524288-word \times 8-bit CMOS UV Erasable and Programmable ROM

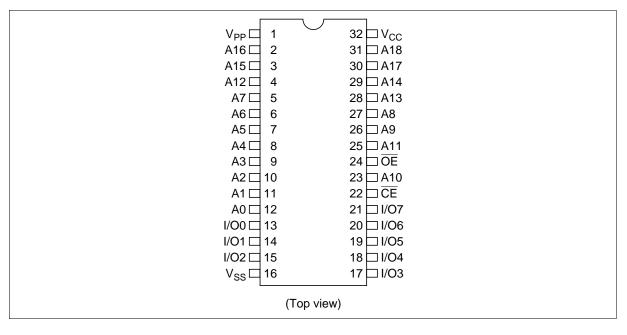
HITACHI

Description

The Hitachi HN27C4001G is a 4-Mbit ultraviolet erasable and electrically programmable ROM, featuring high speed and low power dissipation. Fabricated on advanced fine process and high speed circuitry technique, the HN27C4001G makes high speed access time possible. Therefore, it is suitable for high speed microcomputer systems. The HN27C4001G offers high speed programming using page programming mode.

Features

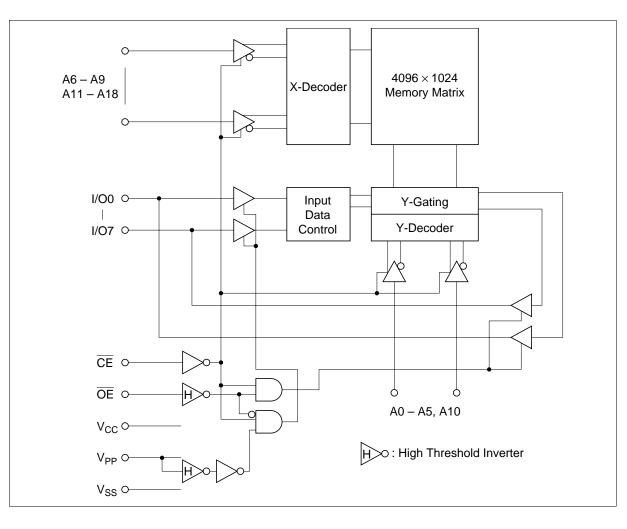
- High speed Access time: 100 ns/120 ns/150 ns (max)
- Low power dissipation
 Standby mode: 5 µW(typ)
 Active mode: 35 mW/MHz (typ)


 Fast high reliability page programming and fast high-reliability programming Programming voltage: +12.5 V D.C.
 Program time: 3.5 sec (min) (Theoretical in page programming)

- Inputs and outputs TTL compatible during both read and program modes
- Pin arrangement
 32-pin JEDEC standard
- Device identifier mode Manufacturer code and device code

Ordering Information

Type No.	Access Time	Package	
HN27C4001G-10	100 ns	600 mil 32-pin Cerdip (DG-32A)	
HN27C4001G-12	120 ns		
HN27C4001G-15	150 ns		


Pin Arrangement

Pin Description

Pin Name	Function
A0–A18	Address
I/00-I/07	Input / output
CE	Chip enable
ŌĒ	Output enable
V _{cc}	Power supply
V _{PP}	Programming power supply
V _{ss}	Ground

Block Diagram

Mode Selection

Mode	Pin	CE (22)	<u>OE</u> (24)	A9 (26)	V _{PP} (1)	V _{cc} (32)	I/O (13 –15, 17 –21)
Read		V _{IL}	V _{IL}	Х	$V_{ss} - V_{cc}$	V _{cc}	Dout
Output disable)	V _{IL}	V _{IH}	Х	$V_{ss} - V_{cc}$	V _{cc}	High-Z
Standby		V _{IH}	Х	Х	$V_{ss} - V_{cc}$	V _{cc}	High-Z
Page program	Page program set	V _{IH}	V_{H}^{*2}	Х	V _{PP}	V _{cc}	High-Z
	Page data latch	V _{IL}	V_{H}^{*2}	Х	V _{PP}	V _{cc}	Din
	Page program	V _{IL}	V _{IH}	Х	V _{PP}	V _{cc}	High-Z
	Page program verify	V _{IH}	V _{IL}	Х	V _{PP}	V _{cc}	Dout
	Page program reset	V _{IH}	V _{IH}	Х	V _{cc}	V _{cc}	High-Z
Word program	Program	V _{IL}	V _{IH}	Х	V _{PP}	V _{cc}	Din
	Program verify	V _{IH}	V _{IL}	Х	V _{PP}	V _{cc}	Dout
	Optional verify	V _{IL}	V _{IL}	Х	V _{PP}	V _{cc}	Dout
	Program inhibit	V_{IH}	V_{IH}	Х	V _{PP}	V _{cc}	High-Z
Identifier		V _{IL}	$V_{\rm IL}$	$V_{H}^{\ *2}$	$V_{ss} - V_{cc}$	V _{cc}	Code

