RICOH

RP105x Series

Low Voltage 400 mA LDO Regulator

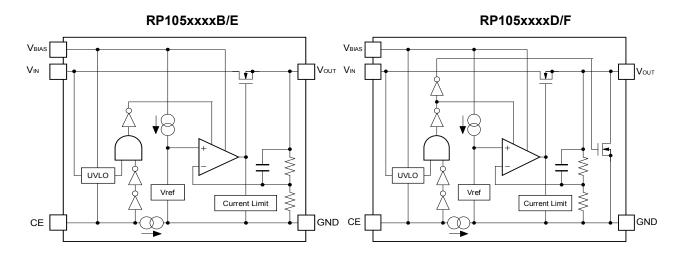
NO.EA-179-160420

OUTLINE

The RP105x is a 400 mA output type CMOS-based voltage regulator with capability of low input voltage (Min. 0.9 V) and low output voltage (Min. 0.6 V). This device is remarkably improved the performance at low input voltage compared with conventional low voltage LDOs, and two power supply voltage type. (Another power source, V_{BIAS} pin voltage must be Min. 2.4 V). The device consists of a voltage reference unit, an error amplifier, resistor-net for voltage setting, a current limit circuit to avoid the destruction, a UVLO circuit with monitoring input voltage, and so on.

The RP105x has the ultra-low on resistance output driver, the on resistance is Typ. 0.4 Ω (V_{OUT} = 0.8 V, I_{OUT} = 300 mA). The built-in driver is Nch MOSFET, thus the load transient response is excellent, (under the condition of the current between 1 mA and 400 mA, tr = 0.5 μ s, the undershoot level is approximately 50 mV).

The output voltage of this device is fixed with high accuracy. Since the packages for the device are DFN(PLP)1212-6, DFN1212-5, SOT-23-5 and SC-88A therefore high density mounting of the IC on boards is possible.


FEATURES

ullet	Supply Current	Тур. 28 μА
\bullet	Standby Current	Typ. 0.1 μA
\bullet	Ripple Rejection	Typ. 80 dB (f = 1 kHz, V _{IN} Ripple)
		Typ. 50 dB (f = 1 kHz, V _{BIAS} Ripple)
\bullet	Output Voltage Range	0.6 V to 1.5 V (0.1 V step)
		Contact Ricoh sales representatives for other voltages.
\bullet	Input Voltage Range (VBIAS)	2.4 V to 5.25 V (Vou⊤ < 0.8 V)
		Set Vout + 1.6 V to 5.25 V (Vout ≥ 0.8 V)
\bullet	Input Voltage Range (V _{IN})	RP105xxxxB/D: 0.9 V to V _{BIAS} (Vout < 0.8 V)
		Set V _{OUT} + 0.1 V to V _{BIAS} (V _{OUT} \ge 0.8 V)
		RP105xxxxE/F: 0.9 V to V _{BIAS}
\bullet	Output Voltage Accuracy	Typ. ±15 mV (Ta = 25°C)
\bullet	Temperature-Drift Coefficient of Output Voltage	Typ. ±50 ppm/°C
\bullet	Dropout Voltage	DFN1212-5: Typ. 105 mV
		(I _{OUT} = 400 mA, V _{OUT} = 1.5 V, V _{BIAS} = 3.6 V)
\bullet	Line Regulation	Typ. 0.02%/V
\bullet	Packages	DFN(PLP)1212-6, SC-88A, SOT-23-5, DFN1212-5
\bullet	Built-in Fold Back Protection Circuit	
•	Ceramic capacitors are recommended	CBIAS = CIN = 1.0 μ F or more, COUT = 2.2 μ F or more

APPLICATIONS

- Power source for battery-powered equipment.
- Power source for electrical appliances such as cameras, VCRs and camcorders.
- Power source for portable communication equipment.

BLOCK DIAGRAMS

SELECTION GUIDE

The output voltage, the UVLO circuit, the auto-discharge function⁽¹⁾, the package, and the taping type for the device are user-selectable options.

