National Semiconductor is now part of

Texas Instruments.

Search <u>http://www.ti.com/</u> for the latest technical

information and details on our current products and services.

April 1998

National Semiconductor

LMC662 CMOS Dual Operational Amplifier

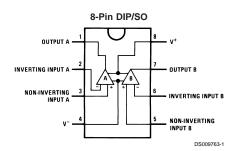
General Description

The LMC662 CMOS Dual operational amplifier is ideal for operation from a single supply. It operates from +5V to +15V and features rail-to-rail output swing in addition to an input common-mode range that includes ground. Performance limitations that have plagued CMOS amplifiers in the past are not a problem with this design. Input V_{OS}, drift, and broadband noise as well as voltage gain into realistic loads (2 k Ω and 600 Ω) are all equal to or better than widely accepted bipolar equivalents.

This chip is built with National's advanced Double-Poly Silicon-Gate CMOS process.

See the LMC660 datasheet for a Quad CMOS operational amplifier with these same features.

Features


- Rail-to-rail output swing
- \blacksquare Specified for 2 k $\!\Omega$ and 600 $\!\Omega$ loads
- High voltage gain: 126 dB
- Low input offset voltage: 3 mV
- Low offset voltage drift: 1.3 µV/°C

- Ultra low input bias current: 2 fA
- Input common-mode range includes V⁻
- Operating range from +5V to +15V supply
- I_{SS} = 400 µA/amplifier; independent of V+
- Low distortion: 0.01% at 10 kHz
- Slew rate: 1.1 V/µs
- Available in extended temperature range (-40°C to +125°C); ideal for automotive applications
- Available to a Standard Military Drawing specification

Applications

- High-impedance buffer or preamplifier
- Precision current-to-voltage converter
- Long-term integrator
- Sample-and-hold circuit
- Peak detector
- Medical instrumentation
- Industrial controls
- Automotive sensors

Connection Diagram

Ordering Information

Package		Temperature Range					
	Military	Extended	Industrial	Commercial	Drawing	Media	
8-Pin	LMC662AMJ/883				J08A	Rail	
Ceramic DIP							
8-Pin		LMC662EM	LMC662AIM	LMC662CM	M08A	Rail,	
Small Outline						Tape and Reel	
8-Pin		LMC662EN	LMC662AIN	LMC662CN	N08E	Rail	
Molded DIP							
8-Pin							
Side Brazed	LMC662AMD				D08C	Rail	
Ceramic DIP							

Absolute Maximum Ratings (Note 3)

. .

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

±Supply Voltage
16V
(Note 12)
(Note 1)
260°C
-65°C to +150°C
(V ⁺) +0.3V, (V ⁻) -0.3V
±18 mA
±5 mA
35 mA
(Note 2)
150°C

ESD Tolerance (Note 8)

Operating Ratings(Note 3)

Temperature Range	
LMC662AMJ/883,	
LMC662AMD	$-55^{\circ}C \le T_{J} \le +125^{\circ}C$
LMC662AI	$-40^{\circ}C \le T_{J} \le +85^{\circ}C$
LMC662C	$0^{\circ}C \le T_{J} \le +70^{\circ}C$
LMC662E	$-40^{\circ}C \le T_{J} \le +125^{\circ}C$
Supply Voltage Range	4.75V to 15.5V
Power Dissipation	(Note 10)
Thermal Resistance (θ_{JA}) (Note 11)	
8-Pin Ceramic DIP	100°C/W
8-Pin Molded DIP	101°C/W
8-Pin SO	165°C/W
8-Pin Side Brazed Ceramic DIP	100°C/W

1000V

DC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_J = 25$ °C. **Boldface** limits apply at the temperature extremes. V⁺ = 5V, V⁻ = 0V, V_{CM} = 1.5V, V₀ = 2.5V and R_L > 1M unless otherwise specified.

Parameter	Conditions	Typ (Note 4)	LMC662AMJ/883 LMC662AMD	LMC662AI	LMC662C	LMC662E	Units
			Limit	Limit	Limit	Limit	1
			(Notes 4, 9)	(Note 4)	(Note 4)	(Note 4)	
Input Offset Voltage		1	3	3	6	6	mV
			3.5	3.3	6.3	6.5	max
Input Offset Voltage		1.3					µV/°C
Average Drift							
Input Bias Current		0.002	20				pА
			100	4	2	60	max
Input Offset Current		0.001	20				pА
			100	2	1	60	max
Input Resistance		>1					TeraΩ
Common Mode	$0V \le V_{CM} \le 12.0V$	83	70	70	63	63	dB
Rejection Ratio	V ⁺ = 15V		68	68	62	60	min
Positive Power Supply	$5V \le V^+ \le 15V$	83	70	70	63	63	dB
Rejection Ratio	V _O = 2.5V		68	68	62	60	min
Negative Power Supply	$0V \le V^- \le -10V$	94	84	84	74	74	dB
Rejection Ratio			82	83	73	70	min
Input Common-Mode	V ⁺ = 5V & 15V	-0.4	-0.1	-0.1	-0.1	-0.1	V
Voltage Range	For CMRR ≥ 50 dB		0	0	0	0	max
		V ⁺ – 1.9	V ⁺ – 2.3	V ⁺ – 2.3	V ⁺ – 2.3	V ⁺ – 2.3	V
			V+ – 2.6	V+ – 2.5	V+ – 2.4	V+ – 2.6	min
Large Signal	$R_L = 2 k\Omega$ (Note 5)	2000	400	440	300	200	V/mV
Voltage Gain	Sourcing		300	400	200	100	min
	Sinking	500	180	180	90	90	V/mV
			70	120	80	40	min
	$R_L = 600\Omega$ (Note 5)	1000	200	220	150	100	V/mV
	Sourcing		150	200	100	75	min
	Sinking	250	100	100	50	50	V/mV
		200	35	60	40	20	min

