January 2015

Features

- Extended T_{J} rating to $175^{\circ} \mathrm{C}$

■ Shielded Gate MOSFET Technology
■ $\operatorname{Max} \mathrm{r}_{\mathrm{DS}(\text { on })}=7.2 \mathrm{~m} \Omega$ at $\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=13.5 \mathrm{~A}$
■ Max $\mathrm{r}_{\mathrm{DS}(\text { on })}=10.3 \mathrm{~m} \Omega$ at $\mathrm{V}_{\mathrm{GS}}=6 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=11.5 \mathrm{~A}$

- Advanced Package and Silicon combination for low $r_{\text {DS(on) }}$ and high efficiency
- MSL1 robust package design

■ 100\% UIL tested

- RoHS Compliant

General Description

This N-Channel MOSFET is produced using Fairchild Semiconductor's advanced PowerTrench ${ }^{\circledR}$ process that incorporates Shielded Gate technology. This process has been optimized for the on-state resistance and yet maintain superior switching performance.

Application

■ DC-DC Conversion

Power 56

MOSFET Maximum Ratings $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted

Symbol	Parameter			Ratings	Units
V_{DS}	Drain to Source Voltage			120	V
$\mathrm{V}_{G S}$	Gate to Source Voltage			± 20	V
${ }_{\text {I }}$	Drain Current -Continuous	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	(Note 5)	102	A
	-Continuous	$\mathrm{T}_{\mathrm{C}}=100^{\circ} \mathrm{C}$	(Note 5)	72	
	-Continuous	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	(Note 1a)	13.5	
	-Pulsed		(Note 4)	538	
$\mathrm{E}_{\text {AS }}$	Single Pulse Avalanche Energy		(Note 3)	600	mJ
P_{D}	Power Dissipation	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$		187	W
	Power Dissipation	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	(Note 1a)	3.3	
$\mathrm{T}_{\mathrm{J},} \mathrm{T}_{\text {STG }}$	Operating and Storage Junction			-55 to +175	${ }^{\circ} \mathrm{C}$

Thermal Characteristics

$\mathrm{R}_{\theta \mathrm{JC}}$	Thermal Resistance, Junction to Case	0.8	
$\mathrm{R}_{\theta \mathrm{JJ}}$	Thermal Resistance, Junction to Ambient	(Note 1a)	45

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDMS86202ET	FDMS86202ET120	Power 56	$13 "$	12 mm	3000 units

Electrical Characteristics $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ unless otherwise noted

Symbol	Parameter	Test Conditions	Min	Typ	Max	Units

Off Characteristics

$\mathrm{BV}_{\text {DSS }}$	Drain to Source Breakdown Voltage	$\mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$	120			V
$\frac{\Delta \mathrm{BV}_{\mathrm{DSS}}}{\Delta \mathrm{~T}_{\mathrm{J}}}$	Breakdown Voltage Temperature Coefficient	$\mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$, referenced to $25^{\circ} \mathrm{C}$		103		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
IDSs	Zero Gate Voltage Drain Current	$\mathrm{V}_{\mathrm{DS}}=96 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$			1	$\mu \mathrm{A}$
IGSS	Gate to Source Leakage Current	$\mathrm{V}_{\mathrm{GS}}= \pm 20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$			± 100	nA

On Characteristics

$\mathrm{V}_{\mathrm{GS}(\mathrm{th})}$	Gate to Source Threshold Voltage	$\mathrm{V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{DS}}, \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$	2.0	3.1	4.0	V
$\frac{\Delta \mathrm{V}_{\mathrm{GS}(\mathrm{th})}}{\Delta \mathrm{T}_{\mathrm{J}}}$	Gate to Source Threshold Voltage Temperature Coefficient	$\mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$, referenced to $25^{\circ} \mathrm{C}$		-10		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
${ }^{\text {dS }}$ (on)	Static Drain to Source On Resistance	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=13.5 \mathrm{~A}$		6.0	7.2	$\mathrm{m} \Omega$
		$\mathrm{V}_{\mathrm{GS}}=6 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=11.5 \mathrm{~A}$		8.1	10.3	
		$\mathrm{V}_{G S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=13.5 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$		10.9	13.2	
gFs	Forward Transconductance	$\mathrm{V}_{\mathrm{DS}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=13.5 \mathrm{~A}$		44		S

Dynamic Characteristics

$\mathrm{C}_{\text {iss }}$	Input Capacitance	$\begin{aligned} & V_{D S}=60 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$		3275	4585	pF
$\mathrm{C}_{\text {oss }}$	Output Capacitance			460	644	pF
$\mathrm{C}_{\text {rss }}$	Reverse Transfer Capacitance			17	30	pF
R_{g}	Gate Resistance		0.1	0.9	2.7	Ω