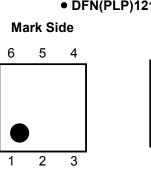
Product Name	Package	Quantity per Reel	Pb Free	Halogen Free
RP105Kxx1*-TR	DFN(PLP)1212-6	5,000 pcs	Yes	Yes
RP105Qxx2*-TR-FE ⁽²⁾	SC-88A	3,000 pcs	Yes	Yes
RP105Nxx1*-TR-FE	SOT-23-5	3,000 pcs	Yes	Yes
RP105Lxx1*-TR	DFN1212-5	5,000 pcs	Yes	Yes

xx : The set output voltage (V_{SET}) can be designated within the range of 0.6 V (06) to 1.5 V (15) in 0.1 V step.

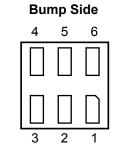
If the set output voltage (V_{SET}) is designated in 0.01 V step, indicate the product name as follows. 1.05 V: RP105x10x*5-TR

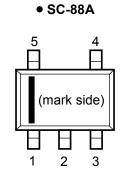
* : CE pin polarity and auto-discharge function of the product can be defined as follows.

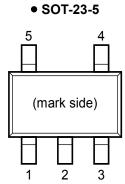
(B) "H" active, auto-discharge function is not included, UVLO is included

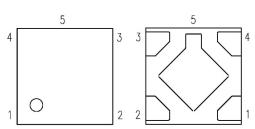

(D) "H" active, auto-discharge function is included, UVLO is included

(E) "H" active, auto-discharge function is not included, UVLO is not included


(F) "H" active, auto-discharge function is included, UVLO is not included


 ⁽¹⁾ Auto-discharge function quickly lowers the output voltage to 0 V, when the chip enable signal is switched from the active mode to the standby mode, by releasing the electrical charge accumulated in the external capacitor.
 ⁽²⁾ RP105Qxx2*-TR-FE supports only RP105Qxx2B/D.


PIN DESCRIPTIONS


• DFN(PLP)1212-6

• DFN1212-5

• DFN(PLP)1212-6

Pin No	Symbol	Pin Description
1	VBIAS	Input Pin 1
2	GND	Ground Pin
3	CE	Chip Enable Pin ("H" Active)
4	VIN	Input Pin 2
5	NC	No Connection
6	Vout	Output Pin

• SC-88A

Pin No	Symbol	Pin Description
1	VBIAS	Input Pin 1
2	GND	Ground Pin
3	Vout	Output Pin
4	VIN	Input Pin 2
5	CE	Chip Enable Pin ("H" Active)

• SOT-23-5

Pin No	Symbol	Pin Description
1	V _{IN}	Input Pin 2
2	GND	Ground Pin
3	CE	Chip Enable Pin ("H" Active)
4	V _{BIAS}	Input Pin 1
5	V _{OUT}	Output Pin

• DFN1212-5

Pin No	Symbol	Pin Description
1	Vout	Output Pin
2	VBIAS	Input Pin 1
3	CE	Chip Enable Pin ("H" Active)
4	V _{IN}	Input Pin 2
5	GND	Ground Pin

ABSOLUTE MAXIMUM RATINGS

Symbol	Item	Item				
VBIAS	Input Voltage	6.0	V			
VIN	Input Voltage (for Driver)	-0.3 to V _{BIAS} + 0.3	V			
VCE	Input Voltage (CE Pin)	6.0	V			
Vout	Output Voltage	Output Voltage				
lout	Output Current	500	mA			
	Power Dissipation	DFN(PLP)1212-6	400			
_		SC-88A	380	mW		
PD	(Standard Test Land Pattern) ⁽¹⁾	SOT-23-5	420			
		DFN1212-5	650			
Та	Operating Temperature		-40 to 85	°C		
Tstg	Storage Temperature	-55 to 125	°C			

ABSOLUTE MAXIMUM RATINGS

Electronic and mechanical stress momentarily exceeded absolute maximum ratings may cause the permanent damages and may degrade the life time and safety for both device and system using the device in the field. The functional operation at or over these absolute maximum ratings is not assured.