Parameter	$V, V_{O} = 2.5V \text{ and } R_{L} > 1M$ Conditions	Тур	LMC662AMJ/883	LMC662AI	LMC662C	LMC662E	Units
		(Note 4)	LMC662AMD				
			Limit	Limit	Limit	Limit	
			(Notes 4, 9)	(Note 4)	(Note 4)	(Note 4)	
Output Swing	V ⁺ = 5V	4.87	4.82	4.82	4.78	4.78	V
	$R_L = 2 k\Omega$ to V ⁺ /2		4.77	4.79	4.76	4.70	min
		0.10	0.15	0.15	0.19	0.19	V
			0.19	0.17	0.21	0.25	max
	V ⁺ = 5V	4.61	4.41	4.41	4.27	4.27	V
	$R_L = 600\Omega$ to V ⁺ /2		4.24	4.31	4.21	4.10	min
		0.30	0.50	0.50	0.63	0.63	V
			0.63	0.56	0.69	0.75	max
	V ⁺ = 15V	14.63	14.50	14.50	14.37	14.37	V
	$R_L = 2 k\Omega$ to V ⁺ /2		14.40	14.44	14.32	14.25	min
		0.26	0.35	0.35	0.44	0.44	V
			0.43	0.40	0.48	0.55	max
	V ⁺ = 15V	13.90	13.35	13.35	12.92	12.92	V
	$R_L = 600\Omega$ to V ⁺ /2		13.02	13.15	12.76	12.60	min
		0.79	1.16	1.16	1.45	1.45	V
			1.42	1.32	1.58	1.75	max
Output Current	Sourcing, $V_0 = 0V$	22	16	16	13	13	mA
V ⁺ = 5V			12	14	11	9	min
	Sinking, $V_{O} = 5V$	21	16	16	13	13	mA
			12	14	11	9	min
Output Current	Sourcing, $V_0 = 0V$	40	19	28	23	23	mA
V ⁺ = 15V			19	25	21	15	min
	Sinking, V _O = 13V	39	19	28	23	23	mA
	(Note 12)		19	24	20	15	min
Supply Current	Both Amplifiers	0.75	1.3	1.3	1.6	1.6	mA
	V _O = 1.5V		1.8	1.5	1.8	1.9	max

AC Electrical Characteristics Unless otherwise specified, all limits guaranteed for $T_J = 25$ °C. Boldface limits apply at the temperature extremes. V⁺ = 5V, V⁻ = 0V, V_{CM} = 1.5V, V_o = 2.5V and R_L > 1M unless otherwise specified.

Conditions	Typ (Note	LMC662AMJ/883	LMC662AI	LMC662C	LMC662E	Units
	4)	Limit	Limit	Limit	Limit	
		(Notes 4, 9)	(Note 4)	(Note 4)	(Note 4)	
(Note 6)	1.1	0.8	0.8	0.8	0.8	V/µs
		0.5	0.6	0.7	0.4	min
	1.4					MHz
	50					Deg
	17					dB
(Note 7)	130					dB
F = 1 kHz	22					nV/√Hz
F = 1 kHz	0.0002					pA/√Hz
F = 10 kHz, A _V = -10						
$R_{L} = 2 k\Omega, V_{O} = 8 V_{PP}$ V ⁺ = 15V	0.01					%
	(Note 6) (Note 7) F = 1 kHz F = 1 kHz F = 10 kHz, A _V = -10 R _L = 2 kΩ, V _O = 8 V _{PP}		$ \begin{array}{ c c c c c c } & (Note \\ 4) & & \\ \hline \hline & & \\ \hline \hline & & \\ \hline & & \\ \hline \hline & & \\ \hline \hline \\ \hline & & \\ \hline \hline & & \\ \hline \hline \\ \hline & & \\ \hline \hline \\ \hline & & \\ \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \hline \hline \\ \hline \hline$	$ \begin{array}{ c c c c c c } & (Note \\ 4) & \\ \hline & LMC662AMD \\ \hline & Limit & Limit \\ (Note 4) & (Note 4) \\ \hline & (Note 6) & 1.1 & 0.8 & 0.8 \\ \hline & 0.5 & 0.6 \\ \hline & 1.4 & \\ \hline & 50 & \\ \hline & 17 & $	$ \begin{array}{ c c c c c c } & \begin{tabular}{ c c c c c } & \begin{tabular}{ c c c c c } & \begin{tabular}{ c c c c c c } & \begin{tabular}{ c c c c c c c } & \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c } & LMC662AMD & & & & & \\ \hline & Limit & Limit & Limit & Limit & (Note 4) & & (Note 4) & (Note $