Switching Characteristics

$\mathrm{t}_{\mathrm{d}(\mathrm{on})}$	Turn-On Delay Time	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=60 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=13.5 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{R}_{\mathrm{GEN}}=6 \Omega \end{aligned}$		21	33	ns
t_{r}	Rise Time			8.75	17.5	ns
$\mathrm{t}_{\mathrm{d} \text { (off) }}$	Turn-Off Delay Time			27.2	44	ns
t_{f}	Fall Time			6.1	12.2	ns
Q_{g}	Total Gate Charge	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$ to 10 V		45	64	nC
Q_{g}	Total Gate Charge	$\mathrm{I}_{\mathrm{D}}=13.5 \mathrm{~A}$		29	41	nC
Q_{gs}	Gate to Source Charge			14.3		nC
Q_{gd}	Gate to Drain "Miller" Charge			9.5		nC

Drain-Source Diode Characteristics

$\mathrm{V}_{\text {SD }}$	Source to Drain Diode Forward Voltage	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=2.1 \mathrm{~A}$	(Note 2)	0.69	1.2	V
		$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=13.5 \mathrm{~A}$	(Note 2)	0.76	1.3	
$\mathrm{trr}^{\text {r }}$	Reverse Recovery Time	$\mathrm{I}_{\mathrm{F}}=13.5 \mathrm{~A}, \mathrm{di} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s}$		79	127	ns
$\mathrm{Q}_{\text {rr }}$	Reverse Recovery Charge			140	224	nC

Notes:

1. $R_{\theta J A}$ is determined with the device mounted on a $1 \mathrm{in}^{2}$ pad 2 oz copper pad on a $1.5 \times 1.5 \mathrm{in}$. board of FR-4 material. $R_{\theta C A}$ is determined by the user's board design.

Typical Characteristics $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ unless otherwise noted

Figure 1. On Region Characteristics

Figure 3. Normalized On Resistance vs Junction Temperature

Figure 5. Transfer Characteristics

Figure2. Normalized On-Resistance vs Drain Current and Gate Voltage

Figure 4. On-Resistance vs Gate to Source Voltage

Figure 6. Source to Drain Diode Forward Voltage vs Source Current

Typical Characteristics $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ unless otherwise noted

Figure 7. Gate Charge Characteristics

Figure9. Unclamped Inductive Switching Capability

Figure 11. Forward Bias Safe Operating Area

Figure8. Capacitancevs Drain to Source Voltage

Figure 10. Maximum Continuous Drain Current vs Case Temperature

Figure 12. Single Pulse Maximum Power Dissipation

Typical Characteristics $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ unless otherwise noted

Figure 13. Junction-to-Ambient Transient Thermal Response Curve

LAND PATTERN
RECOMMENDATION

NOTES: UNLESS OTHERWISE SPECIFIED
A) PACKAGE STANDARD REFERENCE: JEDEC MO-240, ISSUE A, VAR. AA,
B) ALL DIMENSIONS ARE IN MILLIMETERS.
C) DIMENSIONS DO NOT INCLUDE BURRS OR MOLD FLASH. MOLD FLASH OR BURRS DOES NOT EXCEED 0.10 MM .
D) DIMENSIONING AND TOLERANCING PER ASME Y14.5M-2009.
E) IT IS RECOMMENDED TO HAVE NO TRACES OR VIAS WITHIN THE KEEP OUT AREA.
F) DRAWING FILE NAME: PQFN08JREV3.

