Product Brief

MPC535PB/D Rev. 0, 2/2003

MPC535/MPC536 Product Brief

MOTOROLA intelligence everywhere"

digitaldna

This document provides an overview of the MPC535/MPC536 microcontrollers, including a block diagram showing the major modular components, sections that list the major features, and differences between the MPC535/MPC536 and the MPC555. The MPC535 and MPC536 devices are members of the Motorola MPC500 RISC Microcontroller family. The parts herein will be referred to only as MPC535 unless specific parts need to be referenced.

Table 1. MPC535/MPC536 Features

Device	Flash	Code Compression
MPC535	1 Mbyte	Code compression not supported
MPC536	1 Mbyte	Code compression supported

1 Introduction

The MPC535 device offers the following features:

- PowerPCTM core with a floating point unit (FPU) and a burst buffer controller (BBC)
- Unified system integration unit (USIU), a flexible memory controller, and improved interrupt controller
- 1 Mbyte of Flash memory (UC3F)
 - Typical endurance of 100,000 write/erase cycles @ 25°C
 - Typical data retention of 100 years @ 25°C
- 36 Kbytes of static RAM (two CALRAM modules)
 - 8 Kbytes of normal access or overlay access (sixteen 512-byte regions)
 - 4 Kbytes in CALRAM A, 4 Kbytes in CALRAM B
- A 22-timer channel modular I/O system (MIOS14)
 - Same as MIOS1 plus a real-time clock sub-module (MRTCSM), 4 counter sub-modules (MCSM), and 4 PWM sub-modules (MPWMSM)
- One TouCAN module (TouCAN_B)
- One enhanced queued analog to digital converter (QADC64E A).
- One queued serial multi-channel module (QSMCM A) which contains a queued serial peripheral interface (QSPI) and two serial controller interfaces (SCI/UART)
- $-40^{\circ}\text{C} 85^{\circ}\text{C}$ ambient temperature

Block Diagram

- Debug features:
 - A Nexus debug port (class 3) IEEE-ISTO 5001-1999
 - JTAG and background debug mode (BDM)
- Packaging and Electrical

1.1 Block Diagram

Figure 1 is a block diagram of the MPC535.

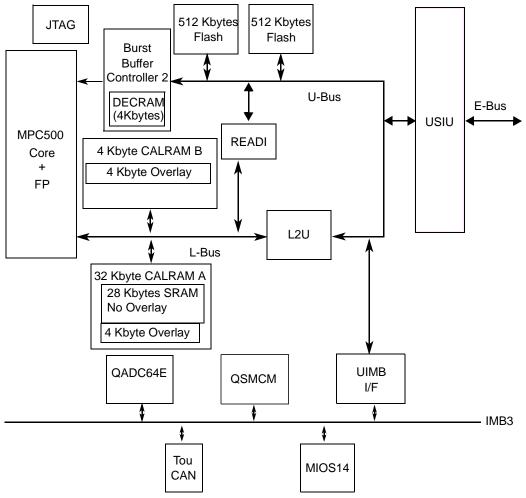


Figure 1. MPC535 Block Diagram

1.2 Detailed Feature List

The MPC535 key features are explained in the following sections.

1.2.1 High Performance CPU System

- Fully static design
- Four major power saving modes
 - On, doze, sleep, deep-sleep and power-down

1.2.2 RISC MCU Central Processing Unit (RCPU)

- High-performance core
 - PowerPC single issue integer core
 - Precise exception model
 - Floating point
 - Code compression (MPC536 only)
 - Compression reduces usage of internal or external Flash memory
 - Compression optimized for automotive (non-cached) applications
 - New compression scheme decreases code size to 40% 50% of source

1.2.3 MPC500 System Interface (USIU)

- MPC500 system interface (USIU, BBC, L2U)
- Periodic interrupt timer, bus monitor, clocks, decrementer and time base
- Clock synthesizer, power management, reset controller
- External bus tolerates 5-V inputs, provides 2.6-V outputs
- Enhanced interrupt controller supports a separate interrupt vector for up to eight external and 40 internal interrupts
- IEEE 1149.1 JTAG test access port
- Bus supports multiple master designs
- USIU supports dual-mapping of Flash to move part of internal Flash memory to external bus for development
- External bus, supporting non-wraparound burst for instruction fetches, with up to 8 instructions per memory cycle