Notes: 1. X: Don't care.

2. V_{H} : 12.0 V ± 0.5 V.

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
All input and output voltages ^{*1}	Vin, Vout	-0.6 ^{*2} to +7.0	V
Voltage on Pin A9 and \overline{OE}	V _{ID}	-0.6 ^{*2} to +13.0	V
Vpp voltage ^{*1}	V _{PP}	-0.6 to +13.5	V
Vcc voltage ^{*1}	V _{cc}	-0.6 to +7.0	V
Operating temperature range	Topr	0 to +70	°C
Storage temperature range ^{*3}	Tstg	-65 to +125	°C
Storage temperature range under bias	Tbias	-20 to +80	°C

Notes: 1. Relative to V_{ss}.

2. Vin, Vout, $V_{_{\rm ID}}$ min = –2.0 V for pulse width \leq 20 ns.

3. Storage temperature range of device before programming.

Capacitance (Ta = 25° C, f = 1 MHz)

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions
Input capacitance	Cin	_	_	12	pF	Vin = 0 V
Output capacitance	Cout		_	20	pF	Vout = 0 V

Read Operation

DC Characteristics ($V_{CC} = 5 V \pm 10\%$, $V_{PP} = V_{SS}$ to V_{CC} , Ta = 0 to $+70^{\circ}C$)

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions
Input leakage current	I	_	_	2	μΑ	Vin = 5.5 V
Output leakage current	I _{LO}			2	μA	Vout = 5.5 V/0.45 V
Vpp current	I _{PP1}	_	1	20	μΑ	Vpp = 5.5 V
Standby V_{cc} current	I _{SB1}		—	1	mA	$\overline{CE} = V_{IH}$
	I _{SB2}	_	1	20	μΑ	$\overline{\text{CE}}$ = V _{cc} ± 0.3 V
Operating V_{cc} current	I _{CC1}	_	—	30	mA	lout = 0 mA, f = 1 MHz
	I _{CC2}	—	—	100	mA	lout = 0 mA, $f = 10 MHz$
Input voltage	V _{IL}	-0.3*1	—	0.8	V	
	V _{IH}	2.2	—	V _{cc} + 1 ^{*2}	V	
Output voltage	V _{OL}	_	_	0.45	V	I _{oL} = 2.1 mA
	V _{OH}	2.4		_	V	I _{OH} = -400 μA

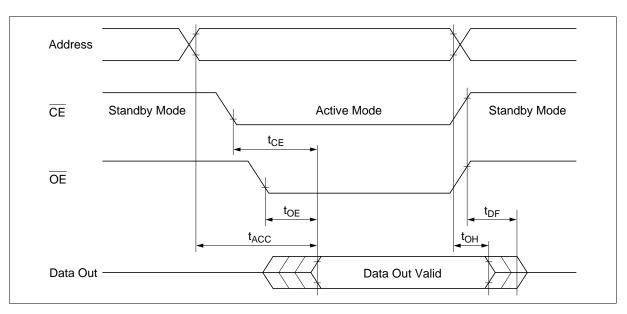
Notes: 1. V_{IL} min = -1.0 V for pulse width \leq 50 ns.

 V_{IL} min = -2.0 V for pulse width \leq 20 ns.

2. V_{IH} max = V_{CC} +1.5 V for pulse width \leq 20 ns.

If $V_{\mbox{\tiny IH}}$ is over the specified maximum value, read operation cannot be guaranteed.

