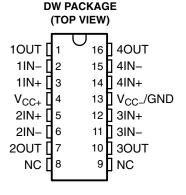
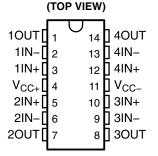
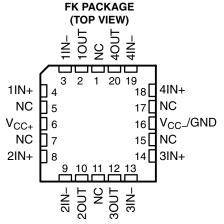
SLOS039D - JULY 1989 - REVISED AUGUST 2009


- Single-Supply Operation: Input Voltage Range Extends to Ground, and Output Swings to Ground While Sinking Current
- Input Offset Voltage 300 μV Max at 25°C for LT1014
- Offset Voltage Temperature Coefficient 2.5 μV/°C Max for LT1014
- Input Offset Current 1.5 nA Max at 25°C for LT1014
- High Gain 1.2 V/ μ V Min (R_L = 2 kΩ), 0.5 V/ μ V Min (R_L = 600 Ω) for LT1014
- Low Supply Current 2.2 mA Max at 25°C for LT 1014
- Low Peak-to-Peak Noise Voltage 0.55 μV Typ
- Low Current Noise 0.07 pA/√Hz Typ


description

The LT1014, LT1014A, and LT1014D are quad precision operational amplifiers with 14-pin industry-standard configuration. They feature low offset-voltage temperature coefficient, high gain, low supply current, and low noise.


The LT1014, LT1014A, and LT1014D can be operated with both dual ± 15 -V and single 5-V power supplies. The common-mode input voltage range includes ground, and the output voltage can also swing to within a few milivolts of ground. Crossover distortion is eliminated.

The LT1014C and LT1014D are characterized for operation from 0°C to 70°C. The LT1014I and LT1014DI are characterized for operation from –40°C to 105°C. The LT1014M, LT1014AM and LT1014DM are characterized for operation over the full military temperature range of –55°C to 125°C.

J OR N PACKAGE

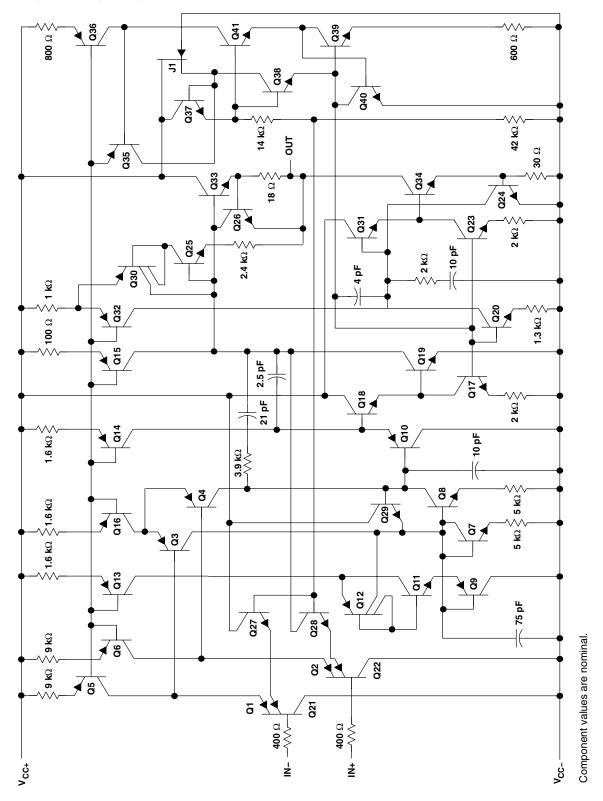
NC - No internal connection

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

LT1014, LT1014A, LT1014D QUAD PRECISION OPERATIONAL AMPLIFIERS

SLOS039D - JULY 1989 - REVISED AUGUST 2009

AVAILABLE OPTIONS[†]


			PACKAGED	DEVICES [‡]	
T _A	V _{IO} max AT 25°C	SMALL OUTLINE (DW) [§]	CHIP CARRIER (FK)	CERAMIC DIP (J)	PLASTIC DIP (N)
0°C to 70°C	300 μV 800 μV	— LT1014DDW		1 1	LT1014CN LT1014DN
-40°C to 105°C	300 μV 800 μV	— LT1014DIDW		1 1	LT1014IN LT1014DIN
-55°C to 125°C	180 μV — 5°C 300 μV — 800 μV LT1014DMDW		LT1014AMFK LT1014MFK —	LT1014AMJ LT1014MJ —	— LT1014MN LT1014DMN

[†] For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com.

[‡] Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.

[§] The DW package is available taped and reeled. Add the suffix R to the device type (e.g., LT1014DDWR).

schematic (each amplifier)

LT1014, LT1014A, LT1014D **QUAD PRECISION OPERATIONAL AMPLIFIERS**

SLOS039D - JULY 1989 - REVISED AUGUST 2009

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage (see Note 1): V _{CC+}	
V _{CC-}	
Differential input voltage (see Note 2)	±30 V
Input voltage range, V _I (any input) (see Note 1)	V_{CC-} – 5 V to V_{CC+}
Duration of short-circuit current at (or below) T _A = 25°C (see Note 3)	Unlimited
Continuous total power dissipation	See Dissipation Rating Table
Operating free-air temperature range, T _A : LT1014C, LT1014D	–0°C to 70°C
LT1014I, LT1014DI	–40°C to 105°C
LT1014M, LT1014AM, LT1014DM .	–55°C to 125°C
Case temperature for 60 seconds: FK package	260°C
Storage temperature range, T _{stq}	–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between V_{CC+} and V_{CC-}
 - 2. Differential voltages are at the noninverting input with respect to the inverting input.
 - 3. The output may be shorted to either supply.

DISSIPATION RATING TABLE

PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING	T _A = 105°C POWER RATING	T _A = 125°C POWER RATING
DW	1025 mV	8.2 mW/°C	656 mW	369 mW	205 mW
FK	1375 mV	11.0 mW/°C	880 mW	495 mW	275 mW
J	1375 mV	11.0 mW/°C	880 mW	495 mW	275 mW
N	1150 mV	9.2 mW/°C	736 mW	414 mW	230 mW

LT1014, LT1014A, LT1014D QUAD PRECISION OPERATIONAL AMPLIFIERS

SLOS039D - JULY 1989 - REVISED AUGUST 2009

electrical characteristics at specified free-air temperature, $V_{CC\pm}=\pm 15$ V, $V_{IC}=0$ (unless otherwise noted)

	DADAMETED	TECT COMPITIONS		ı	_T1014C		I	T1014D		
	PARAMETER	TEST CONDITIONS	T _A †	MIN	TYP [‡]	MAX	MIN	TYP [‡]	MAX	UNIT
V	Innut offeet veltere	D 50.0	25°C		60	300		200	800	/
V _{IO}	Input offset voltage	$R_S = 50 \Omega$	Full range			550			1000	μV
$\alpha_{V_{IO}}$	Temperature coeficient of input offset voltage		Full range		0.4	2.5		0.7	5	μV/°C
	Long-term drift of input offset voltage		25°C		0.5			0.5		μV/mo
	loon at affect accomment		25°C		0.15	1.5		0.15	1.5	^
I _{IO}	Input offset current		Full range			2.8			2.8	nA
	land biogramment		25°C		-12	-30		-12	-30	^
I _{IB}	Input bias current		Full range			-38			-38	nA
V _{ICR}	Common-mode		25°C	-15 to 13.5	-15.3 to 13.8		–15 to 13.5	-15.3 to 13.8		٧
ЮП	input voltage range		Full range	-15 to 13			-15 to 13			
V	Maximum peak output	$R_L = 2 k\Omega$	25°C	±12.5	±14		±12.5	±14		٧
V _{OM}	voltage swing	HL = 2 K22	Full range	±12			±12			V
	Laura alaura laliffa ann ilal	$V_0 = \pm 10 \text{ V}, \qquad R_L = 600 \Omega$	25°C	0.5	2		0.5	2		
A_{VD}	Large-signal differential voltage amplification	$V_{O} = \pm 10 \text{ V}, R_{L} = 2 \text{ k}\Omega$	25°C	1.2	8		1.2	8		V/µV
	renage ampimoation	$V_0 = \pm 10 \text{ V}, R_1 = 2 \text{ K}22$	Full range	0.7			0.7			
CMRR	Common-mode	$V_{IC} = -15 \text{ V to } 13.5 \text{ V}$	25°C	97	117		97	117		dB
CIVINN	rejection ratio	$V_{IC} = -15 \text{ V to } 13 \text{ V}$	Full range	94			94			uБ
	Supply-voltage		25°C	100	117		100	117		
k _{SVR}	rejection ratio $(\Delta V_{CC}/\Delta V_{IO})$	$V_{CC\pm} = \pm 2 \text{ V to } \pm 18 \text{ V}$	Full range	97			97			dB
	Channel separation	$V_O = \pm 10 \text{ V}, \qquad R_L = 2 \text{ k}\Omega$	25°C	120	137		120	137		dB
r _{id}	Differential input resistance		25°C	70	300		70	300		МΩ
r _{ic}	Common-mode input resistance		25°C		4			4		GΩ
loo	Supply current		25°C		0.35	0.55		0.35	0.55	mA
I _{CC}	per amplifier		Full range			0.6			0.6	шл