1.2.4 Burst Buffer Controller (BBC) Module

- Exception vector table relocation features allow exception table to be relocated to following locations:
 - 0x0000 0000 0x0000 1FFF (normal MPC500 exception table location)
 - 0x0001 0000 0x0001 1FFF (0 + 64 Kbytes; second page of internal Flash)
 - Second internal Flash module
 - Internal SRAM
 - 0x0FFF_0100 (external memory space; normal MPC500 exception table location)

1.2.5 Flexible Memory Protection Unit

- Flexible memory protection units in BBC (IMPU) and L2U (DMPU)
- Default attributes available in one global entry
- Attribute support for speculative accesses

1.2.6 Memory Controller

- Flexible chip selects via memory controller
- 24-bit address and 32-bit data buses
- 4- to 16-Mbyte (data) or 4-Gbyte (instruction) region size support
- Four-beat transfer bursts, two-clock minimum bus transactions
- Use with SRAM, EPROM, Flash and other peripherals
- Byte selects or write enables
- 32-bit address decodes with bit masks
- Four instruction regions
- Four data regions

1.2.7 1 Mbyte of CDR3 Flash EEPROM Memory (UC3F)

- 1 Mbyte Flash
 - Two UC3F modules, 512 Kbytes each
- Page mode read
- Block (64-Kbyte) erasable
- External 4.75- to 5.25-V VPP program and erase power supply
- Typical endurance of 100,000 write/erase cycles @ 25°C
- Typical data retention of 100 years @ 25°C

1.2.8 36-Kbyte Static RAM (CALRAM)

- 36-Kbyte static calibration RAM
 - Composed of 4-Kbyte and 32-Kbyte CALRAM modules
- Fast access: one clock
- Keep-alive power
- Soft defect detection (SDD)
- 4 Kbyte calibration (overlay) RAM per module (8 Kbytes total)
- Eight 512-byte overlay regions per module (16 regions total)

1.2.9 General Purpose I/O Support (GPIO)

- General-purpose I/O support
- Address (24) and data (32) pins can be used as GPIO in single-chip mode
- 16 GPIO in MIOS14
- Many peripheral pins can be used as GPIO when not used as primary functions
- 5-V outputs with slew rate control

1.2.10 Debug Features

- Extensive system debug support
- On-chip watchpoints and breakpoints
- Program flow tracking
- Background debug mode (BDM)

1.2.10.1 Nexus Debug Port (Class 3)

- Nexus/IEEE ISTO 5001-1999 debug port (Class 3)
- Nine- or 16-pin interface

1.2.11 Integrated I/O System

• True 5-V I/O

1.2.11.1 22-Channel Modular I/O System (MIOS14)

- 22-channel MIOS timer (MIOS14)
- Six modulus counter submodules (MCSM)
 - Four additional MCSM submodules compared to MIOS1
- 10 double action submodules (DASM).
- 12 dedicated PWM submodules (PWMSM)
 - Four additional PWM submodules compared to MIOS1 (shared with MIOS GPIO pins)
- MIOS real-time clock submodule (MRTCSM) provides low power clock/counter
 - Requires external 32-KHz crystal
 - Uses four pins: two for 32-KHz crystal, two for power/ground.

1.2.12 One Enhanced Queued Analog-to-Digital Converter Module (QADC64E)

- One enhanced queued analog to digital converter (QADC64E A) with 16 total analog channels.
- 10 bit A/D converter with internal sample/hold
 - Typical conversion time is 4 µs (250-Kbyte samples/sec)
 - Two conversion command queues of variable length
- Automated queue modes initiated by:
 - External edge trigger/level gate
 - Software command
 - Periodic/interval timer, assignable to both queue 1 and 2
- 64 result registers
 - Output data is right or left justified, signed or unsigned
- Conversions alternate reference (ALTREF) pin. This pin can be connected to a different reference voltage

1.2.13 One CAN 2.0B Controller (TouCAN) Module

- One TouCAN module (TouCAN_B)
- 16 message buffers, programmable I/O mode
- Maskable interrupts
- Programmable loopback for self-test operation
- Independent of the transmission medium (external transceiver is assumed)
- Open network architecture, multimaster concept

- High immunity to EMI
- Short latency time for high-priority messages
- Low power sleep mode, with programmable wake up on bus activity