⁽¹⁾ Refer to POWER DISSIPATION for detailed information.

ELECTRICAL CHARACTERISTICS

 $V_{BIAS} = V_{CE} = 3.6 \text{ V}, V_{IN} = \text{Set } V_{OUT} + 0.5 \text{ V}, I_{OUT} = 1 \text{ mA}, C_{BIAS} = C_{IN} = 1.0 \mu\text{F}, C_{OUT} = 2.2 \mu\text{F}, unless otherwise noted.$ The specifications surrounded by are guaranteed by design engineering at $-40^{\circ}\text{C} \le \text{Ta} \le 85^{\circ}\text{C}.$

RP105x

(Ta = 25°C)

Symbol	Item	Condit	tions	Min.	Тур.	Max.	Unit	
		Ta = 25°C		Set V _{OUT} −15 mV		Set V _{оυт} + 15 mV	V	
Vout	Output Voltage	-40°C ≤ Ta ≤ 85	5°C	Set Vou⊤ −20 mV		Set V _{оит} + 20 mV	V	
Іоит	Output Current			400			mA	
ΔV_{OUT}	Load Regulation (K, Q, N package)	1 mA ≤ I _{OUT} ≤ 40	00 mA		30	50	mV	
/∆Iout	Load Regulation (L package)	1 mA ≤ I _{OUT} ≤ 40	00 mA		15	35	mV	
VDIF	Dropout Voltage	Refer to PRO	DUCT-SPECIF	IC ELECTRI	CAL CH	ARACTERIS	TICS	
lss	Supply Current	louт = 0 mA			28	40	μA	
Istandby	Standby Current	V_{CE} = 0 V			0.1	3.0	μA	
ΔV out	Line Regulation	$2.4 \text{ V} \leq \text{V}_{\text{BIAS}} \leq 5$		0.02	0.1	%/V		
$/\Delta V_{IN}$		Set V _{OUT} + 0.3 V		0.02	0.1	70/ V		
RR	Ripple Rejection	I _{OUT} = 30 mA, f = V _{IN} Ripple 0.2 V		80		dB		
		I _{OUT} = 30 mA, f = V _{BIAS} Ripple 0.2		50		uВ		
		V _{OUT} < 0.8 V	2.4		5.25			
VBIAS	Input Voltage ⁽¹⁾	V _{OUT} ≥ 0.8 V	Set V _{оит} + 1.6		5.25	V		
			V _{OUT} < 0.8 V	0.9		VBIAS		
Vin	Input Voltage (for Driver) ⁽¹⁾	RP105xxxxB/D	V _{OUT} ≥ 0.8 V	Set V _{OUT} + 0.1		VBIAS	v	
		RP105xxxxE/F		0.9		VBIAS		
ΔV _{OUT} /ΔTa	Output Voltage Temperature Coefficient	-40°C ≤ Ta ≤ 85	5°C		±50		ppm /°C	
lsc	Short Current Limit	V _{OUT} = 0 V			120		mA	
	CE Pull-down Current				1.0		μA	

All test items listed under Electrical Characteristics are done under the pulse load condition (Tj ≈ Ta = 25°C) except Output Noise, Ripple Rejection and Output Voltage Temperature Coefficient.

⁽¹⁾ The maximum Input Voltage listed under Electrical Characteristics is 5.25 V. If for any reason the input voltage exceeds 5.25 V, it has to be no more than 5.5 V with 500 hours of the total operating time.

