

Symbol Parameter Ratings Units Drain to Source Voltage 250 V V_{DS} Gate to Source Voltage ±20 V V_{GS} Drain Current -Continuous (Silicon limited) T_C = 25°C 14 T_A = 25°C -Continuous (Note 1a) 2.8 I_D А -Pulsed 30 Power Dissipation T_C = 25°C 78 PD W T_A = 25°C 2.5 **Power Dissipation** (Note 1a) Operating and Storage Junction Temperature Range -55 to +150 °C T_J, T_{STG}

Thermal Characteristics

$R_{\theta JC}$	Thermal Resistance, Junction to Case	1.6	°C/W
$R_{ extsf{ heta}JA}$	Thermal Resistance, Junction to Ambient (Note 1	a) 50	0/10

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDMS2734	FDMS2734	Power 56	13"	12mm	3000 units

March 2011

©2011 Fairchild Semiconductor Corporation FDMS2734 Rev.C1

1

General Description

UltraFET devices combine characteristics that enable benchmark efficiency in power conversion applications. Optimized for $r_{DS(on)}$, low ESR, low total and Miller gate charge, these devices are ideal for high frequency DC to DC converters.

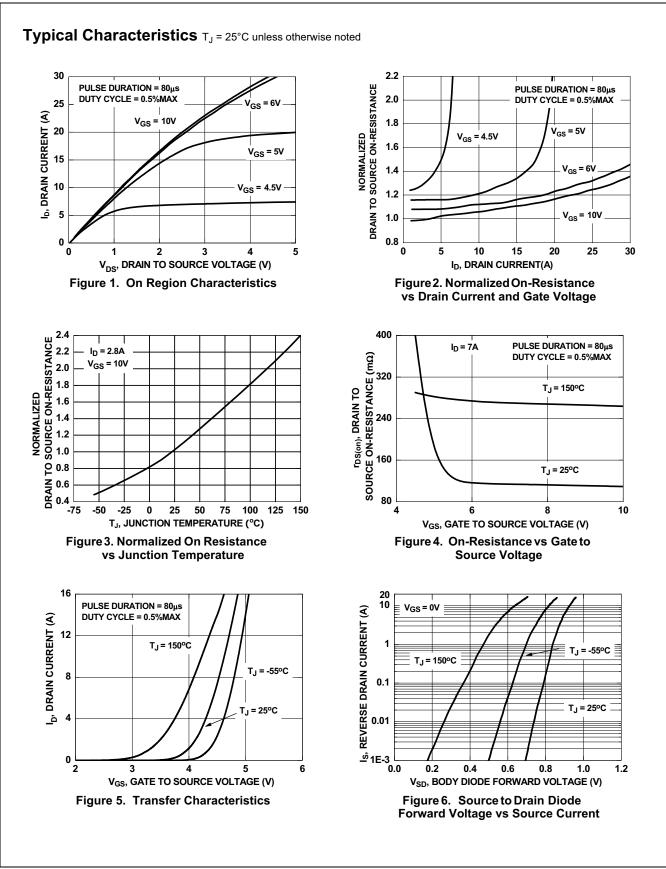
4 G

2 S

1 S

3

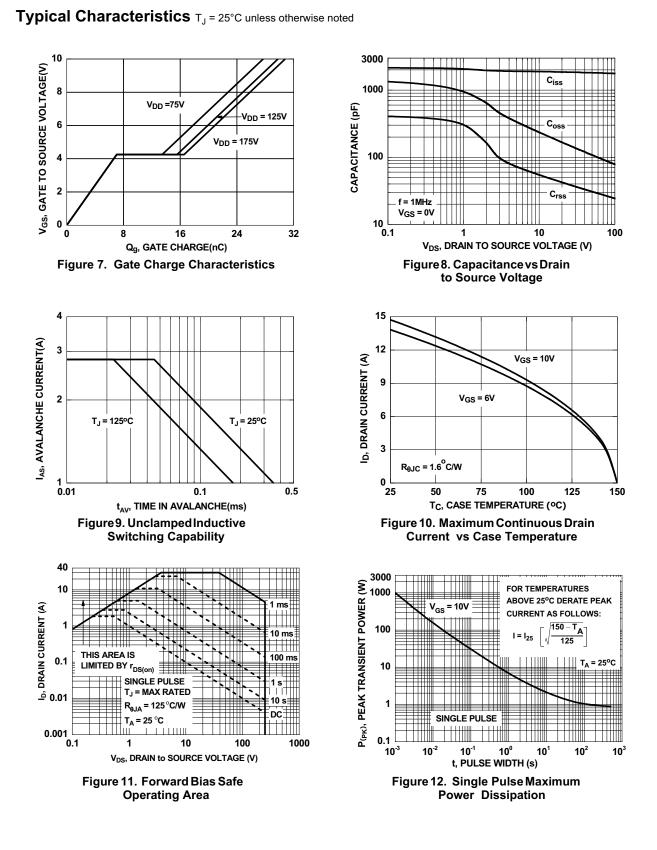
S


FAIRCHILD

SEMICONDUCTOR

- Max $r_{DS(on)}$ = 122m Ω at V_{GS} = 10V, I_D = 2.8A
- Max $r_{DS(on)}$ = 130m Ω at V_{GS} = 6V, I_D = 1.7A
- Low Miller Charge
- Optimized efficiency at high frequencies
- RoHS Compliant

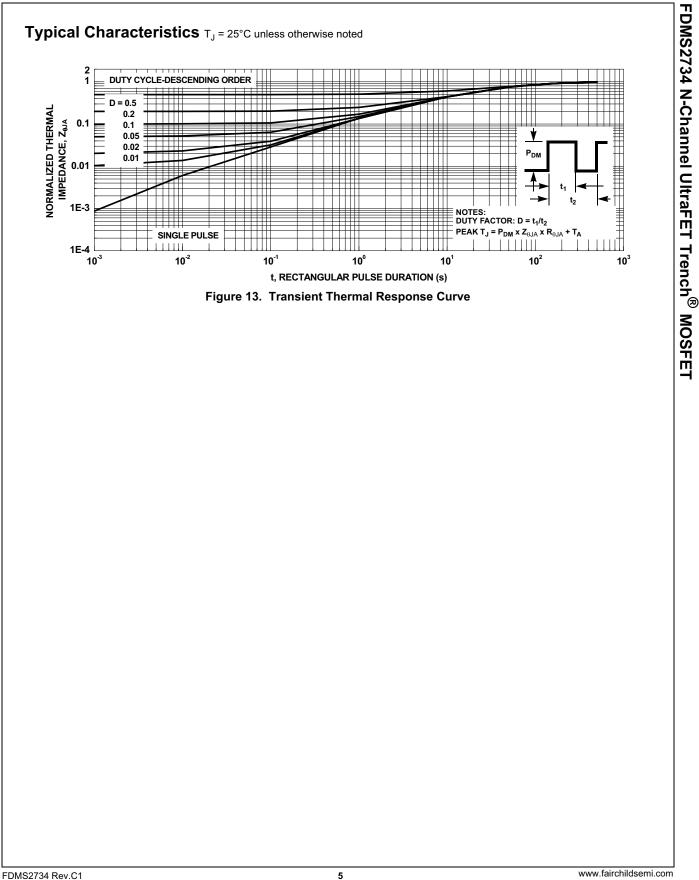
FDMS2734
N-Channel UI
UltraFET Tren
Trench®
MOSFET


	Parameter	Test Conditions	Min	Тур	Max	Units
Off Chara	cteristics					
BV _{DSS}	Drain to Source Breakdown Voltage	I _D = 250μA, V _{GS} = 0V	250			V
ΔBV_{DSS}	Breakdown Voltage Temperature			250		mV/°C
ΔT _J	Coefficient Zero Gate Voltage Drain Current				1	A