AC Electrical Characteristics (Continued)

Note 1: Applies to both single-supply and split-supply operation. Continuous short circuit operation at elevated ambient temperature and/or multiple Op Amp shorts can result in exceeding the maximum allowed junction temperature of 150°C. Output currents in excess of ± 30 mA over long term may adversely affect reliability. **Note 2:** The maximum power dissipation is a function of $T_{J(max)}$, θ_{JA} , and T_A . The maximum allowable power dissipation at any ambient temperature is $P_D = (T_{J(max)}^{-}T_A)/\theta_{JA}$.

Note 3: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed.

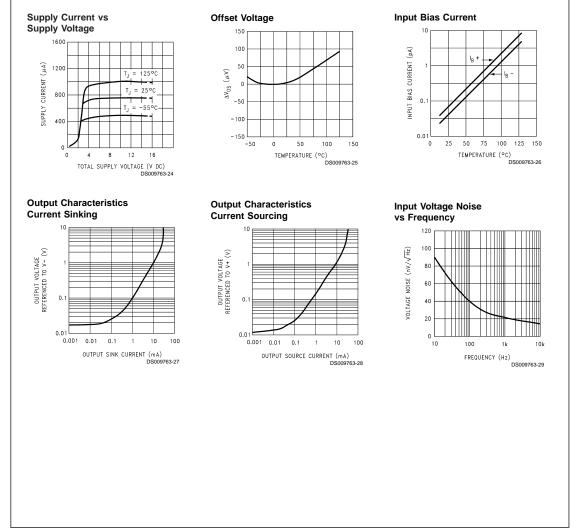
Note 4: Typical values represent the most likely parametric norm. Limits are guaranteed by testing or correlation.

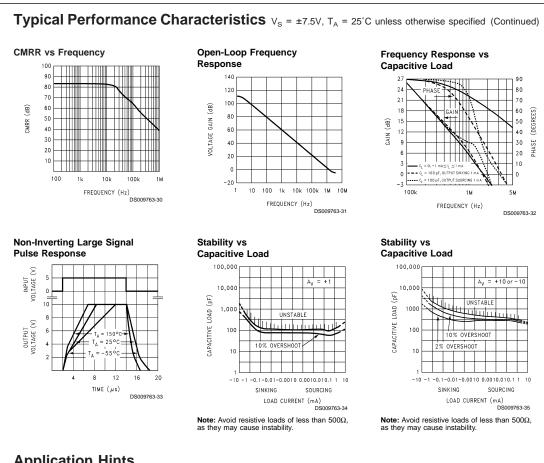
Note 5: V⁺ = 15V, V_{CM} = 7.5V and R_L connected to 7.5V. For Sourcing tests, 7.5V \leq V_O \leq 11.5V. For Sinking tests, 2.5V \leq V_O \leq 7.5V.

Note 6: V⁺ = 15V. Connected as Voltage Follower with 10V step input. Number specified is the slower of the positive and negative slew rates.

Note 7: Input referred. V⁺ = 15V and R_L = 10 k Ω connected to V⁺/2. Each amp excited in turn with 1 kHz to produce V_O = 13 V_{PP}.

Note 8: Human body model, 1.5 k Ω in series with 100 pF.


Note 9: A military RETS electrical test specification is available on request. At the time of printing, the LMC662AMJ/883 RETS spec complied fully with the **boldface** limits in this column. The LMC662AMJ/883 may also be procured to a Standard Military Drawing specification.


Note 10: For operating at elevated temperatures the device must be derated based on the thermal resistance θ_{JA} with $P_D = (T_J - T_A)/\theta_{JA}$.

Note 11: All numbers apply for packages soldered directly into a PC board.

Note 12: Do not connect output to V⁺ when V⁺ is greater than 13V or reliability may be adversely affected.

Typical Performance Characteristics $V_s = \pm 7.5V$, $T_A = 25^{\circ}C$ unless otherwise specified

Application Hints

AMPLIFIER TOPOLOGY

The topology chosen for the LMC662, shown in Figure 1, is unconventional (compared to general-purpose op amps) in that the traditional unity-gain buffer output stage is not used; instead, the output is taken directly from the output of the integrator, to allow rail-to-rail output swing. Since the buffer traditionally delivers the power to the load, while maintaining high op amp gain and stability, and must withstand shorts to either rail, these tasks now fall to the integrator.