ELECTRICAL CHARACTERISTICS (continued)

 $V_{BIAS} = V_{CE} = 3.6 \text{ V}, V_{IN} = \text{Set } V_{OUT} + 0.5 \text{ V}, I_{OUT} = 1 \text{ mA}, C_{BIAS} = C_{IN} = 1.0 \mu\text{F}, C_{OUT} = 2.2 \mu\text{F}, \text{ unless otherwise noted}.$ The specifications surrounded by are guaranteed by design engineering at $-40^{\circ}\text{C} \le \text{Ta} \le 85^{\circ}\text{C}.$

RP105x

(Ta = 25°C)

					(าน	- 23 0)
Symbol	ltem	Conditions	Min.	Тур.	Max.	Unit
V _{CEH}	CE Input Voltage "H"		0.8			V
V _{CEL}	CE Input Voltage "L"				0.3	V
VIN UVLO	V _{IN} Under Voltage Lock Out (only B/D version)	Ι _{ΟυΤ} = 1.0 μΑ		Set Vout + 50 mV	Set V _{OUT} + 100 mV	v
tdelay	Detector Delay Time (only B/D version)			100		μs
en	Output Noise	BM = 10 Hz to 100 kHz I _{OUT} = 30 mA, Set V _{OUT} = 0.6 V		70		μVrms
RLOW	Nch On Resistance For auto-discharge (only D/F version)	V _{BIAS} = 3.6 V, V _{CE} = "L"		50		Ω

All test items listed under Electrical Characteristics are done under the pulse load condition (Tj ≈ Ta = 25°C) except Output Noise, Ripple Rejection and Output Voltage Temperature Coefficient.

DFN(PLP)1212-6, SC-88A, SOT-23-5

The specifications surrounded by \square are guaranteed by design engineering at $-40^{\circ}C \le Ta \le 85^{\circ}C$

			V _{DIF} (I _{OUT} =	300 mA) (V)	V _{DIF} (I _{OUT} =	400 mA) (V)
Set V _{OUT} (V)	V _{BIAS} (V)	V _{GS} (V)	Тур.	Max.	Тур.	Max.
0.6	3.6	3.0	0.115	0.180	0.180	0.320
0.7	3.6	2.9	0.120	0.190	0.180	0.320
0.8	3.6	2.8	0.120	0.190	0.180	0.300
0.9	3.6	2.7	0.120	0.190	0.180	0.300
1.0	3.6	2.6	0.120	0.190	0.180	0.280
1.1	3.6	2.5	0.120	0.190	0.180	0.280
1.2	3.6	2.4	0.130	0.200	0.180	0.280
1.3	3.6	2.3	0.130	0.200	0.180	0.260
1.4	3.6	2.2	0.130	0.200	0.180	0.260
1.5	3.6	2.1	0.130	0.200	0.180	0.260

PRODUCT-SPECIFIC ELECTRICAL CHARACTERISTICS

PRODUCT-SPECIFIC ELECTRICAL CHARACTERISTICS (V_{GS} (V), V_{DIF} (V), I_{OUT} = 200 mA) (Ta = 25°C)

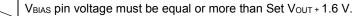
	V _{BIAS} = 2.5 V		V _{BIAS} = 3.0 V		V _{BIAS} = 3.3 V		V _{BIAS} = 3.6 V		V _{BIAS} = 4.2 V		V _{BIAS} = 5.0 V	
Set V _{OUT} (V)	V _{GS} (V)	V _{DIF} (V)										
0.6	1.9	-	2.4	-	2.7	-	3.0	-	3.6	-	4.4	-
0.7	1.8	-	2.3	-	2.6	-	2.9	-	3.5	-	4.3	-
0.8	1.7	0.098	2.2	0.093	2.5	0.093	2.8	0.092	3.4	0.092	4.2	0.092
0.9	1.6	0.098	2.1	0.094	2.4	0.093	2.7	0.092	3.3	0.092	4.1	0.092
1.0			2.0	0.094	2.3	0.093	2.6	0.092	3.2	0.092	4.0	0.092
1.1			1.9	0.096	2.2	0.094	2.5	0.094	3.1	0.093	3.9	0.093
1.2			1.8	0.098	2.1	0.096	2.4	0.095	3.0	0.095	3.8	0.094
1.3			1.7	0.098	2.0	0.096	2.3	0.095	2.9	0.095	3.7	0.095
1.4	\square		1.6	0.098	1.9	0.096	2.2	0.095	2.8	0.095	3.6	0.095
1.5					1.8	0.096	2.1	0.095	2.7	0.095	3.5	0.095

All of units are tested and specified under load conditions such that $Tj \approx Ta = 25^{\circ}C$ except for Output Noise, Ripple Rejection and Output Voltage Temperature Coefficient items.