I _{DSS}	e e e e e e e e e e e e e e e e e e e	$V_{DS} = 200V,$ $V_{GS} = \pm 20V, V_{GS} = 0V$			±100	μA
IGSS	Gate to Source Leakage Current	v _{GS} - ±200, v _{GS} - 00			100	nA
On Chara	cteristics (Note 2)					
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_D = 250 \mu A$	2	3	4	V
$\frac{\Delta V_{\text{GS(th)}}}{\Delta T_{\text{J}}}$	Gate to Source Threshold Voltage Temperature Coefficient	$I_D = 250 \mu A$, referenced to $25^{\circ}C$		-11		mV/°C
		V _{GS} = 10V, I _D = 2.8A		105	122	
r _{DS(on)}	Drain to Source On Resistance	$V_{GS} = 6V, I_D = 1.7A$		110	130	mΩ
		$V_{GS} = 10V, I_D = 2.8A T_J = 125^{\circ}C$		217	258	1
9fs	Forward Transconductance	$V_{DS} = 10V, I_D = 2.8A$		11		S
	Characteristics	- · · · · · · · · · · · · · · · · · · ·				
-				1775	2365	рĘ
C _{iss}	Input Capacitance Output Capacitance	V _{DS} = 100V, V _{GS} = 0V,		80	110	pF
C _{oss}		f = 1MHz		25		pF
C _{rss}	Reverse Transfer Capacitance Gate Resistance	f = 1MHz		0.9	40	pF
R _g		1 - 1101112		0.5		Ω
Switching	Characteristics				I	
t _{d(on)}	Turn-On Delay Time	V _{DD} = 125V, I _D = 2.8A		22	36	ns
t _r	Rise Time	$V_{DD} = 123V, I_D = 2.6A$ - $V_{GS} = 10V, R_{GEN} = 6\Omega$		10	20	ns
t _{d(off)}	Turn-Off Delay Time			36	58	ns
t _f	Fall Time			12	22	ns
Q _{g(TOT)}	Total Gate Charge at 10V	$V_{GS} = 0V \text{ to } 10V V_{DD} = 125V$		30	42	nC
Q _{gs}	Gate to Source Gate Charge	I _D = 2.8A		7		nC
Q _{gd}	Gate to Drain "Miller" Charge			9		nC
Drain-Soເ	urce Diode Characteristics					
V _{SD}	Source to Drain Diode Forward Voltage	V _{GS} = 0V, I _S = 2.8A (Note 2)		0.75	1.20	V
	Reverse Recovery Time	I _F = 2.8A, di/dt = 100A/μs		79	119	ns
t _{rr}	-	L = 2.8A dt/dt = 100A/us				

