

PART NUMBER 9305DM-ROCV

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All re-creations are done with the approval of the Original Component Manufacturer. (OCM)

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-38535
 - Class Q Military
 - Class V Space Level

Qualified Suppliers List of Distributors (QSLD)

 Rochester is a critical supplier to DLA and meets all industry and DLA standards.

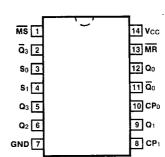
Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OCM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

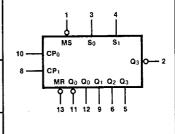
T-45-23-21

9305

VARIABLE MODULUS COUNTER


DESCRIPTION — The '05 is a monolithic, high speed, variable modulus counter circuit. It is a semisynchronous counter which can be programmed without extra logic to provide division or counting by either 2 and 4, 5, 6, 7, 8 or 10, 12, 14, 16. A binary count sequence can be obtained for all of the preceding counter modulos as well as 50% duty cycle output for dividers of 8, 10, 12, 14, 16. The device also features asynchronous overriding Master Reset and Set inputs and the negation output of the final flip-flop output which allows the cascading of stages.

- VARIOUS BINARY COUNTING MODES MODULO 2 AND MODULO 5, 6, 7, 8 MODULO 10 (8421 BCD) 12, 14, 16
- VARIOUS DIVISION MODES WITH 50% DUTY CYCLE OUTPUT MODULO 8, 10, 12, 14, 16
- LOGIC SELECTION OF COUNTING MODE
- ASYNCHRONOUS MASTER RESET ANS SET INPUTS
- MULTISTAGE COUNTING OPERATION


ORDERING CODE: See Section 9

ONDERING		E. 000 0000011 0		
	PIN	COMMERCIAL GRADE	MILITARY GRADE	PKG
PKGS	OUT	$V_{CC} = +5.0 \text{ V } \pm 5\%,$ $T_A = 0^{\circ}\text{C to } +70^{\circ}\text{C}$	$V_{CC} = +5.0 \text{ V} \pm 10\%,$ $T_A = -55^{\circ}\text{C to} + 125^{\circ}\text{C}$	TYPE
Plastic DIP (P)	Α	9305PC		9A
Ceramic DIP (D)	Α	9305DC	9305DM	6A
Flatpak (F)	А	9305FC	9305FM	3B

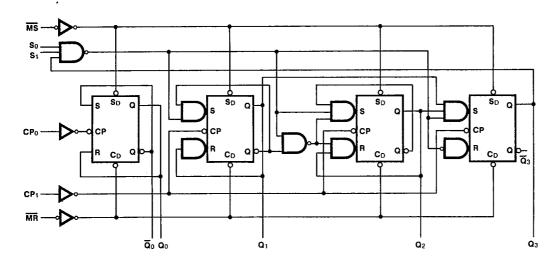
CONNECTION DIAGRAM PINOUT A

LOGIC SYMBOL

Vcc = Pin 14 GND = Pin 7

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

PIN NAMES	DESCRIPTION	93XX (U.L.) HIGH/LOW	
S ₀ , S ₁	Select Inputs	1.0/1.0	
CP ₀	First Stage Clock Pulse Input (Active Rising Edge)	1.0/1.0	
	Three Stage Clock Pulse Input (Active Rising Edge)	1.0/1.0	
CP1 MS MR	Master Set Input (Active LOW)	1.0/1.0	
MB	Master Reset Input (Active LOW)	1.0/1.0	
	First Stage Output	16/8.0	
<u>Q</u> o Qo -	Complementary First Stage Output	16/8.0	
	Three Stage Counter Outputs	16/8.0	
<u>Q</u> 1 — Q3 Q3	Complementary Last Stage Output	20/10	


FUNCTIONAL DESCRIPTION — The '05 consists of four master/slave flip-flops which are separated into two functional units — a single toggle stage and a three stage synchronous counter. All four flip-flips change state on the LOW-to-HIGH transition of the clock. The three stage counter can be programmed with external connections to provide moduli of either 5, 6, 7 or 8. This basic configuration allows synchronous binary counting by the last three stages and independent modulo 2 operation with the first single stage.

A four stage binary counter with a modulo of 10, 12, 14 or 16 is obtained by applying the incoming clock to the single toggle stage and feeding its negation output to the clock input of the three stage counter. A 4-stage divider with 50% duty cycle output is produced by feeding the incoming clock to the three stage counter and clocking the single stage with the \overline{Q}_3 output. In either the binary or 50% division mode the modulo (10, 12, 14, 16) is determined by the external programming connections for the three stage counter. These 4-stage counters or dividers are not fully synchronous (semisynchronous) but have only one flip-flop ripple delay in either configuration. Counter moduli other than 10, 12, 14, 16 can be formed with a few extra gates.