[†] Full range is 0°C to 70°C.

[‡] All typical values are at $T_A = 25$ °C.

LT1014, LT1014A, LT1014D QUAD PRECISION OPERATIONAL AMPLIFIERS

SLOS039D - JULY 1989 - REVISED AUGUST 2009

electrical characteristics at specified free-air temperature, $V_{CC\pm}$ = 5 V, V_{CC-} = 0, V_{O} = 1.4 V, V_{IC} = 0 (unless otherwise noted)

	DADAMETED	TECT COMPLETIONS	- +	I	_T1014C		ı	T1014D		
	PARAMETER	TEST CONDITIONS	T _A †	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
.,	land offer to the sec	B 500	25°C		90	450		250	950	.,
V_{IO}	Input offset voltage	$R_S = 50 \Omega$	Full range			570			1200	μV
	lowed affect accommond		25°C		0.2	2		0.2	2	A
I _{IO}	Input offset current		Full range			6			6	nA
	lament biog accompant		25°C		-15	-50		-15	-50	A
I _{IB}	Input bias current		Full range			-90			-90	nA
	0		25°C	0	-0.3		0	-0.3		
V _{ICR}	Common-mode input voltage range		25 0	to 3.5	to 3.8		to 3.5	to 3.8		٧
	input voitage range		Full range	0 to 3			0 to 3			
		Output low, No load	25°C		15	25		15	25	
		Output low,	25°C		5	10		5	10	mV
		$R_L = 600 \Omega$ to GND	Full range			13			13	mv
V_{OM}	Maximum peak output voltage swing	Output low, $I_{sink} = 1 \text{ mA}$	25°C		220	350		220	350	
	voltage swing	Output high, No load	25°C	4	4.4		4	4.4		
		Output high,	25°C	3.4	4		3.4	4		٧
		$R_L = 600 \Omega$ to GND	Full range	3.2			3.2			
A _{VD}	Large-signal differential voltage amplification	V_O = 5 mV to 4 V, R_L = 500 Ω	25°C		1			1		V/μV
1	Supply current		25°C		0.3	0.5		0.3	0.5	mA
I _{CC}	per amplifier		Full range			0.55			0.55	IIIA

[†] Full range is 0°C to 70°C.

operating characteristics, $V_{CC}\pm$ = ±15 V, V_{IC} = 0, T_{A} = $25^{\circ}C$

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
SR	Slew rate		0.2	0.4		V/µs
.,	Facility described to the control of	f = 10 Hz		24		->4/1
V _n	Equivalent input noise voltage	f = 1 kHz		22		nV/√ Hz
V _{N(PP)}	Peak-to-peak equivalent input noise voltage	f = 0.1 Hz to 10 Hz		0.55		μV
In	Equivalent input noise current	f = 10 Hz		0.07		pA/√ Hz

LT1014, LT1014A, LT1014D QUAD PRECISION OPERATIONAL AMPLIFIERS

SLOS039D - JULY 1989 - REVISED AUGUST 2009

electrical characteristics at specified free-air temperature, $V_{CC\pm}$ = ± 15 V, V_{IC} = 0 (unless otherwise noted)

		TEGT COMPLETIONS			LT1014I		L	T1014D		
	PARAMETER	TEST CONDITIONS	T _A †	MIN	TYP [‡]	MAX	MIN	TYP [‡]	MAX	UNIT
,,	land official values	D 500	25°C		60	300		200	800	
V _{IO}	Input offset voltage	$R_S = 50 \Omega$	Full range			550			1000	μV
$\alpha_{V_{IO}}$	Temperature coeficient of input offset voltage		Full range		0.4	2.5		0.7	5	μV/°C
	Long-term drift of input offset voltage		25°C		0.5			0.5		μV/mo
1	Input offset current		25°C		0.15	1.5		0.15	1.5	nA
I _{IO}	input offset current		Full range			2.8			2.8	ΠA
	Input bias current		25°C		-12	-30		-12	-30	nA
I _{IB}	input bias current		Full range			-38			-38	IIA
V _{ICR}	Common-mode input voltage range		25°C	-15 to 13.5	-15.3 to 13.8		-15 to 13.5	-15.3 to 13.8		V
	input voitage range		Full range	–15 to 13			-15 to 13			
V	Maximum peak	$R_L = 2 k\Omega$	25°C	±12.5	±14		±12.5	±14		V
V _{OM}	output voltage swing	HL = 2 KS2	Full range	±12			±12			V
	Lorge signal differential	$V_0 = \pm 10 \text{ V}, \qquad R_L = 600 \Omega$	25°C	0.5	2		0.5	2		
A_{VD}	Large-signal differential voltage amplification	$V_O = \pm 10 \text{ V}, R_L = 2 \text{ k}\Omega$	25°C	1.2	8		1.2	8		V/µV
		V() = ±10 V, HL = 2 KS2	Full range	0.7			0.7			
CMRR	Common-mode	$V_{IC} = -15 \text{ V to } 13.5 \text{ V}$	25°C	97	117		97	117		dB
Civil II I	rejection ratio	VIC = -13 V to 13.5 V	Full range	94			94			uБ
	Supply-voltage		25°C	100	117		100	117		
k _{SVR}	rejection ratio $(\Delta V_{CC}/\Delta V_{IO})$	$V_{CC\pm} = \pm 2 \text{ V to } \pm 18 \text{ V}$	Full range	97			97			dB
	Channel separation	$V_O = \pm 10 \text{ V}, \qquad R_L = 2 \text{ k}\Omega$	25°C	120	137		120	137		dB
r _{id}	Differential input resistance		25°C	70	300		70	300		МΩ
r _{ic}	Common-mode input resistance		25°C		4			4		GΩ
Icc	Supply current		25°C		0.35	0.55		0.35	0.55	mA
·CC	per amplifier		Full range			0.6			0.6	шА

[†] Full range is –40°C to 105°C.

[‡] All typical values are at $T_A = 25$ °C.