As a result of these demands, the integrator is a compound affair with an embedded gain stage that is doubly fed forward (via C_f and C_{ff}) by a dedicated unity-gain compensation driver. In addition, the output portion of the integrator is a push-pull configuration for delivering heavy loads. While sinking current the whole amplifier path consists of three gain stages with one stage fed forward, whereas while sourcing the path contains four gain stages with two fed forward.

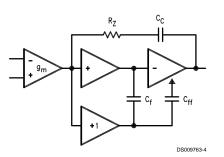


FIGURE 1. LMC662 Circuit Topology (Each Amplifier)

The large signal voltage gain while sourcing is comparable to traditional bipolar op amps, even with a 600Ω load. The gain while sinking is higher than most CMOS op amps, due to the additional gain stage; however, under heavy load (600 Ω) the gain will be reduced as indicated in the Electrical Characteristics.

Application Hints (Continued)

COMPENSATING INPUT CAPACITANCE

The high input resistance of the LMC662 op amps allows the use of large feedback and source resistor values without losing gain accuracy due to loading. However, the circuit will be especially sensitive to its layout when these large-value resistors are used.

Every amplifier has some capacitance between each input and AC ground, and also some differential capacitance between the inputs. When the feedback network around an amplifier is resistive, this input capacitance (along with any additional capacitance due to circuit board traces, the socket, etc.) and the feedback resistors create a pole in the feedback path. In the following General Operational Amplifier Circuit, *Figure 2*, the frequency of this pole is

$$f_p = \frac{1}{2\pi C_S R_P}$$

where $C_{\rm S}$ is the total capacitance at the inverting input, including amplifier input capacitance and any stray capacitance from the IC socket (if one is used), circuit board traces, etc., and $R_{\rm P}$ is the parallel combination of $R_{\rm F}$ and $R_{\rm IN}$. This formula, as well as all formulae derived below, apply to inverting and non-inverting op-amp configurations.

When the feedback resistors are smaller than a few $k\Omega$, the frequency of the feedback pole will be quite high, since C_S is generally less than 10 pF. If the frequency of the feedback pole is much higher than the "ideal" closed-loop bandwidth (the nominal closed-loop bandwidth in the absence of C_S), the pole will have a negligible effect on stability, as it will add only a small amount of phase shift.

However, if the feedback pole is less than approximately 6 to 10 times the "ideal" –3 dB frequency, a feedback capacitor, $C_{\rm F}$, should be connected between the output and the inverting input of the op amp. This condition can also be stated in terms of the amplifier's low-frequency noise gain: To maintain stability, a feedback capacitor will probably be needed if

$$\left(\frac{\mathsf{R}_{\mathsf{F}}}{\mathsf{R}_{\mathsf{IN}}}+1\right) \leq \sqrt{6 \times 2\pi \times \mathsf{GBW} \times \mathsf{R}_{\mathsf{F}} \times \mathsf{C}_{\mathsf{S}}}$$

where

$$\left(\frac{R_F}{R_{IN}} + 1\right)$$

is the amplifier's low-frequency noise gain and GBW is the amplifier's gain bandwidth product. An amplifier's low-frequency noise gain is represented by the formula

$$\left(\frac{R_{F}}{R_{IN}}+1\right)$$

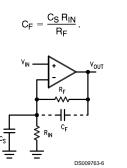
regardless of whether the amplifier is being used in an inverting or non-inverting mode. Note that a feedback capacitor is more likely to be needed when the noise gain is low and/or the feedback resistor is large.

If the above condition is met (indicating a feedback capacitor will probably be needed), and the noise gain is large enough that:

$$\left(\frac{R_F}{R_{IN}} + 1 \right) \ge 2\sqrt{GBW \times R_F \times C_S}$$
,

the following value of feedback capacitor is recommended:

$$C_{F} = \frac{C_{S}}{2\left(\frac{R_{F}}{R_{IN}} + 1\right)}$$


$$\left(\frac{\mathsf{R}_\mathsf{F}}{\mathsf{R}_\mathsf{IN}} + 1\right) < 2\sqrt{\mathsf{GBW}\times\mathsf{R}_\mathsf{F}\times\mathsf{C}_\mathsf{S}} \; ,$$

the feedback capacitor should be:

lf

$$C_{\mathsf{F}} = \sqrt{\frac{\mathsf{C}_{\mathsf{S}}}{\mathsf{GBW}\times\mathsf{R}_{\mathsf{F}}}}$$

Note that these capacitor values are usually significantly smaller than those given by the older, more conservative formula:

 C_S consists of the amplifier's input capacitance plus any stray capacitance from the circuit board and socket. C_F compensates for the pole caused by C_S and the feedback resistor.