1.2.14 Queued Serial Multi-Channel Module (QSMCM)

- One queued serial module with one queued-SPI and two SCI (QSMCM_A)
 - QSMCM_A matches full MPC555 QSMCM functionality
- Queued-SPI
 - Provides full-duplex communication port for peripheral expansion or interprocessor communication
 - Up to 32 preprogrammed transfers, reducing overhead
 - Synchronous serial interface with baud rate of up to system clock / 4
 - Four programmable peripheral-select pins support up to 16 devices
 - Special wrap-around mode allows continuous sampling of a serial peripheral for efficient interfacing to serial analog-to-digital (A/D) converters
- SCI
 - UART mode provides NRZ format and half- or full-duplex interface
 - 16 register receive buffer and 16 register transmit buffer on one SCI
 - Advanced error detection, and optional parity generation and detection
 - Word length programmable as 8 or 9 bits
 - Separate transmitter and receiver enable bits, and double buffering of data
 - Wake-up functions allow the CPU to run uninterrupted until either a true idle line is detected, or a new address byte is received

1.2.15 Electrical Specifications and Packaging

- 40 MHz operation
- $-40^{\circ}\text{C} 85^{\circ}\text{C}$ ambient temperature
- $2.6 \text{ V} \pm 0.1 \text{ V}$ external bus
 - External bus is compatible with external memory devices operating from 2.5 V to 3.4 V.
 - Extended voltage range (2.7 3.4 V) degrades data drive timing by 1.1 ns on date writes.
- 2.6 ± 0.1 V internal logic
- 5-V I/O $(5.0 \pm 0.25 \text{ V})$
- Plastic ball grid array (PBGA) packaging
 - 388 ball PBGA
 - 27 mm x 27 mm body size
- 1.0 mm ball pitch

1.3 MPC535 Optional Features

The following features of the MPC535 are optional features and may not appear in certain configurations:

- 40-MHz operation
- MPC536 supports code compression

2 Differences between the MPC535 and the MPC555

The MPC535 is an enhanced version of the MPC555. Most functional features of the MPC555 are unchanged on the MPC535. Table 2 shows the high level differences.

Module	MPC555	MPC535							
CPU Core	No C	hange							
BBC	BBC	BBC with improved code compression ¹							
L2U	No C	hange							
SRAM	26-Kbytes	36-Kbyte CALRAM with overlay features							
Flash	448-Kbyte CMF	1-Mbyte UC3F (new programming, etc.)							
USIU	USIU	USIU with enhanced interrupt controller							
JTAG	No C	hange							
READI	None	New Module							
UIMB	No Change								
QADC64	2 QADC64 (16 channels on each QADC for 32 total channels)1 QADC64E (16 channels accessible)								
QSMCM	(1) No C	hange (1)							
MIOS	MIOS1	MIOS14: MIOS1 with real-time clock (MRTCSM), 4 more PWMSMs and 4 more MCSMs							
TouCAN	(2) No C	hange (1)							
	Power Supplies								
_	40 MHz with two power supplies:40 MHz with two power suppliesnominal 3.3-V to 5.0-V power supplies5.0-V I/O, 2.6-V internal logic								

Table 2. Differences Between Modules of the MPC555 and the MPC535

¹ Available on some options.

2.1 Additional MPC535 Differences

The following are additional differences between the MPC555 and the MPC535.

- SPI (MISO, MOSI, and SCK) pin drive.
 - MPC535 provides 21-ns rise/fall with 200-pf load using CMOS (20%/70%) levels
- GPIO on MODCK1 pin outputs only 2.6 V
 - MODCK1 pin is in keep-alive power section with no 5-V rail available
 - 5.0-V compatibility modes
 - Input is 5-V friendly
 - 2.6-V output has less slew rate control
 - 2.6-V: VOH = 2.3 V
- Power supplies for external bus pins
 - QVDDL is quiet supply to hold non-switching outputs quiet even when noisy supply (NVDDL) sags
 - QVDDL supplies pre-drive and other pad logic
 - NVDDL only supplies final PMOS driver stage
 - QVDDL and NVDDL shorted on customer board after filtering
- Pull-up and pull-down changes during PORESET and HRESET
 - All 2.6-V/5-V pads (external bus: address/data/control) pull down at reset
 - All 5-V pads pull up at reset
 - Additional control granularity in the PDMCR register
- No pull-ups on QSMCM SCI receive pads
- A_RXD1_QGPI1, A_RXD2_QGPI2 pins do not have weak pull-up during reset or any other time
- CLKOUT has 3 drive strength options
 - Better matches drive to requirements to reduce EMI
 - 25, 50, 100 pf instead of 45 and 90 pf
- Change reset value of ENGCLK to maximum divide (crystal/128)
 - For a 4-MHz crystal, this is 31.25 KHz
 - ENGCLK is selectable between 2.6 V and 5 V
- A daisy chain between UC3F modules allows either module to provide the reset configuration word (RCW)
- Censorship operation
 - A RCW bit controls whether or not the entire UC3F can be erased while censorship is violated
- BBC SPRs (PPC regs) access in two clocks instead of one clock
- CALRAM internal protection block size is 8 Kbytes
 - Instead of 4 Kbytes on MPC555 LRAM
- CALRAM causes machine check exception instead of data storage interrupt (DSI) exception in certain cases
 - For non-overlay CPU core accesses, a DSI exception is taken
 - For overlay accesses and any non-core access (slave mode), a machine check exception is taken