LT1014, LT1014A, LT1014D QUAD PRECISION OPERATIONAL AMPLIFIERS

SLOS039D - JULY 1989 - REVISED AUGUST 2009

electrical characteristics at specified free-air temperature, V_{CC+} = 5 V, V_{CC-} = 0, V_O = 1.4 V, V_{IC} = 0 (unless otherwise noted)

	PARAMETER	TEST CONDITIONS			LT1014I		L	.T1014DI		
	PARAMETER	TEST CONDITIONS	T _A †	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
.,	Laurent affa at coalle an	B 500	25°C		90	450		250	950	
V _{IO}	Input offset voltage	$R_S = 50 \Omega$	Full range			570			1200	μV
	Innut offeet ourrent		25°C		0.2	2		0.2	2	nA
I _{IO}	Input offset current		Full range			6			6	ΠA
	Innut bigg gurrant		25°C		-15	-50		-15	-50	nA
I _{IB}	Input bias current		Full range			-90			-90	ΠA
	Common-mode		25°C	0 to 3.5	-0.3 to 3.8		0 to 3.5	-0.3 to 3.8		
V/. ~ -	input voltage range		F. II		10 3.8			10 3.8		V
			Full range	0 to 3			0 to 3			
		Output low, No load	25°C		15	25		15	25	
		Output low,	25°C		5	10		5	10	mV
		$R_L = 600 \Omega$ to GND	Full range			13			13	111 V
V_{OM}	Maximum peak output voltage swing	Output low, I _{sink} = 1 mA	25°C		220	350		220	350	
	output voltage swing	Output high, No load	25°C	4	4.4		4	4.4		
		Output high,	25°C	3.4	4		3.4	4		V
		$R_L = 600 \Omega$ to GND	Full range	3.2			3.2			
A _{VD}	Large-signal differential voltage amplification	$V_O = 5$ mV to 4 V, $R_L = 500 \Omega$	25°C		1			1		V/µV
	Supply current		25°C		0.3	0.5		0.3	0.5	mA
Icc	per amplifier		Full range			0.55			0.55	IIIA

[†] Full range is –40°C to 105°C.

operating characteristics, V_{CC^+} = ± 15 V, V_{IC} = 0, T_A = $25^{\circ}C$

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
SR	Slew rate		0.2	0.4		V/μs
V	Continuous insulancias valtana	f = 10 Hz		24		
V _n	Equivalent input noise voltage	f = 1 kHz		22		nV/√ Hz
V _{N(PP)}	Peak-to-peak equivalent input noise voltage	f = 0.1 Hz to 10 Hz		0.55		μV
In	Equivalent input noise current	f = 10 Hz		0.07		pA/√ Hz

LT1014, LT1014A, LT1014D QUAD PRECISION OPERATIONAL AMPLIFIERS

SLOS039D - JULY 1989 - REVISED AUGUST 2009

electrical characteristics at specified free-air temperature, $V_{CC\pm}$ = ± 15 V, V_{IC} = 0 (unless otherwise noted)

		TEST		L	T1014M		L	Γ1014 Α Ν	Л	Lī	Γ1014DN	Л	
PA	RAMETER	CONDITIONS	T _A †	MIN	TYP‡	MAX	MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNIT
V _{IO}	Input offset	B 50 O	25°C		60	300		60	180		200	800	μV
VIO	voltage	$R_S = 50 \Omega$	Full range			550			350			1000	μν
$\alpha_{V_{IO}}$	Temperature coefficient of input offset voltage		Full range		0.5	2.5		0.5	2		0.5	2.5	μV/°C
	Long-term drift of input offset voltage		25°C		0.5			0.5			0.5		μV/mo
1	Input offset		25°C		0.15	1.5		0.15	8.0		0.15	1.5	nA
I _{IO}	current		Full range			5			2.8			5	IIA
l	Input bias		25°C		-12	-30		-12	-20		-12	-30	nA
I _{IB}	current		Full range			-45			-30			-45	IIA
V _{ICR}	Common-mode input voltage		25°C	-15 to 13.5	-15.3 to 13.8		-15 to 13.5	-15.3 to 13.8		-15 to 13.5	-15.3 to 13.8		V
	range		Full range	-14.9 to 13			-14.9 to 13			-14.9 to 13			
	Maximum peak		25°C	±12.5	±14		±13	±14		±12.5	±14		
V _{OM}	output voltage swing	$R_L = 2 k\Omega$	Full range	±11.5			±12			±11.5			٧
	Large-signal differential	$V_O = \pm 10 \text{ V},$ $R_L = 600 \Omega$	25°C	0.5	2		0.8	2.2		0.5	2		\//\/
A _{VD}	voltage	$V_{O} = \pm 10 \text{ V},$	25°C	1.2	8		1.5	8		1.2	8		V/µV
	amplification	$R_L = 2 k\Omega$	Full range	0.25			0.4			0.25			
CMRR	Common-mode	$V_{IC} = -15 \text{ V to}$ 13.5 V	25°C	97	117		100	117		97	117		dD
CIVIRR	rejection ratio	$V_{IC} = -14.9 \text{ V}$ to 13 V	Full range	94			96			94			dB
	Supply-voltage	$V_{CC\pm} = \pm 2 \text{ V to}$	25°C	100	117		103	117		100	117		
k _{SVR}	rejection ratio $(\Delta V_{CC}/\Delta V_{IO})$	±18 V	Full range	97			100			97			dB
	Channel separation	$V_O = \pm 10 \text{ V},$ $R_L = 2 \text{ k}\Omega$	25°C	120	137		123	137		120	137		dB
r _{id}	Differential input resistance		25°C	70	300		100	300		70	300		ΜΩ
r _{ic}	Common-mode input resistance		25°C		4			4			4		GΩ
las	Supply current		25°C		0.35	0.55		0.35	0.50		0.35	0.55	m ^
Icc	per amplifier		Full range			0.7			0.6			0.7	mA

[†] Full range is –55°C to 125°C. ‡ All typical values are at T_A = 25°C.

LT1014, LT1014A, LT1014D QUAD PRECISION OPERATIONAL AMPLIFIERS

SLOS039D - JULY 1989 - REVISED AUGUST 2009

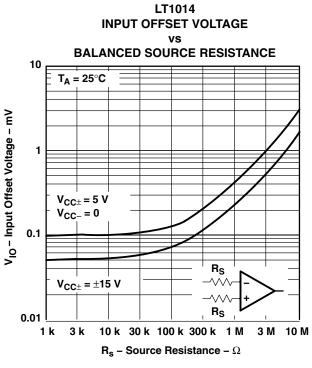
electrical characteristics at specified free-air temperature, V_{CC+} = 5 V, V_{CC-} = 0, V_O = 1.4 V, V_{IC} = 0 (unless otherwise noted)

	DAMETER	TEST	- +	L	.T1014M		Lī	1014AN	Л	Lī	Γ1014DN	Л	UNIT
PA	ARAMETER	CONDITIONS	T _A †	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNII
		$R_S = 50\Omega$	25°C		90	450		90	280		250	950	
V _{IO}	Input	ns = 5022	Full range		400	1500		400	960		800	2000	μV
10	offset voltage	$R_S = 50\Omega,$ $V_{IC} = 0.1 \text{ V}$	125°C		200	750		200	480		560	1200	μ.
1	Input		25°C		0.2	2		0.2	1.3		0.2	2	
I _{IO}	offset current		Full range			10			7			10	nA
١,	Input		25°C		-15	-50		-15	-35		-15	-50	IIA
I _{IB}	bias current		Full range			-120			-90			-120	
	Common- mode input		25°C	0 to 3.5	-0.3 to 3.8		0 to 3.5	-0.3 to 3.8		0 to 3.5	-0.3 to 3.8		V
V _{ICR}	voltage range		Full range	0.1 to 3			0.1 to 3			0.1 to 3			V
		Output low, No load	25°C		15	25		15	25		15	25	
		Output low,	25°C		5	10		5	10		5	10	
		$R_L = 600\Omega$ to GND	Full range			18			15			18	mV
V _{OM}	Maximum peak output voltage swing	Output low, I _{sink} = 1 mA	25°C		220	350		220	350		220	350	
	voltage swing	Output high, No load	25°C	4	4.4		4	4.4		4	4.4		
		Output high,	25°C	3.4	4		3.4	4		3.4	4		V
		$R_L = 600\Omega$ to GND	Full range	3.1			3.2			3.1			
A _{VD}	Large-signal differential voltage amplification	$V_O = 5$ mV to 4 V, $R_L = 500\Omega$	25°C		1			1			1		V/μV
I _{CC}	Supply current		25°C		0.3	0.5		0.3	0.45		0.3	0.5	mA
† F. II	per amplifier		Full range			0.65			0.55			0.65	111/1

