS	OPERATION
OE	DIR	OPERATION
L	L	B data to A bus
L	Н	A data to B bus
н	Х	Isolation

logic symbol[†]

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

To Seven Other Channels

SN54LVT245B, SN74LVT245B **3.3-V ABT OCTAL BUS TRANSCEIVERS** WITH 3-STATE OUTPUTS SCES004C - JANUARY 1995 - REVISED AUGUST 1999

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC}	
Voltage range applied to any output in the high or power-off state, V _O (see Note 1)0.5 V to 7 V	/
Current into any output in the low state, IO: SN54LVT245B	4
SN74LVT245B	4
Current into any output in the high state, I _O (see Note 2): SN54LVT245B 48 mA	4
SN74LVT245B 64 mA	4
Input clamp current, I_{IK} (V _I < 0)	4
Output clamp current, I_{OK} (V _O < 0)	4
Package thermal impedance, θ _{JA} (see Note 3): DB package	V
DW package	V
PW package 128°C/W	V
Storage temperature range, T _{stg} 65°C to 150°C	2

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

- 2. This current flows only when the output is in the high state and $V_O > V_{CC}$.
- 3. The package thermal impedance is calculated in accordance with JESD 51.

recommended operating conditions (see Note 4)

					SN74LV	UNIT	
			MIN	MAX	MIN	MAX	UNIT
Vcc	Supply voltage		2.7	3.6	2.7	3.6	V
VIH	High-level input voltage		2	h	2		V
VIL	Low-level input voltage			0.8		0.8	V
VI	Input voltage	4	5.5		5.5	V	
ЮН	High-level output current		1	-24		-32	mA
IOL	Low-level output current		200	48		64	mA
$\Delta t/\Delta v$	Input transition rise or fall rate	Outputs enabled	201	10		10	ns/V
Δt/ΔV _{CC}	Power-up ramp rate		Q 200		200		μs/V
Т _А	Operating free-air temperature		-55	125	-40	85	°C

NOTE 4: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

SCES004C - JANUARY 1995 - REVISED AUGUST 1999

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

DADAMETER		TEST CONDITIONS			54LVT24	5B	SN						
PA	RAMETER	TEST CO	ONDITIONS	MIN	түр†	MAX MIN TYP† MAX -1.2 -1.2 -1.2 V _{CC} -0.2 2.4 -1.2 2.4 -1.2 -1.2 0.2 2.4 -1.2 0.2 0.2 0.2 0.5 0.55 0.55 0.4 0.44 0.4 0.5 0.55 0.55 ±1 ±11 10 20 200 10 20 200 10 5 -5 -5 -5 -5 -5 -5 -5 -5	MAX	UNIT					
VIK		V _{CC} = 2.7 V,	lj = -18 mA			-1.2			-1.2	V			
		V _{CC} = 2.7 V to 3.6 V,	I _{OH} = -100 μA	V _{CC} -0.	.2		V _{CC} -0.	2					
		V _{CC} = 2.7 V,	I _{OH} =8 mA	2.4			2.4			v			
⊻ОН			I _{OH} = -24 mA	2						v			
		V _{CC} = 3 V	I _{OH} = -32 mA				2	-1.2 -0.2 4 2 0.2 0.5 0.4 0.55 ± 1 10 20 ± 100 5 ± 100 5 5 -5 ± 100 5 -5 ± 100 5 -5 ± 100 5 -5 ± 100 5 -5 ± 100 2 -5 -5 -5 ± 100 -5 -					
		No. 07.V	I _{OL} = 100 μA			0.2			0.2	.2			
		V _{CC} = 2.7 V	I _{OL} = 24 mA			0.5			0.5	5			
I A or I Ioff I IOZH I IOZL I IOZPU I IOZPD I IOZCA I			I _{OL} = 16 mA			0.4			0.4	v			
			I _{OL} = 32 mA			0.5			0.5	V			
		ACC = 3 A	I _{OL} = 48 mA			0.55							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			0.55										
	Control inputs	V _{CC} = 3.6 V,	$V_{I} = V_{CC} \text{ or } GND$		±1				±1				
			V _I = 5.5 V		A.	10			10				
lj –	A or B ports‡	V _{CC} = 3.6 V	V _I = 5.5 V		~	20			20	μA			
			$V_I = V_{CC}$		3	1			1				
			V _I = 0	0	5	-5			-5				
loff	-	V _{CC} = 0,	$V_{I} \text{ or } V_{O} = 0 \text{ to } 4.5 \text{ V}$	Q					±100	μA			
		V _{CC} = 3.6 V,	V _O = 3 V			5			5	μA			
		V _{CC} = 3.6 V,	V _O = 0.5 V			-5			-5	μA			
		$\frac{V_{CC}}{OE} = 0$ to 1.5 V, V _O = 0 OE = don't care	0.5 V to 3 V,			±100*			±100	μΑ			
I _{OZPD}		$\frac{V_{CC}}{OE} = 1.5 \text{ V to 0, V}_{O} = 0$	0.5 V to 3 V,			±100*			±100	μA			
		V _{CC} = 3.6 V,	Outputs high		0.19				0.19				
Icc		$I_{O} = 0,$	Outputs low						5	mA			
		$V_{I} = V_{CC} \text{ or } GND$	Outputs disabled			0.19			0.19				
∆I _{CC} §		$V_{CC} = 3 V$ to 3.6 V, One Other inputs at V_{CC} or 0				0.2			0.2	mA			
Ci		V _I = 3 V or 0			4			4		pF			
Cio		$V_{O} = 3 V \text{ or } 0$			9			9		pF			