FIGURE 2. General Operational Amplifier Circuit

Using the smaller capacitors will give much higher bandwidth with little degradation of transient response. It may be necessary in any of the above cases to use a somewhat larger feedback capacitor to allow for unexpected stray capacitance, or to tolerate additional phase shifts in the loop, or excessive capacitive load, or to decrease the noise or bandwidth, or simply because the particular circuit implementation needs more feedback capacitance to be sufficiently stable. For example, a printed circuit board's stray capacitance may be larger or smaller than the breadboard's, so the actual optimum value for C_F may be different from the one estimated using the breadboard. In most cases, the value of C_F should be checked on the actual circuit, starting with the computed value.

CAPACITIVE LOAD TOLERANCE

Like many other op amps, the LMC662 may oscillate when its applied load appears capacitive. The threshold of oscillation varies both with load and circuit gain. The configuration most sensitive to oscillation is a unity-gain follower. See the Typical Performance Characteristics.

The load capacitance interacts with the op amp's output resistance to create an additional pole. If this pole frequency is sufficiently low, it will degrade the op amp's phase margin so that the amplifier is no longer stable at low gains. As shown in *Figure 3*, the addition of a small resistor (50Ω to 100Ω) in series with the op amp's output, and a capacitor (5 pF to 10 pF) from inverting input to output pins, returns the phase

Application Hints (Continued)

margin to a safe value without interfering with lower-frequency circuit operation. Thus, larger values of capacitance can be tolerated without oscillation. Note that in all cases, the output will ring heavily when the load capacitance is near the threshold for oscillation.

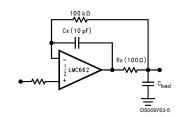
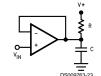
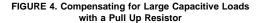




FIGURE 3. Rx, Cx Improve Capacitive Load Tolerance

Capacitive load driving capability is enhanced by using a pull up resistor to V⁺ Figure 4. Typically a pull up resistor conducting 500 μ A or more will significantly improve capacitive load responses. The value of the pull up resistor must be determined based on the current sinking capability of the amplifier with respect to the desired output swing. Open loop gain of the amplifier can also be affected by the pull up resistor (see Electrical Characteristics).

PRINTED-CIRCUIT-BOARD LAYOUT FOR HIGH-IMPEDANCE WORK

It is generally recognized that any circuit which must operate with less than 1000 pA of leakage current requires special layout of the PC board. When one wishes to take advantage of the ultra-low bias current of the LMC662, typically less than 0.04 pA, it is essential to have an excellent layout. Fortunately, the techniques for obtaining low leakages are quite simple. First, the user must not ignore the surface leakage of the PC board, even though it may sometimes appear acceptably low, because under conditions of high humidity or dust or contamination, the surface leakage will be appreciable.

To minimize the effect of any surface leakage, lay out a ring of foil completely surrounding the LMC662's inputs and the terminals of capacitors, diodes, conductors, resistors, relay terminals, etc. connected to the op-amp's inputs. See Figure 5. To have a significant effect, guard rings should be placed on both the top and bottom of the PC board. This PC foil must then be connected to a voltage which is at the same voltage as the amplifier inputs, since no leakage current can flow between two points at the same potential. For example, a PC board trace-to-pad resistance of 1012Ω, which is normally considered a very large resistance, could leak 5 pA if the trace were a 5V bus adjacent to the pad of an input. This would cause a 100 times degradation from the LMC662's actual performance. However, if a guard ring is held within 5 mV of the inputs, then even a resistance of $10^{11}\Omega$ would cause only 0.05 pA of leakage current, or perhaps a minor (2:1) degradation of the amplifier's performance. See Fig*ures 6, 7, 8* for typical connections of guard rings for standard op-amp configurations. If both inputs are active and at high impedance, the guard can be tied to ground and still provide some protection; see *Figure 9*.

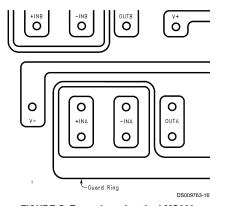
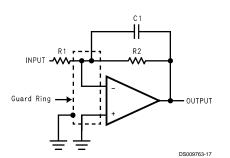



FIGURE 5. Example, using the LMC660, of Guard Ring in P.C. Board Layout

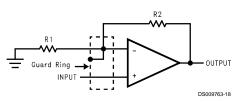


FIGURE 7. Guard Ring Connections: Non-Inverting Amplifier

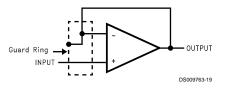


FIGURE 8. Guard Ring Connections: Follower

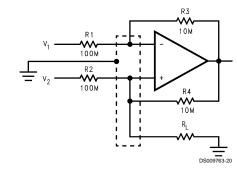
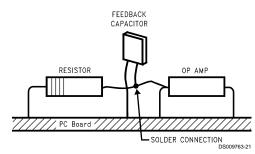