[†] Full range is –55°C to 125°C.

operating characteristics, $V_{CC\pm}$ = ± 15 V, V_{IC} = 0, T_A = $25^{\circ}C$

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
SR	Slew rate		0.2	0.4		V/μs
.,	Employee the section of the continue	f = 10 Hz		24		\ //
V _n	Equivalent input noise voltage	f = 1 kHz		22	MAX	nV/√ Hz
V _{N(PP)}	Peak-to-peak equivalent input noise voltage	f = 0.1 Hz to 10 Hz		0.55		μV
In	Equivalent input noise current	f = 10 Hz		0.07		pA/√ Hz

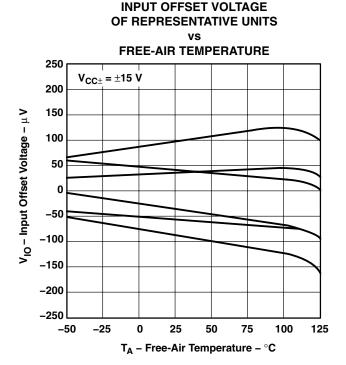
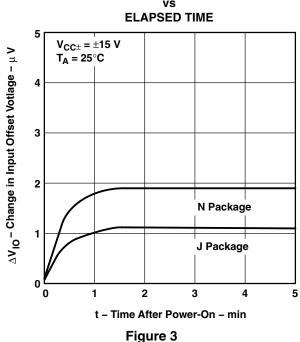

SLOS039D - JULY 1989 - REVISED AUGUST 2009

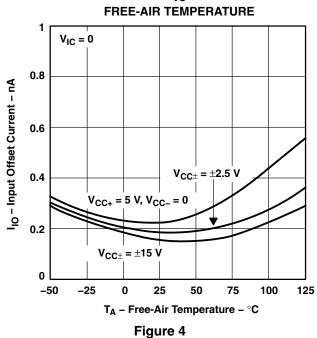
TYPICAL CHARACTERISTICS

Table of Graphs

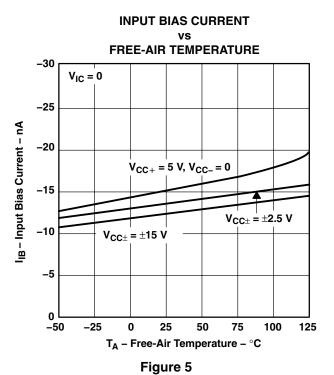
		FIGURE			
V _{IO}	Input offset voltage vs Balanced sou	1			
V _{IO}	Input offset voltage vs Free-air temp	2			
ΔV_{IO}	Warm-Up Change in input offset vol	3			
I _{IO}	Input offset current vs Free-air temp	erature	4		
I _{IB}	Input bias current vs Free-air tempe	rature	5		
V _{IC}	Common-mode input voltage vs Input	ut bias current	6		
	vs Load resistance				
A_{VD}	Differential voltage amplification	vs Frequency	9, 10		
	Channel separation vs Frequency	11			
	Output saturation voltage vs Free-ai	12			
CMRR	Common-mode rejection ratio vs Fre	13			
k _{SVR}	Supply-voltage rejection ratio vs Fre	14			
Icc	Supply current vs Free-air temperate	15			
los	Short-circuit output current vs Elaps	16			
V _n	Equivalent input noise voltage vs Fr	equency	17		
In	Equivalent input noise current vs Fre	17			
V _{N(PP)}	Peak-to-peak input noise voltage vs	18			
	Pulse response (small signal) vs Tin	19, 21			
	Pulse response (large signal) vs Tim	20, 22, 23			
	Phase shift vs Frequency		9		

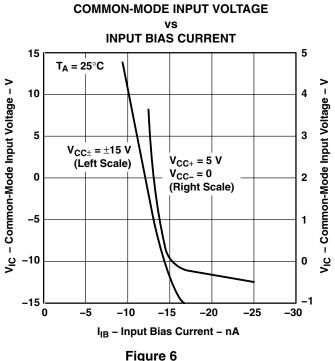
TYPICAL CHARACTERISTICS†

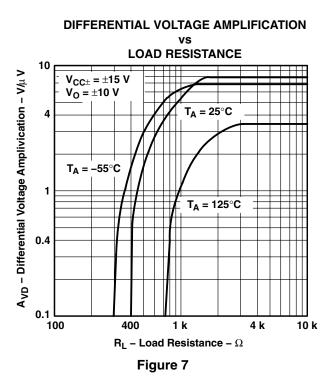



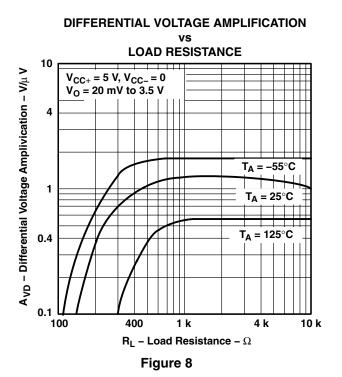

Figure 1

WARM-UP CHANGE IN INPUT OFFSET VOLTAGE

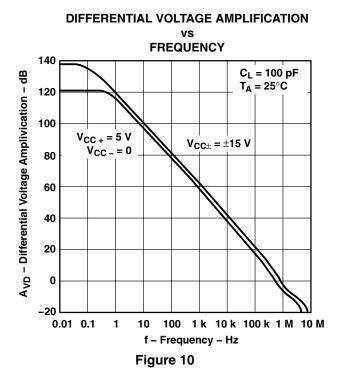

INPUT OFFSET CURRENT vs

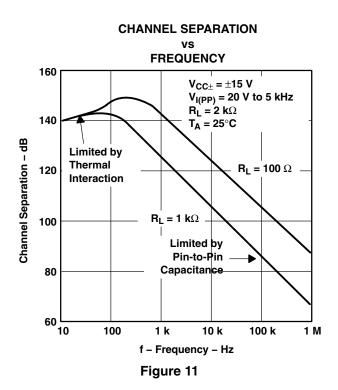


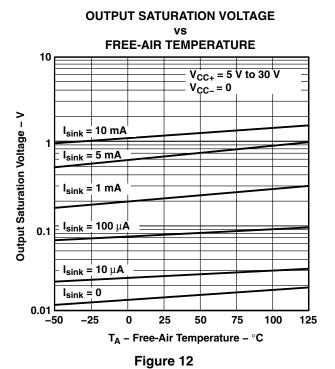

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.



TYPICAL CHARACTERISTICS†

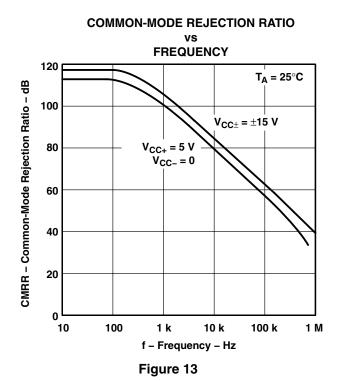


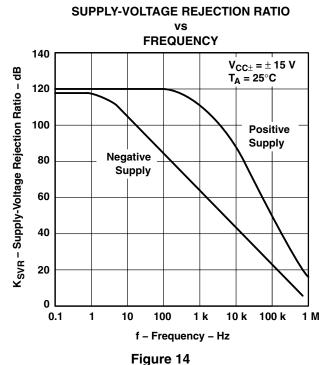

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

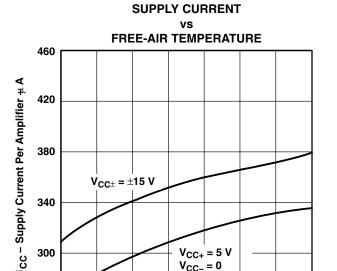


TYPICAL CHARACTERISTICS†

DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE SHIFT vs **FREQUENCY** 80° $V_{IC} = 0$ A_{VD} - Differential Voltage Amplivication - dB $C_L = 100 pF$ 100° T_A = 25°C $V_{CC\pm} = \pm 15 \text{ V}$ 120° $V_{CC+} = 5 V$ 140° 091 160° 091 0 − Phase Shiff 10 $V_{CC-} = 0$ $V_{CC+} = 5 V$ 0 $V_{CC-} = 0$ **200**° $V_{CC}\pm = \pm 15 V$ 220° 240° 0.3 0.01 10 f - Frequency - MHz Figure 9