AC Characteristics ($V_{CC} = 5 \text{ V} \pm 10\%$, $V_{PP} = V_{SS}$ to V_{CC} , Ta = 0 to $+70^{\circ}C$)


Test Conditions

- Input pulse levels: 0.45 to 2.4 V
- Input rise and fall time: ≤ 10 ns
- Output load: 1TTL Gate + 100 pF
- Reference levels for measuring timing: 0.8 V, 2.0 V

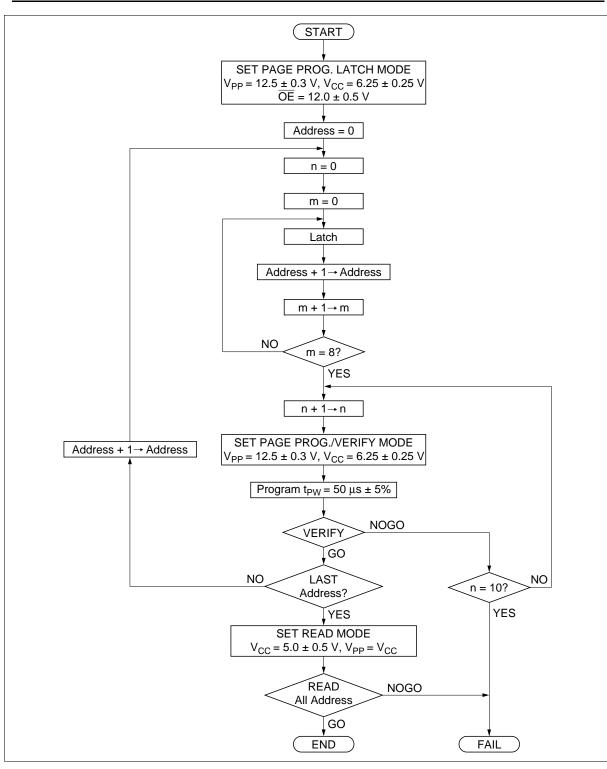
		HN270	24001						
		-10		-12		-15		_	
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit	Test Conditions
Address to output delay	t _{ACC}	_	100	_	120	_	150	ns	$\overline{CE} = \overline{OE} = V_{IL}$
CE to output delay	\mathbf{t}_{CE}		100	—	120	—	150	ns	$\overline{OE} = V_{IL}$
OE to output delay	t _{oe}		60	—	60	—	70	ns	$\overline{CE} = V_{IL}$
OE high to output float ^{*1}	t _{DF}	0	35	0	40	0	50	ns	$\overline{CE} = V_{IL}$
Address to output hold	t _{oH}	5	—	5	—	5	—	ns	$\overline{CE}=\overline{OE}=V_{IL}$

Note: 1. t_{DF} is defined as the time at which the output achieves the open circuit condition and data is no longer driven.

Read Timing Waveform

Fast High-Reliability Page Programming

This device can be applied the high performance page programming algorithm shown in the following flowchart. This algorithm allows to obtain faster programming time without any voltage stress to the device nor deterioration in reliability of programmed data.


Page Program Set

Apply 12 V to $\overline{\text{OE}}$ pin after applying 12.5 V to V_{PP} to set a page program mode.

The device operates in a page program mode until reset.

Page Program Reset

Set V_{PP} to V_{CC} level or less to reset a page program mode.

Fast High-Reliability Page Programming Flowchart

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions
Input leakage current	l _u	_	_	2	μΑ	Vin = 6.5 V/ 0.45 V
Output voltage during verify	V _{ol}	—	—	0.45	V	I _{oL} = 2.1 mA
	V _{OH}	2.4	_	_	V	I _{OH} = -400 μA
Operating V _{cc} current	I _{cc}	_	_	50	mA	
Input voltage	V _{IL}	-0.1*5	_	0.8	V	
	V _{IH}	2.2	_	V _{cc} + 0.5	*6 V	
	V _H	11.5	12.0	12.5	V	
V _{PP} supply current	I _{PP}	_	_	70	mA	$\overline{CE} = V_{IL}$

DC Characteristics ($V_{CC} = 6.25 \text{ V} \pm 0.25 \text{ V}$, $V_{PP} = 12.5 \text{ V} \pm 0.3 \text{ V}$, $Ta = 25^{\circ}C \pm 5^{\circ}C$)

Notes: 1. V_{cc} must be applied simultaneously or before V_{pp} and removed simultaneously or after V_{pp} .