VBIAS pin voltage must be equal or more than Set VOUT + 1.6 V.

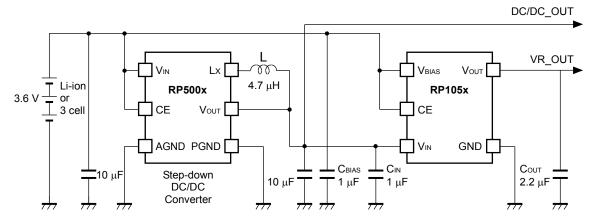
DFN1212-5

The specifications surrounded by \square are guaranteed by design engineering at $-40^{\circ}C \le Ta \le 85^{\circ}C$


		V 00	V _{DIF} (I _{OUT} =	300 mA) (V)	V _{DIF} (I _{OUT} = 400 mA) (V)		
Set V _{OUT} (V)	V _{BIAS} (V)	V _{GS} (V)	Тур.	Max.	Тур.	Max.	
0.6	3.6	3.0	-	-	-	-	
0.7	3.6	2.9	-	-	-	-	
0.8	3.6	2.8	0.077	0.130	0.105	0.170	
0.9	3.6	2.7	0.077	0.130	0.105	0.170	
1.0	3.6	2.6	0.077	0.130	0.105	0.170	
1.05	3.6	2.55	0.077	0.130	0.105	0.170	
1.1	3.6	2.5	0.077	0.130	0.105	0.170	
1.2	3.6	2.4	0.077	0.130	0.105	0.170	
1.3	3.6	2.3	0.077	0.130	0.105	0.170	
1.4	3.6	2.2	0.077	0.130	0.105	0.170	
1.5	3.6	2.1	0.077	0.130	0.105	0.170	

PRODUCT-SPECIFIC ELECTRICAL CHARACTERISTICS

PRODUCT-SPECIFIC ELECTRICAL CHARACTERISTICS (V_{GS} (V), V_{DIF} (V), I_{OUT} = 200 mA) (Ta = 25°C)


		= 2.5 V		= 3.0 V	V _{BIAS} =	= 3.3 V	V _{BIAS} =	= 3.6 V	V _{BIAS} =	= 4.2 V	V _{BIAS} :	= 5.0 V
Set V _{OUT} (V)	V _{GS} (V)	V _{DIF} (V)										
0.6	1.9	-	2.4	-	2.7	-	3.0	-	3.6	-	4.4	-
0.7	1.8	-	2.3	-	2.6	-	2.9	-	3.5	-	4.3	-
0.8	1.7	-	2.2	-	2.5	-	2.8	-	3.4	-	4.2	-
0.9	1.6	0.059	2.1	0.054	2.4	0.053	2.7	0.051	3.3	0.050	4.1	0.048
1.0			2.0	0.054	2.3	0.053	2.6	0.051	3.2	0.050	4.0	0.048
1.05			1.95	0.054	2.25	0.053	2.55	0.051	3.15	0.050	3.95	0.048
1.1			1.9	0.054	2.2	0.053	2.5	0.051	3.1	0.050	3.9	0.048
1.2		\backslash	1.8	0.054	2.1	0.053	2.4	0.051	3.0	0.050	3.8	0.048
1.3			1.7	0.054	2.0	0.053	2.3	0.051	2.9	0.050	3.7	0.048
1.4			1.6	0.054	1.9	0.053	2.2	0.051	2.8	0.050	3.6	0.048
1.5					1.8	0.053	2.1	0.051	2.7	0.050	3.5	0.048

All of units are tested and specified under load conditions such that $Tj \approx Ta = 25^{\circ}C$ except for Output Noise, Ripple Rejection and Output Voltage Temperature Coefficient items.