FIGURE 9. Guard Ring Connections: Howland Current Pump

The designer should be aware that when it is inappropriate to lay out a PC board for the sake of just a few circuits, there is another technique which is even better than a guard ring on a PC board: Don't insert the amplifier's input pin into the board at all, but bend it up in the air and use only air as an insulator. Air is an excellent insulator. In this case you may have to forego some of the advantages of PC board construction, but the advantages are sometimes well worth the effort of using point-to-point up-in-the-air wiring. See *Figure 10.*

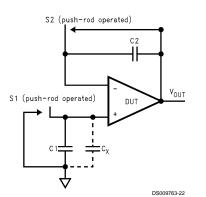

(Input pins are lifted out of PC board and soldered directly to components. All other pins connected to PC board.)

FIGURE 10. Air Wiring

BIAS CURRENT TESTING

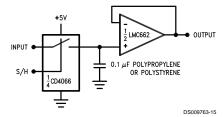
The test method of *Figure 11* is appropriate for bench-testing bias current with reasonable accuracy. To understand its operation, first close switch S2 momentarily. When S2 is opened, then

$$I_{b}^{-} = \frac{dV_{OUT}}{dt} \times C2.$$

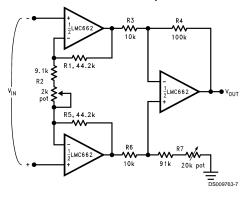
FIGURE 11. Simple Input Bias Current Test Circuit

A suitable capacitor for C2 would be a 5 pF or 10 pF silver mica, NPO ceramic, or air-dielectric. When determining the magnitude of I_b -, the leakage of the capacitor and socket must be taken into account. Switch S2 should be left shorted most of the time, or else the dielectric absorption of the capacitor C2 could cause errors.

Similarly, if S1 is shorted momentarily (while leaving S2 shorted)

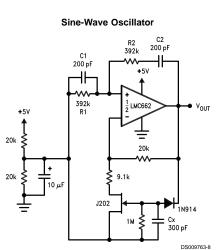

$$I_b^+ = \frac{dV_{OUT}}{dt} \times (C1 + C_x)$$

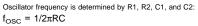
where C_x is the stray capacitance at the + input.


Typical Single-Supply Applications $(V^+ = 5.0 V_{DC})$

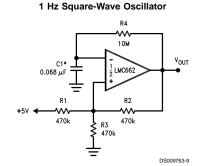
Additional single-supply applications ideas can be found in the LM358 datasheet. The LMC662 is pin-for-pin compatible with the LM358 and offers greater bandwidth and input resistance over the LM358. These features will improve the performance of many existing single-supply applications. Note, however, that the supply voltage range of the LM662 is smaller than that of the LM358.