[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

TYPICAL CHARACTERISTICS[†]

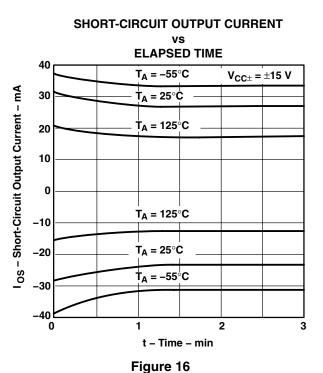
25

Figure 15

T_A - Free-Air Temperature - °C

 $V_{CC+} = 5 V$

75

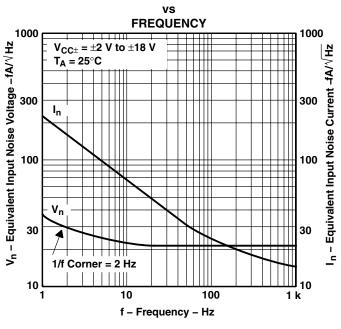

100

 $V_{CC-} = 0$

300

260 -50

-25


† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

125

TYPICAL CHARACTERISTICS

EQUIVALENT INPUT NOISE VOLTAGE AND EQUIVALENT INPUT NOISE CURRENT

Figure 17

PEAK-TO-PEAK INPUT NOISE VOLTAGE OVER A 10-SECOND PERIOD

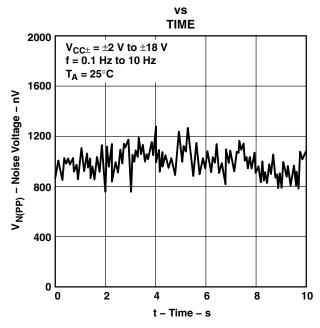


Figure 18

VOLTAGE-FOLLOWER SMALL-SIGNAL PULSE RESPONSE

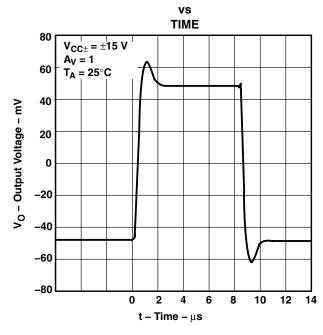


Figure 19

VOLTAGE-FOLLOWER LARGE-SIGNAL PULSE RESPONSE

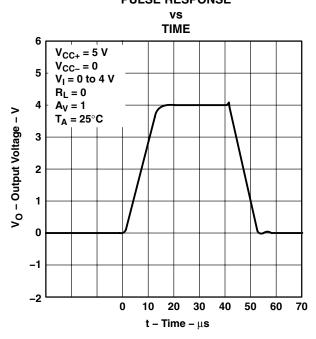
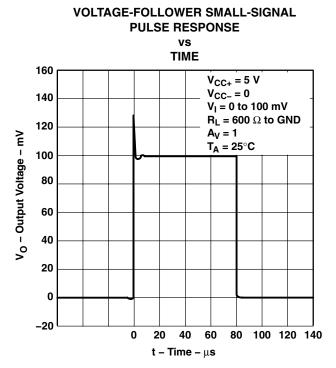



Figure 20

TYPICAL CHARACTERISTICS

VOLTAGE-FOLLOWER LARGE-SIGNAL PULSE RESPONSE

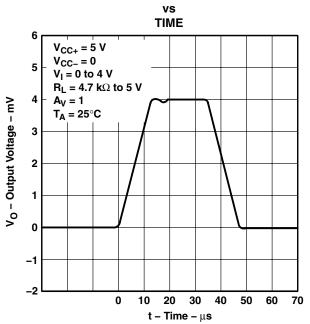


Figure 21 Figure 22

VOLTAGE-FOLLOWER LARGE-SIGNAL PULSE RESPONSE

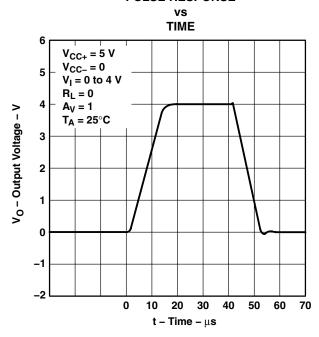
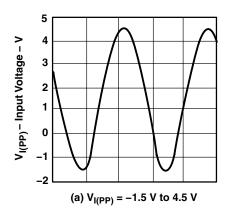
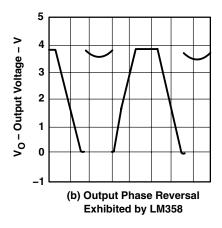


Figure 23

single-supply operation

The LT1014 is fully specified for single-supply operation ($V_{CC-} = 0$). The common-mode input voltage range includes ground, and the output swings within a few millivolts of ground.


Furthermore, the LT1014 has specific circuitry that addresses the difficulties of single-supply operation, both at the input and at the output. At the input, the driving signal can fall below 0 V, either inadvertently or on a transient basis. If the input is more than a few hundred millivolts below ground, the LT1014 is designed to deal with the following two problems that can occur:


- 1. On many other operational amplifiers, when the input is more than a diode drop below ground, unlimited current flows from the substrate (V_{CC} terminal) to the input, which can destroy the unit. On the LT1014, the 400-Ω resistors in series with the input (see schematic) protect the device even when the input is 5 V below ground.
- 2. When the input is more than 400 mV below ground (at $T_A = 25^{\circ}C$), the input stage of similar type operational amplifiers saturates, and phase reversal occurs at the output. This can cause lockup in servo systems. Because of unique phase-reversal protection circuitry (Q21, Q22, Q27, and Q28), the LT1014 outputs do not reverse, even when the inputs are at −1.5 V (see Figure 24).

However, this phase-reversal protection circuitry does not function when the other operational amplifier on the LT1014 is driven hard into negative saturation at the output. Phase-reversal protection does not work on an amplifier:

- When 4's output is in negative saturation (the outputs of 2 and 3 have no effect)
- When 3's output is in negative saturation (the outputs of 1 and 4 have no effect)
- When 2's output is in negative saturation (the outputs of 1 and 4 have no effect)
- When 1's output is in negative saturation (the outputs of 2 and 3 have no effect)

At the output, other single-supply designs either cannot swing to within 600 mV of ground or cannot sink more than a few microproamperes while swinging to ground. The all-npn output stage of the LT1014 maintains its low output resistance and high gain characteristics until the output is saturated. In dual-supply operations, the output stage is free of crossover distortion.

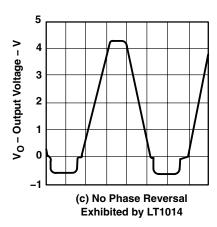
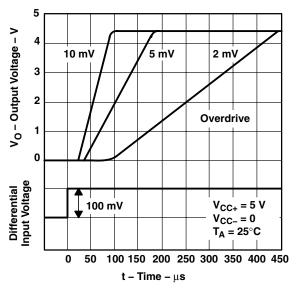



Figure 24. Voltage-Follower Response With Input Exceeding the Negative Common-Mode Input Voltage Range

comparator applications

The single-supply operation of the LT1014 can be used as a precision comparator with TTL-compatible output. In systems using both operational amplifiers and comparators, the LT1014 can perform multiple duties (see Figures 25 and 26).