- CALRAM causes DSI exception only if the data relocation (DR) bit in the core machine state register, MSR[DR], is set.
 - L2U on MPC555 already followed this protocol, but the LRAM did not. Now all L-bus peripherals follow this protocol.
 - The MSR[DR] bit is described in the reference manual for more information.
- Four additional PRDS control bits were added to the USIU to allow more granularity of PRDS control on a part
- BBC includes a 4-Kbyte DECRAM that can be used if compression is not used or is not available.

3 SRAM Keep-Alive Power Behavior

The SRAM has three keep-alive power pins (VDDSRAM1, VDDSRAM2, and VDDSRAM3). These pins provide keep-alive power to the SRAM arrays in the CALRAM modules.

The VDDSRAM1 pin powers the 32-Kbyte CALRAM A during keep-alive while power is off to the MPC535 (except for the keep-alive power supplies). CALRAM A keeps all of its 32 Kbytes powered during power down.

The VDDSRAM2 pin powers the 4-Kbyte CALRAM B module. The CALRAM modules only power their arrays from the VDDSRAM pins during keep-alive. During normal operation, they are powered by the normal internal VDD of the part.

The 4-Kbyte DECRAM in the BBC module power its arrays via the VDDSRAM3 pin during keep-alive and are supplied by VDD during normal operation.

4 MPC535 Memory Map

The internal memory map is organized as a single 4-Mbyte block. This is shown in Figure 3. This block can be moved to one of eight different locations. The internal memory space is divided into the following sections:

- Flash memory (1 Mbyte) U-bus memory
- Static RAM memory (36 Kbytes CALRAM) L-bus memory
- Control registers and IMB3 modules (64 Kbytes), partitioned as
 - USIU and flash control registers
 - UIMB interface and IMB3 modules
 - CALRAM and READI control registers (L-bus control register space)

The internal memory block can reside in one of eight possible 4-Mbyte memory spaces. These eight locations are the first eight 4-Mbyte memory blocks starting with address 0x0000 0000, as shown in Figure 2. There is a user programmable register in the USIU to configure the internal memory map to one of the eight possible locations. Programmability of internal memory map location allows multiple chip system.

The IMB3 address space block in Figure 3 shows memory allocation for IMB3 modules. It does not show the actual memory space required for individual modules. All modules are mapped to the low address, numerically, of the memory allocated for that module in the IMB3 address space.