Several '05 variable modulus counters programmed in any modulo can be connected together without extra logic to form asynchronous (ripple) type multistage counters. This is done by connecting the \overline{Q}_3 output of the less significant counter to the clock input of the following counter.

The Master Set and Reset will asynchronously set or reset all four stages when activated. The active LOW Reset input when LOW will clear the counter, overriding the clock and forcing the outputs $Q_0 - Q_3$ LOW and outputs \overline{Q}_0 , \overline{Q}_3 HIGH. The active LOW Set input when LOW will preset the counter, overriding the clock and forcing the outputs Q₀ — Q₃ HIGH and outputs \overline{Q}_0 , \overline{Q}_3 LOW. The master set provides a synchronous clear, since the first clock pulse following the asynchronous master set will reset all stages. This action is independent of the molulo programmed.

LOGIC DIAGRAM

COUNTING MODE

The following are rules specifying the external connections required for various counter and divider modulos.

ASYNCHRONOUS MODE

INPUTS			OUT	PUT	S	
MS MR	Qo	₫₀	Q ₁	Q ₂	Q ₃	Q ₃
L H	Н	L	Н	Н	Н	L
H, F	L	Н	L	L	L	Н
н н	CO	UNT	•			

^{*}As determined by programming connections.

PROGRAMMING CONNECTIONS FOR LAST THREE STAGES

So S ₁	MODULO
NC NC Q1 NC	5 6
NC Q1	6
Q ₂ NC	7 7
Q ₁ Q ₂ Q ₁	8 8
U2 U1	١ ٥

NC = Not Connected

CONNECTIONS FOR MODULO 10, 12, 14, 16 BINARY COUNTERS AND 50% DUTY CYCLE DIVIDERS

For Binary Counting Q₀ connected to CP₁ Incoming clock to CPo

For 50% Duty Cycle Output Q₃ connected to CP₀ Incoming Clock to CP1

ALTERNATE PROGRAMMING CONNECTIONS FOR LAST THREE STAGES**

MODULO	INP	UTS S ₁	OUTPUT	AVAILABLE OUTPUT FAN-OUT
5	Q ₃	Q ₃	Q3	14/8.0
6	Q ₁	Q ₁	Q ₁	14/7.0
7	Q ₂	Q_2	Q ₂	14/7.0
8	Q ₁	Q_2	Q ₂	15/7.0
8	Q ₂	Q ₁	Q ₁	15/7.0

[&]quot;The alternate programming connections program the counter and conveniently terminate unused select inputs (NC). Since these inputs form the inputs to a single NAND gate (See logic diagram), their connection to the counter outputs for the various count modulos provides the indicated output drive.

H = HIGH Voltage Level
L = LOW Voltage Level

SYMBOL	PARAMETER	93XX		UNITS	CONDITIONS
		Min	Max	0	CONDITIONS
Isc	Output Short Circuit Current	-20	-70	mA	Vcc = Max, Vout = 0 V
lcc	Power Supply Current		66	mA	V _{CC} = Max

AC CHARACTERISTICS: VCC = +5.0 V, TA = +25°C (See Section 3 for waveforms and load configurations)

SYMBOL		93XX C _L = 15 pF			CONDITIONS
	PARAMETER			UNITS	
		Min	Max		
f _{max}	Maximum Count Frequency	23		MHz	Modulo 16 (S ₀ to Q ₁ , S ₁ to
tpLH tpHL	Propagation Delay CP ₀ to Q ₃ (Modulo 16 Connection)		38 48	ns	Q ₂ , Q ₀ to CP ₁ , input to CP ₀) Figs. 3-1, 3-8
tplH tpHL	Propagation Delay CP ₀ to Q ₀		21 30	ns	Modulo-16 Figs. 3-1, 3-8
tpLH tpHL	Propagation Delay CP ₁ to \overline{Q}_3 or \overline{Q}_3	_	23 30	ns	Modulo-8 Figs. 3-1, 3-8
tpLH	Propagation Delay MS to Q ₁		26	ns	Modulo-8 Figs. 3-1, 3-16
t _{PHL}	Propagation Delay MR to Q ₁		35	ns	Modulo-8 Figs. 3-1, 3-16

AC OPERATING REQUIREMENTS: VCC = +5.0 V, TA = +25°C

SYMBOL	PARAMETER	93	3XX	UNITS	CONDITIONS
		Min	Max		
tw	CP ₀ Pulse Width	22		ns	Fig. 3-8
tw	MR or MS Pulse Width	24		ns	Fig. 3-16
t _{rec}	Recovery Time MS to CP ₁	25		ns	Fig. 3-16
t _{rec}	Recovery Time MR to CP1	30		ns	Fig. 3-16

6-19