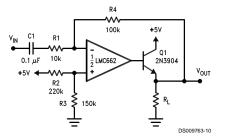
Low-Leakage Sample-and-Hold

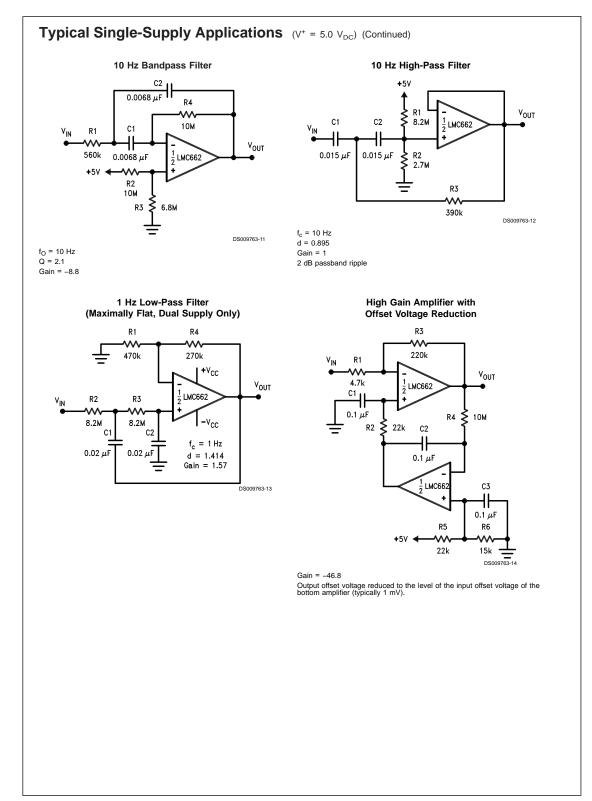




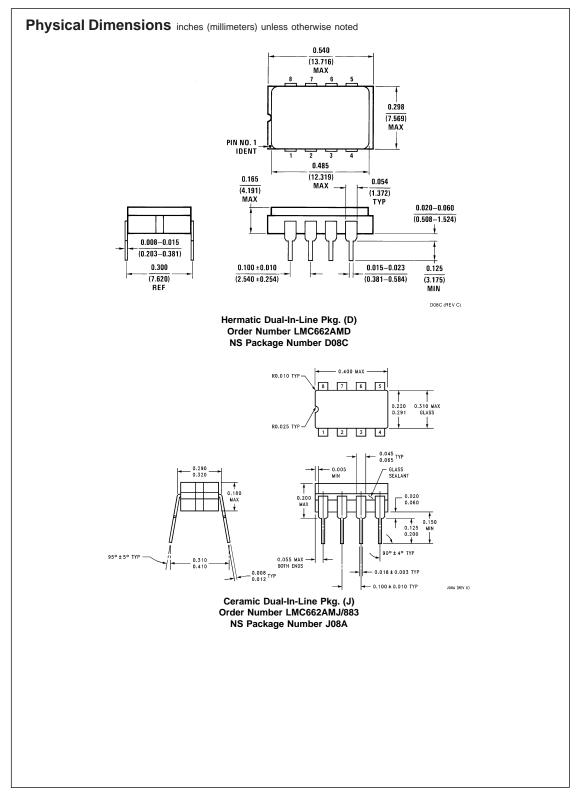
$$\begin{split} & \text{If } R_1 = R_5, R_3 = R_6, \text{ and } R_4 = R_7; \text{ then} \\ & \frac{V_{OUT}}{V_{IN}} = \frac{R2 + 2R1}{R2} \times \frac{R4}{R3} \\ & \therefore \ A_V \approx \ \text{100 for circuit shown.} \end{split}$$

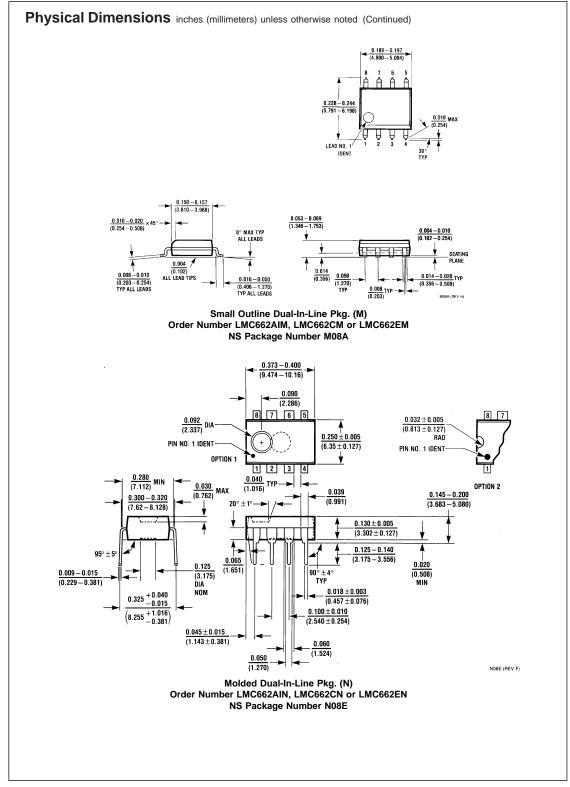

For good CMRR over temperature, low drift resistors should be used. Matching of R3 to R6 and R4 to R7 affects CMRR. Gain may be adjusted through R2. CMRR may be adjusted through R7.




where R = R1 = R2 and C = C1 = C2.

This circuit, as shown, oscillates at 2.0 kHz with a peak-to-peak output swing of 4.5V





www.national.com

10

Notes

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Ń	National Semiconductor Corporation	National Semiconductor Europe	National Semiconductor Asia Pacific Customer	National Semiconductor Japan Ltd.
	Americas	Fax: +49 (0) 1 80-530 85 86	Response Group	Tel: 81-3-5639-7560
	Tel: 1-800-272-9959	Email: europe.support@nsc.com	Tel: 65-2544466	Fax: 81-3-5639-7507
	Fax: 1-800-737-7018	Deutsch Tel: +49 (0) 1 80-530 85 85	Fax: 65-2504466	
	Email: support@nsc.com	English Tel: +49 (0) 1 80-532 78 32	Email: sea.support@nsc.com	
		Français Tel: +49 (0) 1 80-532 93 58		
www	v.national.com	Italiano Tel: +49 (0) 1 80-534 16 80		

