

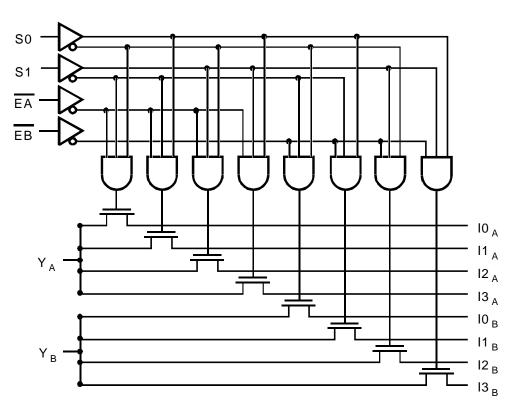
QUICKSWITCH® PRODUCTS HIGH-SPEED CMOS QUICKSWITCH DUAL 4:1 MUX/DEMUX

FEATURES/BENEFITS

- Enhanced N channel FET with no inherent diode to V_{cc}
- 5 Ω bidirectional switches connect inputs to outputs
- Pin compatible with the 74F253, 74FCT253, and 74FCT253T
- Zero propagation delay, zero ground bounce
- · Undershoot clamp diodes on all switch and control pins
- TTL-compatible control inputs
- QS32253 is 25Ω version for low noise
- · Available in SOIC (S1), QSOP

APPLICATIONS

- · Logic replacement
- · Video, audio, graphics switching, muxing
- Hot-swapping, hot-docking (Application Note AN-13)
- Voltage translation
- (5V to 3.3V; Application Note AN-11)
- Bus funneling


DESCRIPTION

The QS3253 is a high-speed CMOS TTL-compatible dual 4:1 multiplexer/demultiplexer with 3-state outputs. The QS3253 is function and pinout compatible version of the 74F253, 74FCT253, and the 74ALS/AS/LS253 dual 4:1 multiplexers. The low ON resistance of the QS3253 allows inputs to be connected to outputs without adding propagation delay and without generating additional ground bounce noise.

The QS32253 has 25 $\!\Omega$ series resitors to reduce ground bounce noise.

Mux/Demux devices provide an order of magnitude faster speed than equivalent logic devices.

FUNCTIONAL BLOCK DIAGRAM

OCTOBER 1999

Name	I/O	Description
I _{XX}	I	Data Inputs
S0, S1	Ι	Select Inputs
ĒĀ, ĒB	I	Enable Inputs
Y _A , Y _B	0	Data Outputs

PIN CONFIGURATION

(ALL PINS TOP VIEW)

SOIC (S1), QSOP

EA	С	1		16		V _{cc}
S1	С	2		15		EB
I3 _A	С	3		14		S0
12 _A	С	4		13		I3 _B
I1 _A	С	5		12	Þ	I2 _B
10 _A	С	6		11	Þ	I1 _B
Υ _A		7		10		IO _B
GND	С	8		9		Υ _B

FUNCTION TABLE

Ena	Enable		Select		puts	
ĒĀ	ĒB	S1	S0	Y _A	Υ _B	Function
Н	Х	Х	Х	Hi-Z	Х	Disable A
Х	Н	Х	Х	Х	Hi-Z	Disable B
L	L	L	L	I0 _A	I0 _B	S1-0 = 0
L	L	L	Н	I1 _A	l1 _B	S1-0 = 1
L	L	Н	L	I2 _A	I2 _B	S1-0 = 2
L	L	Н	Н	I3 _A	I3 _B	S1-0 = 3

ABSOLUTE MAXIMUM RATINGS

Supply Voltage to Ground	–0.5V to +7.0V
DC Switch Voltage V _s	
DC Input Voltage V _{IN}	–0.5V to +7.0V
AC Input Voltage (for a pulse width \leq 20ns)	–3.0V
DC Output Current Max. Sink Current/Pin	120mA
Maximum Power Dissipation	0.5 watts
T _{STG} Storage Temperature	65° to +150°C

Note: ABSOLUTE MAXIMUM CONTINU-OUS RATINGS are those values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute-maximum conditions is not implied.

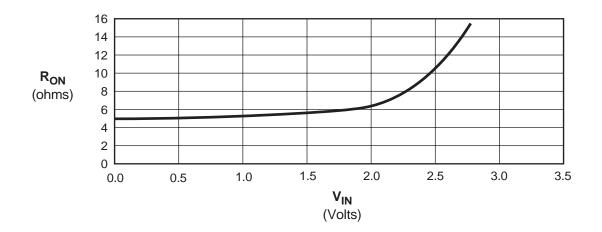
CAPACITANCE

 $T_{A} = 25^{\circ}C, f = 1MHz, V_{IN} = 0V, V_{OUT} = 0V$

		SOIC, Q		
Pins		Тур	Мах	Unit
Control Inputs		4	5	pF
QuickSwitch Channels	Demux	5	7	pF
(Switch OFF)	Mux	14	16	pF

Note: Capacitance is guaranteed, but not production tested and are typical values. For total capacitance while the switch is ON, please see Section 1 under "Input and Switch Capacitance."