2. V_{PP} must not exceed 13.5 V including overshoot.

3. An influence may be had upon device reliability if the device is installed or removed while V_{PP} = 12.5 V.

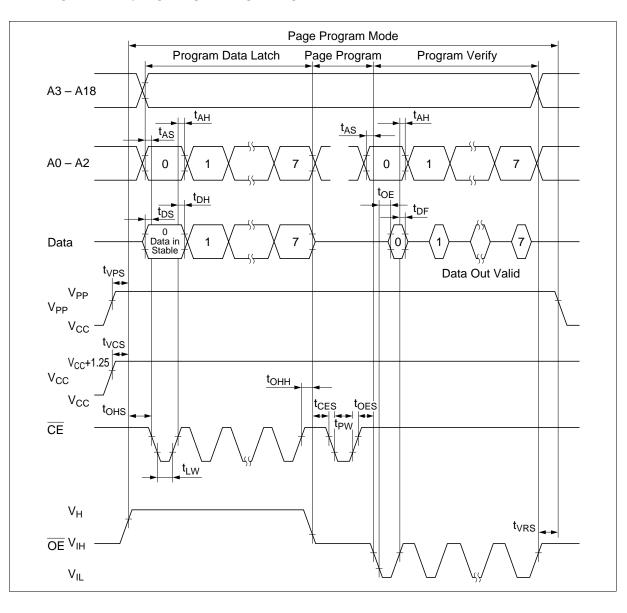
4. Do not alter V_{PP} either V_{IL} to 12.5 V or 12.5 V to V_{IL} when \overline{CE} = low.

5. V_{IL} min = -0.6 V for pulse width \leq 20 ns.

6. If V_{IH} is over the specified maximum value, programming operation cannot be guaranteed.

AC Characteristics ($V_{CC} = 6.25 \text{ V} \pm 0.25 \text{ V}$, $V_{PP} = 12.5 \text{ V} \pm 0.3 \text{ V}$, $Ta = 25^{\circ}C \pm 5^{\circ}C$)

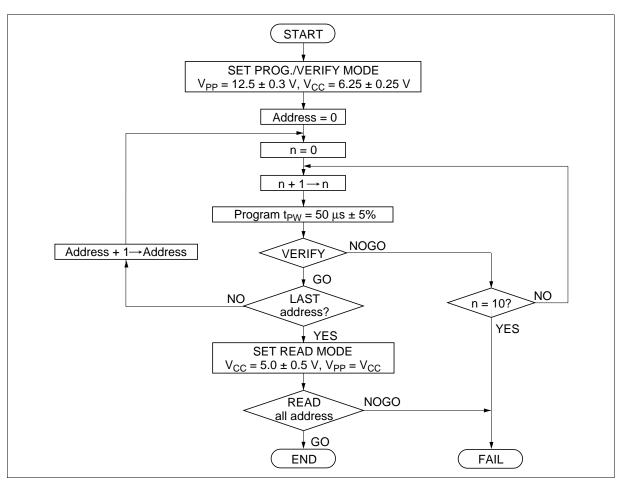
Test Conditions


- Input pulse levels: 0.45 to 2.4 V
- Input rise and fall time: ≤ 20 ns
- Reference levels for measuring timing: Inputs: 0.8 V, 2.0 V

Outputs: 0.8 V, 2.0 V

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions
Address setup time	t _{AS}	2	_	_	μs	
OE setup time	t _{OES}	2	_	_	μs	
Data setup time	t _{DS}	2	_	_	μs	
Address hold time	t _{AH}	0	_	_	μs	
Data hold time	t _{DH}	2	_	_	μs	
OE high to output float delay	t _{DF} ^{*1}	0	_	130	ns	
V _{PP} setup time	t _{vps}	2	_	_	μs	
V _{cc} setup time	t _{vcs}	2	_	_	μs	
CE programming pulse width	t _{PW}	47.5	50.0	52.5	μs	
CE setup time	t _{ces}	2	—	—	μs	
Data valid from OE	t _{oe}	0	_	150	ns	
CE pulse width during data latch	t _{LW}	1	—	_	μs	
$\overline{OE} = V_H$ setup time	t _{ohs}	2	_	_	μs	
$\overline{OE} = V_H$ hold time	t _{ohh}	2	_	_	μs	
V _{PP} hold time ^{*2}	t _{vrs}	1	—	_	μs	

Notes: 1. t_{DF} is defined as the time at which the output achieves the open circuit conditions and data is no longer driven.