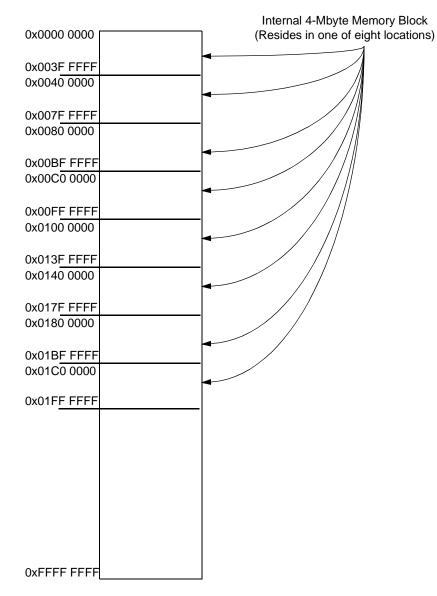


Figure 2. Memory Map

0x00 0000	UC3F_A Flash	
0x07 FFFF	512 Kbytes	
0x08 0000	UC3F_B Flash	
0x0F FFFF	512 Kbytes	
0x10 0000	Reserved for Flash	
0x2F 7FFF	(2,016 Kbytes)	
Ox2F 8000	DECRAM	
0x2F 8FFF	4 Kbytes	
0x2F 9000 0x2F 9FFF	Reserved	
0x2F A000	BBC Control Registers	[/
0x2F BFFF	8 Kbytes	$\left \right $
0x2F C000	USIU & Flash Control	
0x2F FFFF	16 Kbytes	/
0x30 0000		
	UIMB I/F & IMB	
	Modules	
	32 Kbytes	
0x30 7FFF		
0x30 8000	Reserved for IMB	N
0x37 FFFF	480 Kbytes	$\left \right\rangle$
0x38 0000	CALRAM/	$\left \right\rangle$
	Readi Control	$ \rangle$
0x38 00FF	256 bytes	
0x38 0100	Reserved (L-bus Control)	
0x38 3FFF	~32 Kbytes	
0x38 4000		
	Reserved (L-bus Mem) 444 Kbytes	
0x3F 6FFF		
0x3F 6FFF 0x3F 7000	All 4-Kbytes can be Overlay Section	
	All 4-Kbytes can be Overlay Section CALRAM_B (4 Kbyte)	
0x3F 7000	Overlay Section	
0x3F 7000 0x3F 7FFF	Overlay Section	

r		1
/	USIU Control Registers	0x2F C000
	UC3F_A Control (64 bytes)	0x2F C800
	UC3F_B Control (64 bytes)	0x2F C840 0x2F C87F
//		0x30 0000
/	Reserved* (144 bytes)	
		0x30 0080
	Reserved (3952 bytes)	0x30 0090
	Reserved* (10 Kbytes)	0x30 1000
		0x30 2000
	Reserved (2 Kbytes)	0x30 3800
		0x30 4000
	Reserved* (2 Kbytes)	0x30 4400
	QADC64_A (1 Kbytes)	0x30 4800
	Reserved* (1 Kbytes)	0x30 4C00
	QSMCM_A (1 Kbytes)	0x30 5000
	Reserved* (1 Kbytes)	0x30 5400
	Reserved (1 Kbytes)	0x30 5800
	Reserved* (1 Kbytes)	0x30 5C00
	MIOS14 (4 Kbytes)	0x30 6000
	Reserved* (1 Kbytes)	0x30 7000
	TOUCAN_B (1 Kbytes)	0x30 7400
	Reserved* (1 Kbytes)	0x30 7800
\setminus	Reserved (896 bytes)	0x30 7900
	UIMB Control Registers	0x30 7F80
V	(128 bytes)	0x30 7FFF

Note: Reserved, do not write to this space.

Figure 3. Internal Memory Block

5 MPC535 Pinout Diagram

Figure 4 shows the pinout for the MPC535.