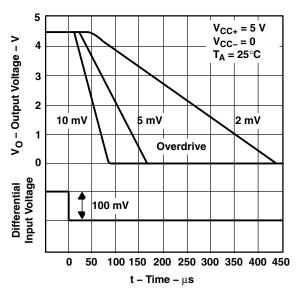


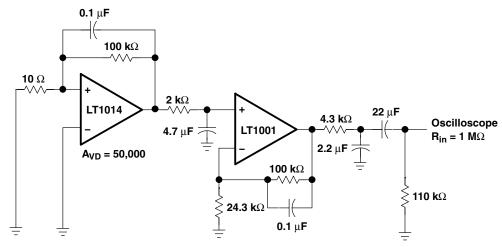
Figure 25. Low-to-High-Level Output Response for Various Input Overdrives

Figure 26. High-to-Low-Level Output Response for Various Input Overdrives

low-supply operation

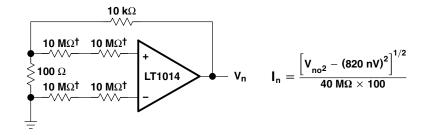
The minimum supply voltage for proper operation of the LT1014 is 3.4 V (three Ni-Cad batteries). Typical supply current at this voltage is 290 µA; therefore, power dissipation is only 1 mW per amplifier.

offset voltage and noise testing


Figure 30 shows the test circuit for measuring input offset voltage and its temperature coefficient. This circuit with supply voltages increased to ± 20 V is also used as the burn-in configuration.

The peak-to-peak equivalent input noise voltage of the LT1014 is measured using the test circuit shown in Figure 27. The frequency response of the noise tester indicates that the 0.1-Hz corner is defined by only one zero. The test time to measure 0.1-Hz to 10-Hz noise should not exceed 10 seconds, as this time limit acts as an additional zero to eliminate noise contribution from the frequency band below 0.1 Hz.

An input noise-voltage test is recommended when measuring the noise of a large number of units. A 10-Hz input noise-voltage measurement correlates well with a 0.1-Hz peak-to-peak noise reading because both results are determined by the white noise and the location of the 1/f corner frequency.


Noise current is measured by the circuit and formula shown in Figure 28. The noise of the source resistors is subtracted.

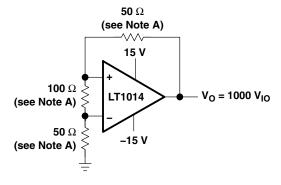
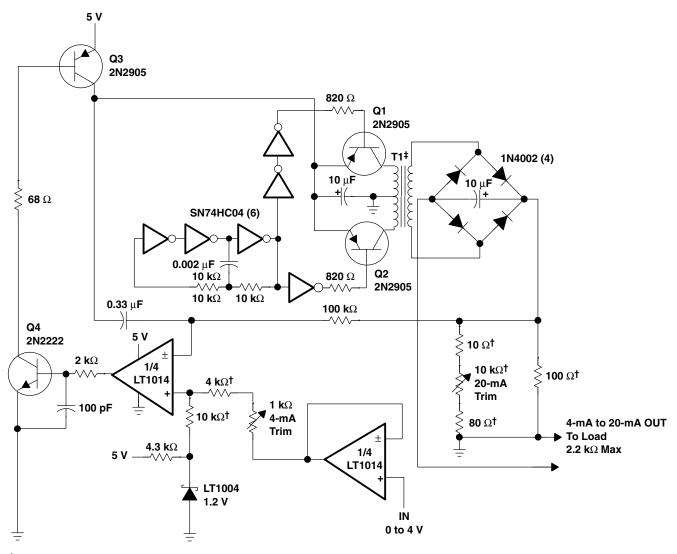

NOTE A: All capacitor values are for nonpolarized capacitors only.

Figure 27. 0.1-Hz to 10-Hz Peak-to-Peak Noise Test Circuit

† Metal-film resistor


Figure 28. Noise-Current Test Circuit and Formula

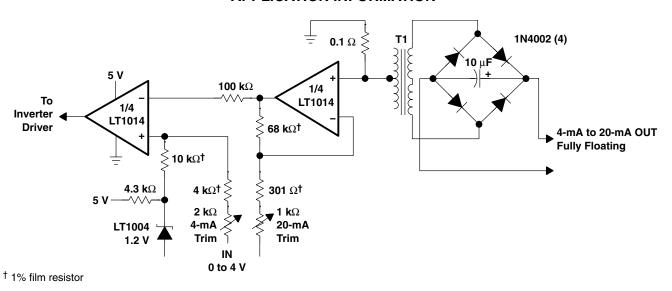
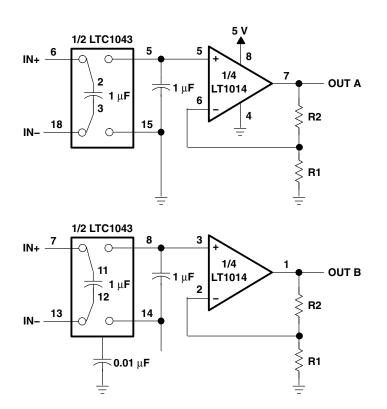
NOTE A: Resistors must have low thermoelectric potential.

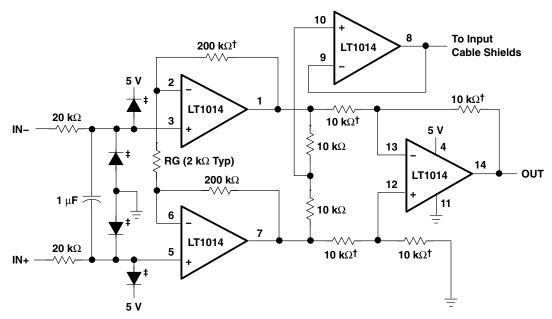
Figure 29. Test Circuit for V_{IO} and αV_{IO}

 $^{^{\}dagger}$ 1% film resistor. Match 10-kΩ resistors 0.05%.

Figure 30. 5-V Powered, 4-mA to 20-mA Current-Loop Transmitter With 12-Bit Accuracy

[‡] T1 = PICO-31080


Figure 31. Fully Floating Modification to 4-mA to 20-mA Current-Loop Transmitter With 8-Bit Accuracy

NOTE A: V_{IO} = 150 μ V, A_{VD} = (R1/R2) + 1, CMRR = 120 dB, V_{ICR} = 0 to 5 V

Figure 32. 5-V Single-Supply Dual Instrumentation Amplifier

 $^{^{\}dagger}$ † 1% film resistor. Match 10-k Ω resistors 0.05%.

NOTE A: $A_{VD} = (400,000/RG) + 1$

Figure 33. 5-V Powered Precision Instrumentation Amplifier

 $^{^{\}ddagger}$ For high source impedances, use 2N2222 as diodes (with collector connected to base).

24-Aug-2018

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish (6)	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
5962-89677012A	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	5962- 89677012A LT1014 AMFKB	Samples
5962-8967701CA	ACTIVE	CDIP	J	14	1	TBD	A42	N / A for Pkg Type	-55 to 125	5962-8967701CA LT1014AMJB	Samples
5962-89677022A	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	5962- 89677022A LT1014MFKB	Samples
5962-8967702CA	ACTIVE	CDIP	J	14	1	TBD	A42	N / A for Pkg Type	-55 to 125	5962-8967702CA LT1014MJB	Samples
LT1014AMFKB	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type		5962- 89677012A LT1014 AMFKB	Samples
LT1014AMJ	ACTIVE	CDIP	J	14	1	TBD	A42	N / A for Pkg Type		LT1014AMJ	Samples
LT1014AMJB	ACTIVE	CDIP	J	14	1	TBD	A42	N / A for Pkg Type		5962-8967701CA LT1014AMJB	Samples
LT1014CN	ACTIVE	PDIP	N	14	25	Green (RoHS & no Sb/Br)	CU NIPDAU	N / A for Pkg Type	0 to 70	LT1014CN	Samples
LT1014CNE4	ACTIVE	PDIP	N	14	25	Green (RoHS & no Sb/Br)	CU NIPDAU	N / A for Pkg Type	0 to 70	LT1014CN	Samples
LT1014DDW	ACTIVE	SOIC	DW	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	LT1014D	Samples
LT1014DDWE4	ACTIVE	SOIC	DW	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	LT1014D	Samples
LT1014DDWG4	ACTIVE	SOIC	DW	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	LT1014D	Samples
LT1014DDWR	ACTIVE	SOIC	DW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	LT1014D	Samples
LT1014DDWRE4	ACTIVE	SOIC	DW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	LT1014D	Samples
LT1014DIDW	ACTIVE	SOIC	DW	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 105	LT1014DI	Samples