FDMS2734 Rev.C1

3

www.fairchildsemi.com



FDMS2734 Rev.C1

4

www.fairchildsemi.com

FDMS2734 N-Channel UltraFET Trench[®] MOSFET

___0.10 C 2X F 5.0 A -0.77 Ð 8 5 4.52 6.0 6.61 4.32 3.91-0.10 C 4 2X PIN #1 IDENT -1 TOP VIEW 0.61 TYP. 1.27 TYP -0.8 MAX RECOMMENDED LAND PATTERN // 0.10 C (0.25)___ 0.08 C Ċ 0.05 SIDE VIEW SEATING PLANE 3.86 🙆 3.66 0.64 0.44 З PIN #1 IDENT (OPTIONAL) 3.42 3.22 4.01? .10 5 1.27 0.36-0.46 🚯 ⊕ 0.10 M C A B 3.81
(A) ⊕ 0.05⊛ C BOTTOM VIEW NOTES: ODES NOT FULLY CONFORM TO JEDEC REGISTRATION, MO-229. DATED 11/2001. B. DIMENSIONS ARE IN MILLIMETERS. C. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994 D. TERMINALS 5,6,7 AND 8 ARE TIED TO THE EXPOSED PADDLE MLP08GrevD

FDMS2734 N-Channel UltraFET Trench[®] MOSFET

FDMS2734 Rev.C1

6

www.fairchildsemi.com

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPower™
Auto-SPM™
Build it Now™
CorePLUS™
CorePOWER™
CROSSVOLT™
CTL™
Current Transfer Logic [™]
Dual Cool™
EcoSPARK [®]
EfficentMax™
ESBC™
R
+

Fairchild® Fairchild Semiconductor® FACT Quiet Series™ **FACT**[®] FAST® FastvCore™ FETBench™ FlashWriter[®] * FPS™

Green FPS™ Green FPS™ e-Series™ G*max*™ GTO™ IntelliMAX[™] **ISOPLANAR™** MegaBuck™ MICROCOUPLER™ MicroFET™ MicroPak™ MicroPak2™ MillerDrive™ MotionMax™ Motion-SPM™ OptiHiT™ **OPTOLOGIC[®] OPTOPLANAR[®]** R PDP SPM™ Power-SPM™

Global Power ResourceSM

F-PFS™

FRFET®

PowerTrench[®] PowerXS™ Programmable Active Droop™ OFET QS™ Quiet Series™ RapidConfigure[™] тм Saving our world, 1mW/W/kW at a time™ SignalWise™ SmartMax™ SMART START™ SPM® STEALTH™ SuperFET[®] SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS® SyncFET™ Sync-Lock™ **E**SYSTEM ^{®*}

The Right Technology for Your Success™ p bwer franchise TinyBoost™ TinyBuck™ TinyCalc™ TinyLogic[®] TINYOPTO™ TinvPower™ TinyPWM™ TinyWire™ TriFault Detect™ TRUECURRENT M? uSerDes™ $\mu_{_{
m Ser}}$ UHC®

The Power Franchise[®]

Ultra FRFET™ UniFET™ VCX™ VisualMax™ XS™

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com. under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Rev. 151