	A	в	с	D	ш	ш	G	Ξ	-	\mathbf{r}	_	Σ	z	ط	2	⊢		>	×	≻	AA	AB	AC	AD	AE	AF	
26	VSS	VDD	VSS	VSS	MPWM17	MDA13	MDA29	IMWMI	PWM20- MPIO 32B11	MPIO 32B13	VF0 MPIO 32B0	VFLS0- MPIO 32B3	VSS	VSS	SSV	A_SCK_ OGPI06 (C3F_CLK)	A_PCS3_ QGPI03 (C3F_IOUT)	VSS	PULLSEL	KAPWR	XTAL	EXTAL	/SSSYN	XFC	VDDSYN	OVDDL	26
25	VSS	VSS	DDD	NSS	VSS	MDA11	MDA28	MPWM0	MPWM16	MPVM/21_ MPIO 32B12	MPWM19	MPWM4_ MPIO 32B5	VSS	VSS	SSV	NSS		A_RXD2_ (C3F_SUP2)	A_PCS1_I	NC	VSSF	RSTCONF_ B_TEXP	IRQ7_B_ MODCK3	IRO5_B_ GPIOC5_ MODCK1	OV DDL	VSS	25
24	VSS	NSS	NSS	ΔŪΛ	VSS	MPWM18	MDA27	MDA31 N	MPWM2 M	MDA14	MPIO 32B15 1	VF2 MPIO 32B2	VFLS1- MPIO 32B4	VSS	NSS	A_MISO_ QGPIO4	A_RXD1_ OP11 (C3F_SUP1)	A_TXD2_ 0GP02_ ((VFLASH	XTCLK	VSS	IRQ6_B_R MODCK2	SRESET		VSS	ΠŪΛ	24
23	VSS	VSS	VSS	NSS	DDV	MPWM5- N MPIO 32B6		MDA30	MPW/M3	MDA15	MPIO 32B14	VF1 MPIŌ 32B1	HDDH	VSS	VSS	A_TXD1_ QGP01	A_PCS2_ 0GPI02(A_PCS0_SS _B_0GP100	NDDL	VDDF	PORESET_E _TRST_B	HRESET	QVDDL	VSS	NDD	NC	23
22	vss	VSS	VSS	NDDL		220	_	. ~								40	Q -	A I	-		<u>a</u> '		VSS	VDD	NC	ENGCLK_ BUCLK	22
21	vss	VSS	VSS	V SS																			DDV	CLKOUT	BDIP_B	EPEE	21
20	VSS	VSS	VSS	VSS																			HDDH	BOEPEE CI	TS_B B	TA_B	20
19	vss	VSS	VSS	VSS																BL_B STSB	TSIZ0 B	BURST 1 _B	TSIZ1	19			
18	VSS	VSS	VSS	VSS																			CS3_B	SS1_B	CS0_B	cs2_B	18
17	VSS	VSS	B_CNRX0	VSS				allec	00000														NVDDL C	WE_B_ AT2	WE_B_ 0 AT0	WE_B_ AT3	
16	vss	ETRIG2	ETRIG1 B_	НДДЛ				NOTE: This is a ton down view of the halls			VSS	VSS	VSS	VSS	VSS	VSS							WE_B_	R02_B_ CR_B GPIOC2	OE_B W	IRO0_B_ W	16
15	OVDDL	QVDDL	QVDDL	QVDDL				jo Me			VSS	VSS	VSS	VSS	VSS	VSS							NVDDL	TEA_B So	RD_WR _B	BR_B_	15
14	VSS 0	vss o	vss 0	VSS 0				iv uv			VSS	VSS	VSS	VSS	VSS	VSS							SGPIOC7. IROOUT B_LWP0	IR04 B_AT2 SGPIOC4	BB_B_ RI VF2 IWP3	BG_B_ MB- VF	14
13	VSS	VSS	SSV	vss					2		VSS	VSS	VSS	VSS	VSS	VSS							NUDDL IR	DATA_ E	RO3_B_KF B_RETRY_b _SGPIOC3	IRO1_BE RSV_B SGPIOC1	13
12	SSV	NSS	VSS	vss				n 1 1	2 2		VSS	VSS	vss	VSS	VSS	VSS							DATAN	DATA_ 1 SGPIOD21 SG	DATAB SGPIOD17S	DATA_ R SGPIOD18 SI	12
11	VSS	VSS	NSS	AN59_A_				hic ic	2		vss	VSS	vss	VSS	VSS	VSS							DATA_ I SGPIOD22 SC	DATA_ SGPIOD23 SG	DATAC	DATA_ I SGPIOD16 SC	11
10	VSSA	AN58_A_	AN57_A_POA5					г Ц Н	j														DATA_ I SGPIOD24 SC	DATA I SGPIOD25 SC	DATA I SGPIOD13 SC	DATA_ I SGPIOD14 SC	10
6	VDDA		AN54_A_ MA2_ POA2_F	AN51_A_ AN55_A_				Q															NUDDL	DATA_ SGPIOD26 SC	DATASGPIOD11S0	DATASGPIOD12SG	
8	AN53_A MA1_ POA1	AN52_A_ MA0_ POA0	AN50_A_ AN	AN47 ANZ_A_ POB3																			DATAN	DATA_ L SGPIOD28 SG	DATAC SGPIOD9 SG	DATA_ L SGPIOD10 SG	8
7	AN48 A N	AN49_A AN	AN46_ ANY A_ POB2_	ANB2 AND																			DATA_ DA	DATADA SGPIOD30 SGP	DATADA	DATADA SGPIOD8 SGP	7
6	vss AN	vss <mark>an</mark>	vss Ap	VSS A																			VDDH DA	DATA_ DA SGPIOD31 SGP	DATADA	DATA_ DA SGPIOD6 SGF	6
5	VSS 1	VSS 1	VSS V	Наал																				NC DA	DATADA SGPIOD3 SGF	۸_ 004	
4	VRL		AN45_ANX ANX _A_POB1		VSS	NVDDL	VDD SRAM3	VSS	VSS	VSS	MCKI	MSE1_B	MDO_5 MPI032B9	MDO_0	IWP1_ VFLS1	SGP10C6 FR2 PTR_B	NVDDL	ADDR_ SGPIOA10	ADDR_ SGPIOA12	DR_ IOA14	ADDR_ SGPIOA30	QVDDL	VSS V	VDD	DATAD/ SGPIOD1 SGI	DATADATA SGPIOD2 SGPIC	
3	VRH VI	AN44AUTREFA_POB0		VSS	VDDSRAM1	VSS NV	VSS VDD	vss vs	v ss v	VSS 1	MDI_1 M	RSTI_B MSE	MDO_6_MD0 MPIO32B3 MPI0	MCKO MD	MDO_2 IM	IWP0_ SGPI	ADDR_ SGPIOA8	ADDR_ SGPIOA9	ADDR_ ADD SGPIOA1' SGP	ADDRADDR SGPIOA13 SGPIOA	ADDR_ ADD SGPIOA15 SGP	ADDR_ OV SGPIOA31	OVDDL VS	vss vi		DATA_ DA1 SGPIOD0 SGPI	3
2	VSS	VDD ANV	V SSV	VDDSRAM2	CNTX0 VDDS	VSS	V SSV	VSS V		V SSV		EVTI_B RST	MDO_4_MD0 MPIO32B10 MPI0		TDOMD DSDO		ADDRADD SGPIOA17 SGP	19	ADDR_ ADI SGPIOA21 SGF	ADDRADD SGPIOA23 SGP	ADDR_ ADD SGPIOA25 SGP	ADDR_ AD SGPIOA27 SGP	NC	DDL	VSS	VDD DA	2
-		VSS V	VDDRTC	EXTAL32 VDDS	XTAL32 B_CI	VSSRTC	vss v:	v SSV	vss vss	vss v	MDI_0 TCK_	TDI_DSDI	TMS MDC	MDO_7 MPIO32B7	MDO_1 TD	MDO_3 MSEO _B	ADDRADD SGPIOA16 SGP	ADDRADDR_ SGPIOA18 SGPIO/	ADDRADD SGPIOA20 SGP	ADDRADD SGPIOA22 SGP	ADDRADD SGPIOA24 SGP	ADDR_ AD SGPIOA26 SGP	ADDR_ SGPIOA28	ADDR_ SGPIOA29	WDDL V	V SSV	-
	A	В	C VDC	D EXT	E XTA	F VSS	× ن	зл Н	э Г	K vs	L MD	M	Z	P MDC	R MDG	T MDG	U ADD SGPI	V ADD SGPI	W ADD SGPI	Y ADD SGPI	AA ADD SGPI	AB ADI SGPI	AC ADC	AD ADE SGF	AE OVD	AF	I