2. Page program mode will be reset when V_{PP} is set to V_{cc} or less.

Fast High-Reliability Page Programming Timing Waveform

Fast High-Reliability Programming

This device can be applied the fast high-reliability programming algorithm shown in the following flowchart. This algorithm allows to obtain faster programming time without any voltage stress to the device nor deterioration in reliability of programmed data.

Fast High-Reliability Programming Flowchart

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions
Input leakage current	I _{LI}	_	_	2	μA	Vin = 6.5 V/ 0.45 V
V _{PP} supply current	I _{PP}	—	_	40	mA	$\overline{CE} = V_{IL}$
Operating V _{cc} current	I _{cc}	_	_	50	mA	
Input voltage	V _{IL}	-0.1*5	_	0.8	V	
	V _{IH}	2.2	_	V _{cc} + 0.	5 ^{*6} V	
Output voltage	V _{ol}	_	_	0.45	V	I _{oL} = 2.1 mA
	V _{OH}	2.4	_	_	V	I _{OH} = -400 μA

DC Characteristics ($V_{CC} = 6.25 \text{ V} \pm 0.25 \text{ V}$, $V_{PP} = 12.5 \text{ V} \pm 0.3 \text{ V}$, $Ta = 25^{\circ}C \pm 5^{\circ}C$)

Notes: 1. V_{cc} must be applied simultaneously or before V_{PP} and removed simultaneously or after V_{PP} .

2. V_{PP} must not exceed 13.5 V including overshoot.

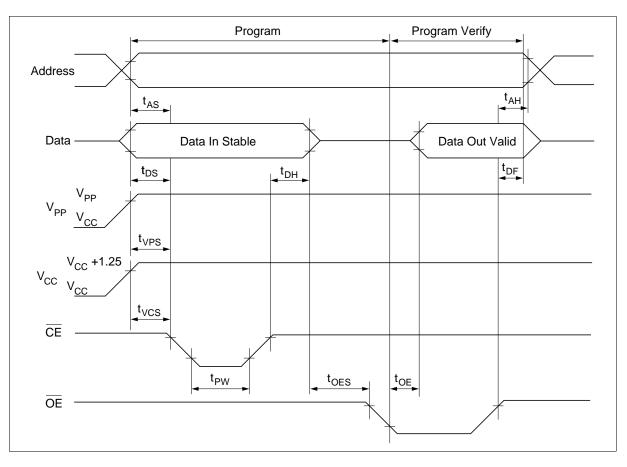
3. An influence may be had upon device reliability if the device is installed or removed while V_{PP} = 12.5 V.

4. Do not alter V_{PP} either V_{IL} to 12.5 V or 12.5 V to V_{IL} when \overline{CE} = low.

5. V_{IL} min = -0.6 V for pulse width \leq 20 ns.

6. If V_{IH} is over the specified maximum value, programming operation cannot be guaranteed.

AC Characteristics ($V_{CC} = 6.25 \text{ V} \pm 0.25 \text{ V}$, $V_{PP} = 12.5 \text{ V} \pm 0.3 \text{ V}$, $Ta = 25^{\circ}C \pm 5^{\circ}C$)

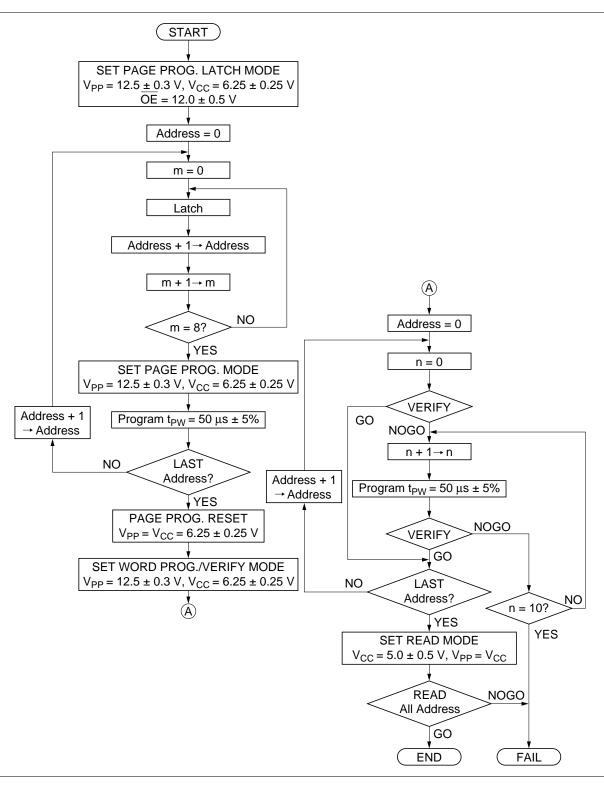

Test Conditions

- Input pulse levels: 0.45 to 2.4 V
- Input rise and fall time: ≤ 20 ns
- Reference levels for measuring timing: Inputs: 0.8 V, 2.0 V