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

LMC662 CMOS Dual Operational Amplifier

Contents

Contents	Parametric Table			
Consul Description	Channels (Channels)	2		
 <u>General Description</u> Features 	Input Output Type	Vcm to V-,R-R Out		
• <u>Applications</u>	Bandwidth, typ (MHz)	1.40		
• <u>Datasheet</u>	Slew Rate, typ (Volts/usec)	1.10		
 <u>Package Availability, Models, Samples</u> <u>& Pricing</u> <u>Design Tools</u> <u>Application Notes</u> 	Supply Current per Channel, typ (mA)	.38		
	Minimum Supply Voltage (Volt)	5		
	Maximum Supply Voltage (Volt)	16		
	Offset Voltage, Max (mV)	3,6		
	Input Bias Current, Temp Max (nA)	.0040,.0020		
	Output Current, typ (mA)	21		
	Voltage Noise, typ (nV/Hz)	22		
	Shut down	No		

General Description

The LMC662 CMOS Dual operational amplifier is ideal for operation from a single supply. It operates from +5V to +15V and features rail-to-rail output swing in addition to an input common-mode range that includes ground. Performance limitations that have plagued CMOS amplifiers in the past are not a problem with this design. Input V_{OS}, drift, and

broadband noise as well as voltage gain into realistic loads (2 k Ohm and 600 Ohm) are all equal to or better than widely accepted bipolar equivalents.

This chip is built with National's advanced Double-Poly Silicon-Gate CMOS process.

See the LMC660 datasheet for a Quad CMOS operational amplifier with these same features.

Features

- Rail-to-rail output swing
- Specified for 2 k Ohm and 600 Ohm loads
- High voltage gain: 126 dB
- Low input offset voltage: 3 mV
- Low offset voltage drift: $1.3 \,\mu V/^{\circ}C$
- Ultra low input bias current: 2 fA
- Input common-mode range includes V⁻
- Operating range from +5V to +15V supply
- $I_{SS} = 400 \,\mu A$ /amplifier; independent of V+
- Low distortion: 0.01% at 10 kHz
- Slew rate: 1.1 V/µs
- Available in extended temperature range (-40°C to +125°C); ideal for automotive applications
- · Available to a Standard Military Drawing specification

Applications

- High-impedance buffer or preamplifier
- Precision current-to-voltage converter
- Long-term integrator
- Sample-and-hold circuit
- Peak detector
- Medical instrumentation
- Industrial controls
- Automotive sensors

Datasheet

Title	Size (in Kbytes)	Date	View Online	Download
LMC662 CMOS Dual Operational Amplifier	430 Kbytes	30-Jun-99	<u>View</u> Online	Download
LMC662 CMOS Dual Operational Amplifier (JAPANESE)	493 Kbytes		<u>ଜ</u> ୟ	Lomnoad
LMC662 Mil-Aero Datasheet MNLMC662AM-X	71 Kbytes		<u>View</u> <u>Online</u>	Download

Please use <u>Adobe Acrobat</u> to view PDF file(s). If you have trouble printing, see <u>Printing Problems</u>.

Package Availability, Models, Samples & Pricing

Don't Number	Package				Models		Budgetary Pricing	
Part Number	Туре	# pins	Status	SPICE IBIS		Electronic Orders	Quantity	\$US each
LMC662AIM	SOIC NARROW	8	Full production	LMC662A.MOD	N/A		1K+	\$1.010
LMC662CM	SOIC NARROW	8	Full production	N/A	N/A	Samples Cacer Parts	1K+	\$0.720
LMC662AIMX	SOIC NARROW	8	Full production	LMC662A.MOD	N/A		1K+	\$1.040
LMC662CMX	SOIC NARROW	8	Full production	N/A	N/A		1K+	\$0.720
LMC662AIN	MDIP	8	Full production	LMC662A.MOD	N/A	Samples Cause Parts	1K+	\$1.080
LMC662CN	MDIP	8	Full production	N/A	N/A	Samples Marine Parts	1K+	\$0.790
LMC662 MWC	wafer		Full production	N/A	N/A			

Design Tools

Title	Size (in Kbytes)	Date	View Online	Download	ින ි Receive via Email
Amplifiers Selection Guide software for Windows	8 Kbytes	21-Jul-2000		View	

Please use <u>Adobe Acrobat</u> to view PDF file(s).

If you have trouble printing, see Printing Problems.

Application Notes

Title	Size (in Kbytes)	Date	View Online	Download	Receive via Email
AN-856: A SPICE Compatible Macromodel for CMOS Operational Amplifiers	105 Kbytes	5-Aug-95	<u>View</u> <u>Online</u>	Download	<u>Receive via</u> <u>Email</u>

Please use <u>Adobe Acrobat</u> to view PDF file(s). If you have trouble printing, see <u>Printing Problems</u>.

[Information as of 1-Aug-2000]

Quick Search	<u>Parametric</u> <u>Search</u>	<u>System</u> Diagrams	Product <u>Tree</u>	Home
	<u>About Languages</u> . <u>About the Site</u> . <u>About ''Cookies</u> National is <u>QS 9000 Certified</u> . <u>Privacy/Securit</u> <u>Copyright ©</u> National Semiconductor Corporatio <u>Preferences</u> . <u>Feedback</u>			ncy/Security Corporation