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE


 $T_{A}=-40^{\circ}C$ to +85°C, $V_{CC}=5.0V\pm5\%$

Symbol	Parameter	Test Conditions		Min	Тур(1)	Max	Unit
V _{IH}	Input HIGH Voltage	Guaranteed Logic HIGH for Control Pins		2.0	-	_	V
V _{IL}	Input LOW Voltage	Guaranteed Logic LOW for Control Pins		—	_	0.8	V
I _{IN}	Input Leakage Current (Control Inputs)	$0V \le V_{IN} \le V_{CC}$		_	_	1	μA
I _{oz}	Off-State Current (Hi-Z)	$0V \le V_{OUT} \le V_{CC}$		_	_	1	μA
R _{ON}	Switch On Resistance ⁽²⁾	$V_{CC} = Min., V_{IN} = 0.0V$ $I_{ON} = 30mA$	QS3253 QS32253	 20	5 28	7 40	Ω
R _{ON}	Switch On Resistance ⁽²⁾	V_{CC} = Min., V_{IN} = 2.4V I_{ON} = 15mA	QS3253 QS32253	20	10 35	15 48	Ω
V_{P}	Pass Voltage ⁽³⁾	$V_{IN} = V_{CC} = 5V$, $I_{OUT} = -5\mu A$		3.7	4.0	4.2	V

Notes:

1. Typical values indicate $V_{CC} = 5.0V$ and $T_A = 25^{\circ}C$. 2. For a diagram explaining the procedure for R_{ON} measurement, please see Section 1 under "DC Electrical Characteristics." R_{ON} guaranteed, but not production tested. 3. Pass voltage is guaranteed, but not production tested.

Note: For QS32253, add 23 Ω to R_{ON} shown.

IDT

POWER SUPPLY CHARACTERISTICS OVER OPERATING RANGE

 $T_A = -40^{\circ}C \text{ to } +85^{\circ}C, V_{CC} = 5.0V \pm 5\%$

Symbol	Parameter	Test Conditions ⁽¹⁾	Мах	Unit
Ι _{cco}	Quiescent Power Supply Current	V_{CC} = Max., V_{IN} = GND or V_{CC} , f = 0	3	μA
ΔI_{CC}	Power Supply Current ⁽²⁾ per Input HIGH	V_{CC} = Max., V_{IN} = 3.4V, f = 0 per control input	1.5	mA
Q _{CCD}	Dynamic Power Supply Current per MHz ⁽³⁾	V _{CC} = Max., I and Y Pins Open, Control Inputs Toggling @ 50% Duty Cycle	0.25	mA/ MHz

Notes:

1. For conditions shown as Min. or Max., use the appropriate values specified under DC specifications.

2. Per TTL driven input (V_{IN} = 3.4V, control inputs only). I and Y pins do not contribute to ΔI_{CC} .

3. This current applies to the control inputs only and represents the current required to switch internal capacitance at the specified frequency. The I and Y inputs generate no significant AC or DC currents as they transition. This parameter is guaranteed by characterization, but not production tested.

Switching Characteristics Over Operating Range

 $\begin{array}{l} T_{A}=-40^{\circ}C \text{ to } +85^{\circ}C, \ V_{CC}=5.0V \pm 5\% \\ C_{LOAD}=50pF, \ R_{LOAD}=500\Omega \ \text{unless otherwise noted}. \end{array}$

			QS3253			QS32253		
Symbol	Description ⁽¹⁾	Min	Тур	Max	Min	Тур	Мах	Unit
t _{PLH} t _{PHL}	Data Propagation Delay ^(2,3) In to Y	_	_	0.25(3)	_	_	1.25 ⁽³⁾	ns
t _{PZL} t _{PZH}	Switch Turn-on Delay Sn to Y	0.5	_	6.6	0.5	-	7.0	ns
t _{PZL} t _{PZH}	Switch Turn-on Delay En to Y	0.5	_	6.0	0.5	-	7.0	ns
t _{PLZ} t _{PHZ}	Switch Turn-off Delay ⁽²⁾ En to Y, Sn to Y	0.5		6.0	0.5		6.0	ns

Notes:

2. This parameter is guaranteed, but not production tested.

3. The bus switch contributes no propagation delay other than the RC delay of the ON resistance of the switch and the load capacitance. The time constant for the switch alone is of the order of 0.25ns for QS3253 and 1.25ns for QS32253 for C_L = 50pF. Since this time constant is much smaller than the rise/fall times of typical driving signals, it adds very little propagation delay to the system. Propagation delay of the bus switch when used in a system is determined by the driving circuit on the driving side of the switch and its interaction with the load on the driven side.

CORPORATE HEADQUARTERS 2975 Stender Way Santa Clara, CA 95054 for SALES: 800-345-7015 or 408-727-6116 fax: 408-492-8674 www.idt.com*

*To search for sales office near you, please click the sales button found on our home page or dial the 800# above and press 2. The IDT logo is a registered trademark of Integrated Device Technology, Inc.

^{1.} See Test Circuit and Waveforms. Minimums guaranteed, but not production tested.