Outputs: 0.8 V, 2.0 V

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions
Address setup time	t _{AS}	2	_	_	μs	
OE setup time	t _{oes}	2		—	μs	
Data setup time	t _{DS}	2	_	—	μs	
Address hold time	t _{AH}	0		—	μs	
Data hold time	t _{DH}	2		—	μs	
OE to output float delay	t _{DF} ^{*1}	0	_	130	ns	
V _{PP} setup time	t _{VPS}	2		—	μs	
V _{cc} setup time	t _{vcs}	2		—	μs	
CE programming pulse width	t _{PW}	47.5	50.0	52.5	μs	
Data valid from \overline{OE}	t _{oe}	0	_	150	ns	

Note: 1. t_{DF} is defined as the time at which the output achieves the open circuit condition and data is no longer driven.


Fast High-Reliability Programming Timing Waveform

Optional Page Programming

This device can be applied the optional page programming algorithm shown in the following flowchart. This algorithm allows to obtain faster programming time without any voltage stress to the device nor deterioration in reliability of programmed data.

This programming algorithm is the combination of page programming and byte verify. It can avoid the increase of programming verify time when a programmer with slow machine cycle is used, and shorten the total programming time.

Regarding the timing specifications for page programming and byte verify, please refer to the specifications for fast high-reliability page programming and fast high-reliability programming.

Optional Page Programming Flowchart

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions
Input leakage current	l _u	_	_	2	μΑ	Vin = 6.5 V / 0.45 V
Output voltage during verify	V _{ol}	—	—	0.45	V	I _{oL} = 2.1 mA
	V _{OH}	2.4	_	_	V	I _{OH} = -400 μA
Operating V _{cc} current	I _{cc}	_	_	50	mA	
Input voltage	V _{IL}	-0.1*5	_	0.8	V	
	V _{IH}	2.2	_	V _{cc} + 0.5	5 ^{*6} V	
	V _H	11.5	12.0	12.5	V	
Vpp supply current	I _{PP}	_	_	70	mA	$\overline{CE} = V_{IL}$

DC Characteristics ($V_{CC} = 6.25 \text{ V} \pm 0.25 \text{ V}$, $V_{PP} = 12.5 \text{ V} \pm 0.3 \text{ V}$, $Ta = 25^{\circ}C \pm 5^{\circ}C$)

Notes: 1. V_{cc} must be applied simultaneously or before V_{pp} and removed simultaneously or after V_{pp} .

2. V_{PP} must not exceed 13.5 V including overshoot.

3. An influence may be had upon device reliability if the device is installed or removed while $V_{PP} = 12.5 \text{ V}$.

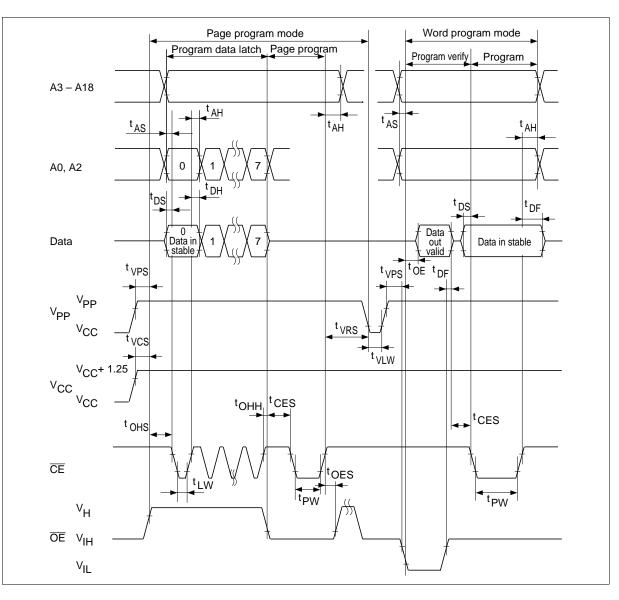
4. Do not alter V_{PP} either V_{IL} to 12.5 V or 12.5 V to V_{IL} when \overline{CE} = low.