Figure 4. MPC535 Pinout Diagram

THIS PAGE INTENTIONALLY LEFT BLANK

THIS PAGE INTENTIONALLY LEFT BLANK

THIS PAGE INTENTIONALLY LEFT BLANK

HOW TO REACH US:

USA/EUROPE/LOCATIONS NOT LISTED:

Motorola Literature Distribution P.O. Box 5405, Denver, Colorado 80217 1-303-675-2140 or 1-800-441-2447

JAPAN:

Motorola Japan Ltd. SPS, Technical Information Center 3-20-1, Minami-Azabu Minato-ku Tokyo 106-8573 Japan 81-3-3440-3569

ASIA/PACIFIC:

Motorola Semiconductors H.K. Ltd. Silicon Harbour Centre, 2 Dai King Street Tai Po Industrial Estate, Tai Po, N.T., Hong Kong 852-26668334

TECHNICAL INFORMATION CENTER:

1-800-521-6274

HOME PAGE:

http://www.motorola.com/semiconductors

Information in this document is provided solely to enable system and software implementers to use Motorola products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.

Motorola and the Stylized M Logo are registered in the U.S. Patent and Trademark Office. digital dna is a trademark of Motorola, Inc. The described product contains a PowerPC processor core. The PowerPC name is a trademark of IBM Corp. and used under license. All other product or service names are the property of their respective owners. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

© Motorola, Inc. 2003

MPC535PB/D