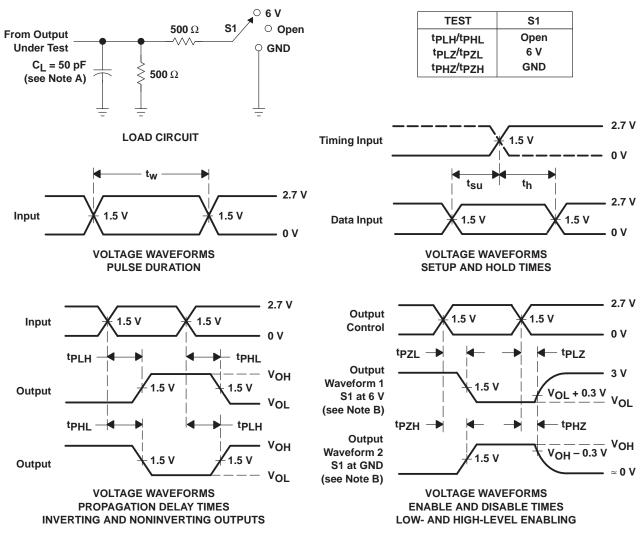
* On products compliant to MIL-PRF-38535, this parameter is not production tested.

[†] All typical values are at V_{CC} = 3.3 V, T_A = 25°C.

[‡] Unused terminals are at V_{CC} or GND.

§ This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.

SN54LVT245B, SN74LVT245B 3.3-V ABT OCTAL BUS TRANSCEIVERS WITH 3-STATE OUTPUTS SCES004C – JANUARY 1995 – REVISED AUGUST 1999


switching characteristics over recommended operating free-air temperature range, $C_L = 50 \text{ pF}$ (unless otherwise noted) (see Figure 1)

			SN54LVT245B				SN74LVT245B					
PARAMETER (INPUT)		TO (OUTPUT)	V _{CC} = 3.3 V ± 0.3 V		V _{CC} = 2.7 V		V _{CC} = 3.3 V ± 0.3 V		V	V _{CC} = 2.7 V		UNIT
			MIN	MAX	MIN	MAX	MIN	TYP [†]	MAX	MIN	MAX	
^t PLH	A or B	B or A	1.1	3.7	1E	4.2	1.2	2.3	3.5		4	ns
^t PHL	AOFB	BUIA	1.1	3.7	3E	4.2	1.2	2.1	3.5		4	115
^t PZH	OE	A or B	1.2	5.7	2	7.4	1.3	3.2	5.5		7.1	ns
^t PZL	ÛE	AOIB	1.6	5.7		6.8	1.7	3.4	5.5		6.5	115
^t PHZ	OE	A or B	2.1	6.2		6.8	2.2	3.5	5.9		6.5	ns
^t PLZ	UE	AUB	2.1	2 5.3		5.5	2.2	3.4	5		5.1	115

[†] All typical values are at $V_{CC} = 3.3 \text{ V}$, $T_A = 25^{\circ}C$.

SCES004C - JANUARY 1995 - REVISED AUGUST 1999

PARAMETER MEASUREMENT INFORMATION

NOTES: A. CL includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , t_f \leq 2.5 ns, t_f \leq 2.5 ns.
- D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1999, Texas Instruments Incorporated