www.ti.com

PACKAGE OPTION ADDENDUM

24-Aug-2018

Orderable Device	Status	Package Type	_	Pins	_	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
LT1014DIDWG4	ACTIVE	SOIC	DW	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 105	LT1014DI	Samples
LT1014DIDWR	ACTIVE	SOIC	DW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 105	LT1014DI	Samples
LT1014DIN	ACTIVE	PDIP	N	14	25	Green (RoHS & no Sb/Br)	CU NIPDAU	N / A for Pkg Type	-40 to 105	LT1014DIN	Samples
LT1014DINE4	ACTIVE	PDIP	N	14	25	Green (RoHS & no Sb/Br)	CU NIPDAU	N / A for Pkg Type	-40 to 105	LT1014DIN	Samples
LT1014DMDW	ACTIVE	SOIC	DW	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	LT1014DM	Samples
LT1014DMDWG4	ACTIVE	SOIC	DW	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	LT1014DM	Samples
LT1014DN	ACTIVE	PDIP	N	14	25	Green (RoHS & no Sb/Br)	CU NIPDAU	N / A for Pkg Type	0 to 70	LT1014DN	Samples
LT1014MFKB	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	5962- 89677022A LT1014MFKB	Samples
LT1014MJ	ACTIVE	CDIP	J	14	1	TBD	A42	N / A for Pkg Type	-55 to 125	LT1014MJ	Samples
LT1014MJB	ACTIVE	CDIP	J	14	1	TBD	A42	N / A for Pkg Type		5962-8967702CA LT1014MJB	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

PACKAGE OPTION ADDENDUM

24-Aug-2018

- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

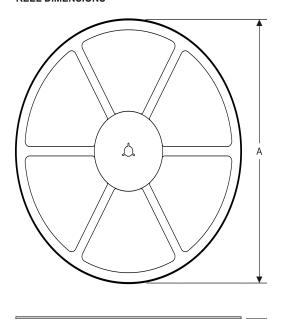
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

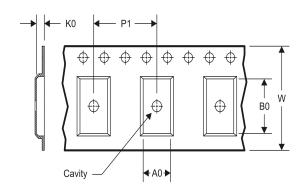
OTHER QUALIFIED VERSIONS OF LT1014D:

Enhanced Product: LT1014D-EP

NOTE: Qualified Version Definitions:


• Enhanced Product - Supports Defense, Aerospace and Medical Applications

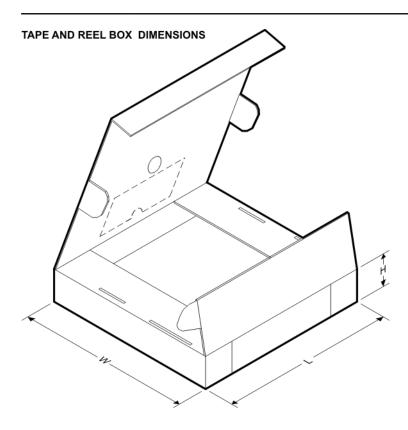
PACKAGE MATERIALS INFORMATION


www.ti.com 14-Jul-2012

TAPE AND REEL INFORMATION

REEL DIMENSIONS

TAPE DIMENSIONS

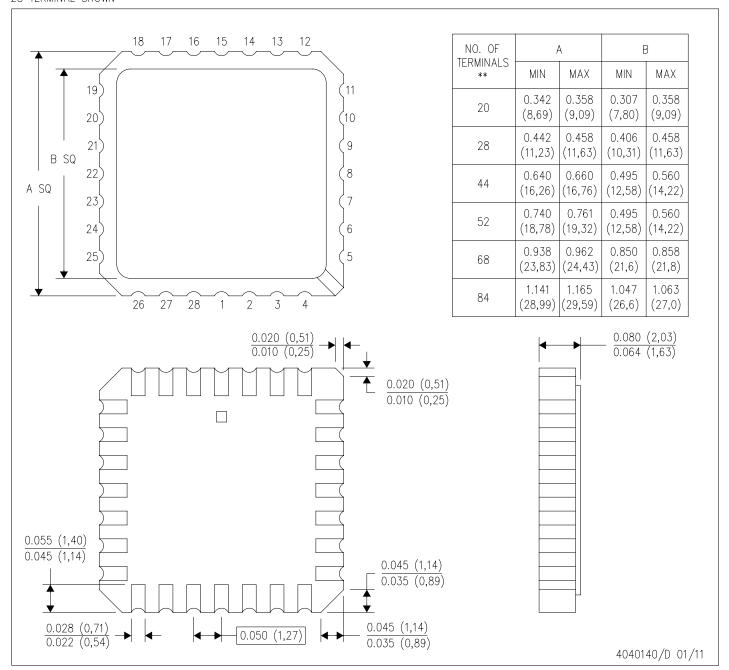

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

TAPE AND REEL INFORMATION

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
LT1014DDWR	SOIC	DW	16	2000	330.0	16.4	10.75	10.7	2.7	12.0	16.0	Q1
LT1014DIDWR	SOIC	DW	16	2000	330.0	16.4	10.75	10.7	2.7	12.0	16.0	Q1

www.ti.com 14-Jul-2012

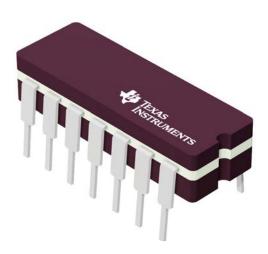

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
LT1014DDWR	SOIC	DW	16	2000	367.0	367.0	38.0
LT1014DIDWR	SOIC	DW	16	2000	367.0	367.0	38.0

FK (S-CQCC-N**)

LEADLESS CERAMIC CHIP CARRIER

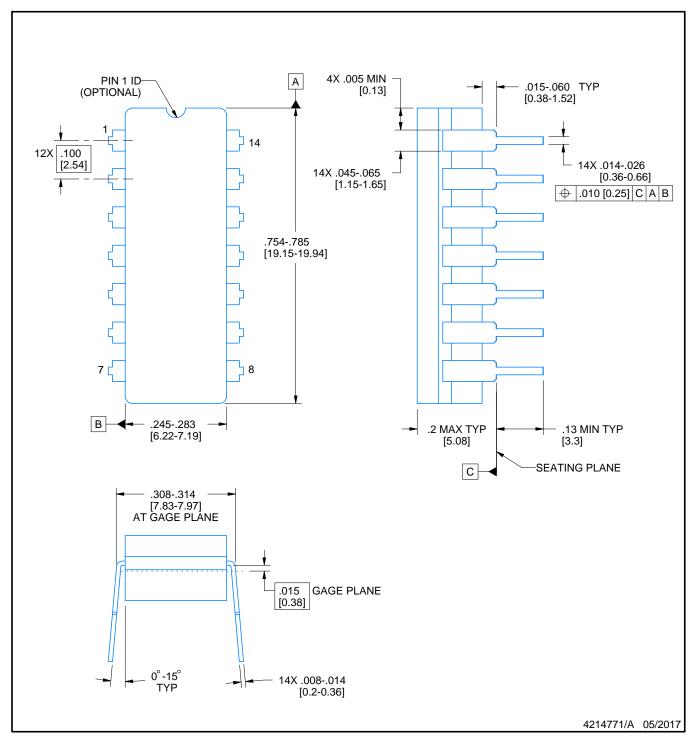
28 TERMINAL SHOWN



NOTES:

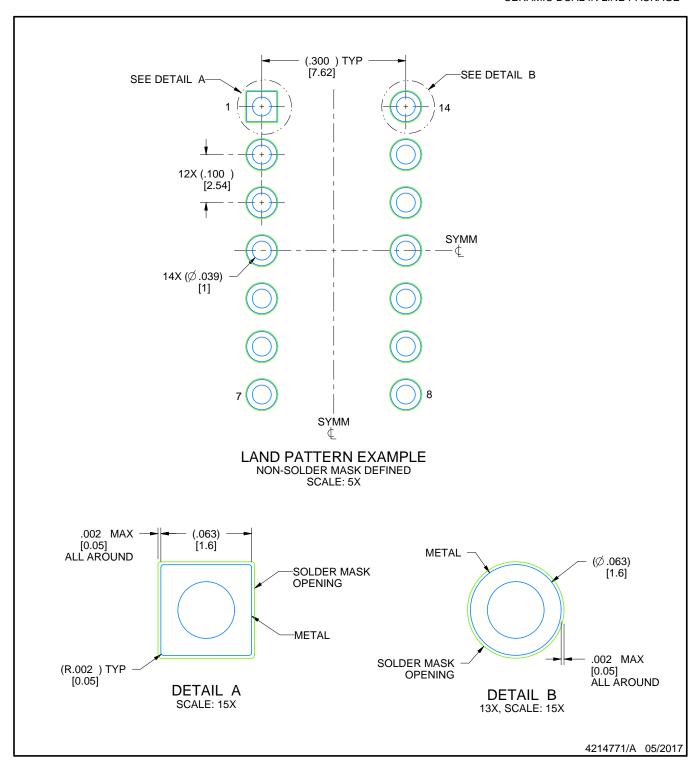
- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a metal lid.
- D. Falls within JEDEC MS-004

CERAMIC DUAL IN LINE PACKAGE

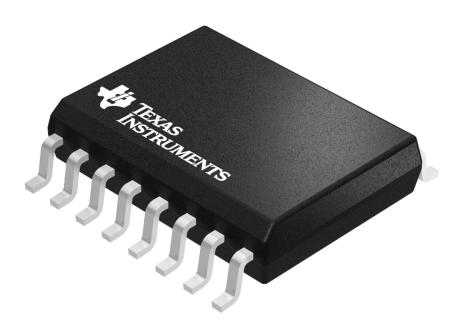

Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

4040083-5/G

CERAMIC DUAL IN LINE PACKAGE

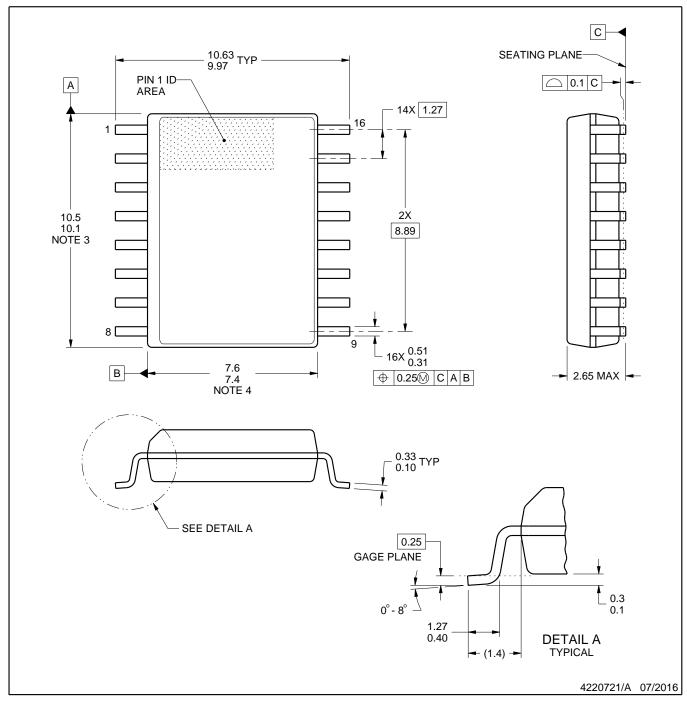


NOTES:


- 1. All controlling linear dimensions are in inches. Dimensions in brackets are in millimeters. Any dimension in brackets or parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- 3. This package is hermitically sealed with a ceramic lid using glass frit.
- His package is remitted by sealed with a ceramic its using glass mit.
 Index point is provided on cap for terminal identification only and on press ceramic glass frit seal only.
 Falls within MIL-STD-1835 and GDIP1-T14.

CERAMIC DUAL IN LINE PACKAGE

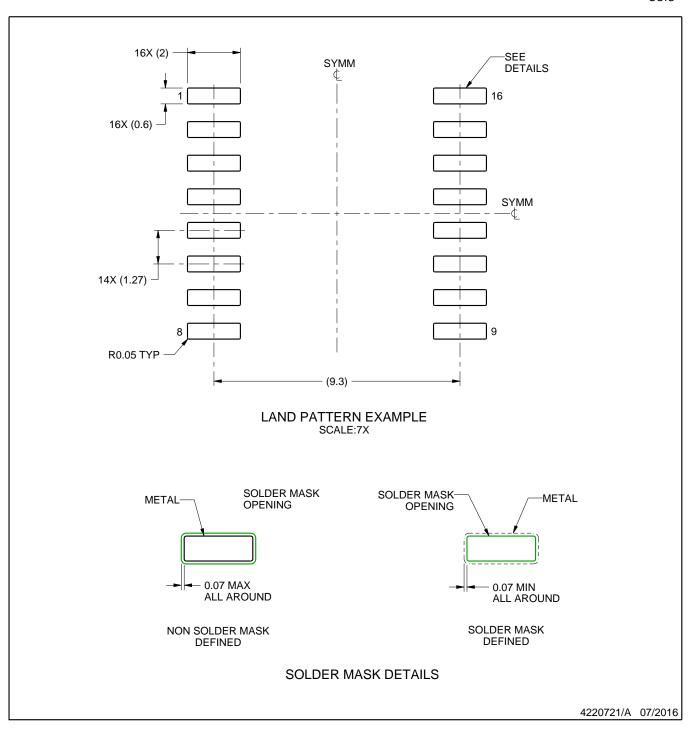
SMALL OUTLINE INTEGRATED CIRCUIT


Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

4040000-2/H

SOIC

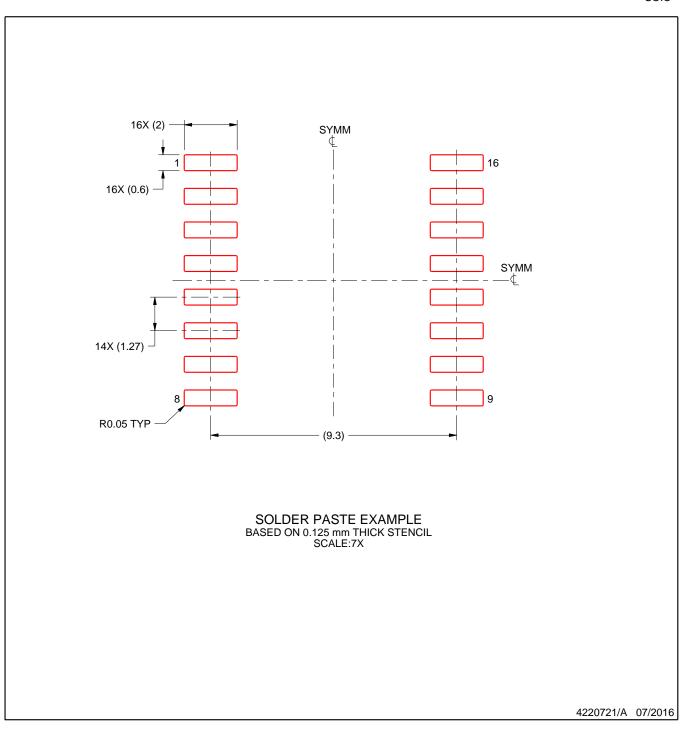
NOTES:


- 1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing
- per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm, per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm, per side.
- 5. Reference JEDEC registration MS-013.

SOIC


NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SOIC

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- The 20 pin end lead shoulder width is a vendor option, either half or full width.

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's non-compliance with the terms and provisions of this Notice.