5. V_{IL} min = -0.6 V for pulse width \leq 20 ns.

6. If V_{IH} is over the specified maximum value, programming operation cannot be guaranteed.

AC Characteristics ($V_{CC} = 6.25 \text{ V} \pm 0.25 \text{ V}$, $V_{PP} = 12.5 \text{ V} \pm 0.3 \text{ V}$, $Ta = 25^{\circ}C \pm 5^{\circ}C$)

Test Conditions


- Input pulse levels: 0.45 to 2.4 V
- Input rise and fall time: ≤ 20 ns
- Reference levels for measuring timing: Inputs: 0.8 V, 2.0 V

Outputs: 0.8 V, 2.0 V

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions
Address setup time	t _{AS}	2	_	_	μs	
OE setup time	t _{OES}	2	_	_	μs	
Data setup time	t _{DS}	2	_	_	μs	
Address hold time	t _{AH}	0	_	_	μs	
Data hold time	t _{DH}	2	_	_	μs	
OE high to output float delay	t _{DF} ^{*1}	0	_	130	ns	
V _{PP} setup time	t _{vPS}	2	_	_	μs	
V _{cc} setup time	t _{vcs}	2	_	_	μs	
CE programming pulse width	t _{PW}	47.5	50.0	52.5	μs	
CE setup time	t _{CES}	2	_	_	μs	
Data valid from \overline{OE}	t _{oe}	0	_	150	ns	
CE pulse width during data latch	t _{LW}	1	_	_	μs	
$\overline{OE} = V_H$ setup time	t _{ohs}	2	_	_	μs	
$\overline{OE} = V_{H}$ hold time	t _{ohh}	2	_	_	μs	
Page programming reset time*2	$t_{\rm VLW}$	1	_	_	μs	
V _{PP} hold time ^{*2}	$t_{\rm VRS}$	1	_	_	μs	

Notes: 1. t_{DF} is defined as the time at which the output achieves the open circuit condition and data is no longer driven.

2. Page program mode will be reset when $V_{\mbox{\tiny PP}}$ is set to $V_{\mbox{\tiny CC}}$ or less.

Option Page Programming Timing Waveform

Erase

Erasure of HN27C4001G is performed by exposure to ultraviolet light of 2537 Å and all the output data are changed to "1" after this erasure procedure. The minimum integrated dose (i.e. UV intensity x exposure time) for erasure is 15 W \cdot sec/cm².

Mode Description

Device Identifier Mode

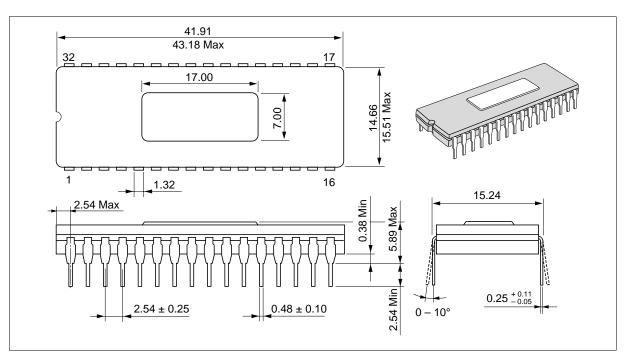
The device identifier mode allows the reading out of binary codes that identify manufacturer and type of device, from outputs of EPROM. By this mode, the device will be automatically matched its own corresponding programming algorithm, using programming equipment.

HN27C4001G Identifier Code

Identifier	A0 (12)	I/O7 (21)	I/O6 (20)	I/O5 (19)	I/O4 (18)	I/O (17)	I/O2 (15)	I/O1 (14)	I/O0 (13)	Hex Data
Manufacturer code	V_{IL}	0	0	0	0	0	1	1	1	07
Device code	V_{IH}	0	0	1	0	0	0	0	0	20

Notes: 1. $V_{cc} = 5.0 \text{ V} \pm 10\%$

2. A9 = 12.0 V \pm 0.5 V


3. $\overline{CE}, \overline{OE} = V_{\parallel L}$

4. A1 – A8, A10 – A18: Don't care.

Package Dimensions

HN27C4001G Series (DG-32A)

Unit: mm