DETAIL A

SCALE: 2:1

FAIRCHILD

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPower ${ }^{\text {TM }}$	F-PFS ${ }^{\text {TM }}$	OPTOPLANAR ${ }^{\left({ }^{(1)}\right.}$	C SYSTEM
AttitudeEngine ${ }^{\text {TM }}$	FRFET ${ }^{\circledR}$		\checkmark GENERAL
Awinda ${ }^{\text {® }}$	Global Power Resource ${ }^{\text {SM }}$	${ }^{(8)}$	TinyBoost ${ }^{\text {® }}$
AX-CAP ${ }^{\text {® }}$ *	GreenBridge ${ }^{\text {TM }}$	Power Supply WebDesigner ${ }^{\text {TM }}$	TinyBuck ${ }^{\text {® }}$
BitSiC ${ }^{\text {™ }}$	Green FPS ${ }^{\text {™ }}$	PowerTrench ${ }^{\text {® }}$	TinyCalc ${ }^{\text {™ }}$
Build it Now $^{\text {™ }}$	Green FPS ${ }^{\text {TM }}$ e-Series ${ }^{\text {™ }}$	PowerXS ${ }^{\text {TM }}$	TinyLogic ${ }^{\text {® }}$
CorePLUS ${ }^{\text {™ }}$	Gmax ${ }^{\text {™ }}$	Programmable Active Droop ${ }^{\text {TM }}$	TINYOPTOTM
CorePOWER ${ }^{\text {TM }}$	GTO ${ }^{\text {™ }}$	QFET ${ }^{\circledR}$	TinyPower ${ }^{\text {TM }}$
CROSSVOLT ${ }^{\text {TM }}$	IntellimAX ${ }^{\text {TM }}$	$\mathrm{QS}^{\text {™ }}$	TinyPWM ${ }^{\text {™ }}$
CTL ${ }^{\text {™ }}$	ISOPLANAR ${ }^{\text {™ }}$	Quiet Series ${ }^{\text {TM }}$	TinyWire ${ }^{\text {TM }}$
Current Transfer Logic ${ }^{\text {TM }}$	Making Small Speakers Sound Louder	RapidConfigure ${ }^{\text {TM }}$	TranSiC ${ }^{\text {™ }}$
DEUXPEED ${ }^{\text {® }}$	and Better ${ }^{\text {TM }}$	(${ }^{\text {TM }}$	TriFault Detect ${ }^{\text {TM }}$
Dual Cool ${ }^{\text {TM }}$	MegaBuck ${ }^{\text {™ }}$		TRUECURRENT ${ }^{\text {® }}$ *
EcoSPARK ${ }^{\text {® }}$	MICROCOUPLER ${ }^{\text {TM }}$	Saving our world, $1 \mathrm{~mW} / \mathrm{W} / \mathrm{kW}$ at a time ${ }^{\text {TM }}$	μ SerDes $^{\text {TM }}$
EfficientMax ${ }^{\text {TM }}$	MicroFET ${ }^{\text {TM }}$	SignalWise ${ }^{\text {TM }}$	
ESBC ${ }^{\text {™ }}$	MicroPak ${ }^{\text {M }}$	SmartMax ${ }^{\text {TM }}$ SMART START ${ }^{\text {TM }}$	SerDes*
Γ^{\circledR}	MicroPak2 ${ }^{\text {™ }}$	SMART START ${ }^{\text {TM }}$ Solution for Your Success ${ }^{\text {TM }}$	UHC^{\circledR}
Fairchild ${ }^{\text {® }}$	MillerDrive ${ }^{\text {TM }}$	Solutions for Your Success ${ }^{\text {TM }}$ SPM ${ }^{\text {® }}$	Ultra FRFET ${ }^{\text {TM }}$
Fairchild Semiconductor ${ }^{\text {® }}$	MotionMax ${ }^{\text {™ }}$	STEALTH ${ }^{\text {TM }}$	UniFET ${ }^{\text {m }}$
FACT Quiet Series ${ }^{\text {TM }}$	MotionGrid ${ }^{\text {® }}$	SuperFET ${ }^{\text {® }}$	VCX ${ }^{\text {TM }}$
$\mathrm{FACT}^{\text {® }}$	MTi ${ }^{\text {® }}$	SuperSOT ${ }^{\text {mm-3 }}$	VisualMax ${ }^{\text {TM }}$
FastvCore ${ }^{\text {TM }}$	MVN ${ }^{\text {M }}$	SuperSOT ${ }^{\text {TM }}$-6	VoltagePlus ${ }^{\text {TM }}$
FETBench ${ }^{\text {™ }}$	mWSaver ${ }^{\text {® }}$	SuperSOT ${ }^{\text {TM }}$-8	Xsens ${ }^{\text {m }}$
FPS ${ }^{\text {™ }}$	OptoHiT ${ }^{\text {TM }}$	SupreMOS ${ }^{\text {S }}$ S ${ }^{\text {® }}$	仙童 ${ }^{\circledR}$
	OPTOLOGIC ${ }^{\circledR}$	Sync-Lock ${ }^{\text {TM }}$	

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. TO OBTAIN THE LATEST, MOST UP-TO-DATE DATASHEET AND PRODUCT INFORMATION, VISIT OUR WEBSITE AT HTTP://WWW.FAIRCHILDSEMI.COM. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

AUTHORIZED USE

Unless otherwise specified in this data sheet, this product is a standard commercial product and is not intended for use in applications that require extraordinary levels of quality and reliability. This product may not be used in the following applications, unless specifically approved in writing by a Fairchild officer: (1) automotive or other transportation, (2) military/aerospace, (3) any safety critical application - including life critical medical equipment - where the failure of the Fairchild product reasonably would be expected to result in personal injury, death or property damage. Customer's use of this product is subject to agreement of this Authorized Use policy. In the event of an unauthorized use of Fairchild's product, Fairchild accepts no liability in the event of product failure. In other respects, this product shall be subject to Fairchild's Worldwide Terms and Conditions of Sale, unless a separate agreement has been signed by both Parties.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Terms of Use
Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.
PRODUCT STATUS DEFINITIONS
Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