APPLICATION INFORMATION

TYPICAL APPLICATION

External Components

Symbol Descriptions	
Cout	2.2 μF, Ceramic Capacitor, GRM155B30J225ME15, MURATA
CBIAS, CIN	1.0 μF, Ceramic Capacitor, GRM155B31A105KE15, MURATA

TECHNICAL NOTES

UVLO (Undervoltage Lockout)

In RP105xxxxB/D, UVLO detects and turns off the output when the input voltage V_{IN} drops lower than or equal to V_{SET} + 50 mV (Typ) while CE = "H". Since RP105xxxxE/F does not have UVLO, it continues to output even if V_{IN} drops to V_{SET} + 50 mV (Typ) or lower.

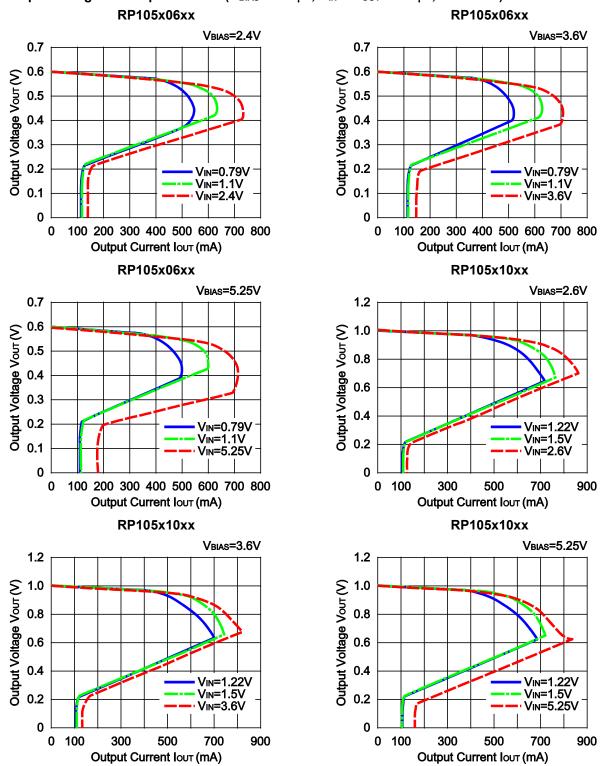
When V_{IN} drops below the set output voltage V_{SET} , UVLO does not turn off the output in RP105xxxxE/F while CE = "H", therefore the current flows from V_{BIAS} pin to V_{IN} pin via the inside IC. This will not be generated in RP105xxxxB/D since UVLO turns off the output when V_{IN} is lower than or equal to V_{SET} + 50 mV (Typ).

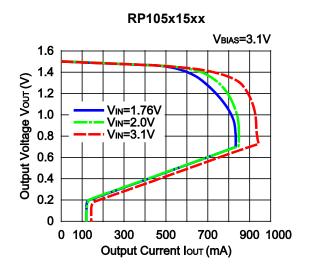
Phase Compensation

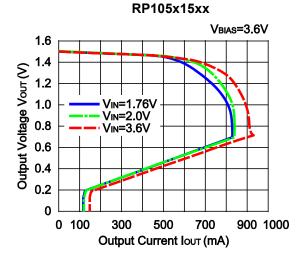
In this device, phase compensation is made for securing stable operation even if the load current is varied. For this purpose, use a capacitor for C_{OUT} with the capacity of equal or more than 2.2 μ F.

If tantalum capacitors are connected as C_{OUT} , and if the equivalent series resistance (ESR) value is large, the operation might be unstable. Because of this, test the device with as same external components as ones to be used on the PCB.

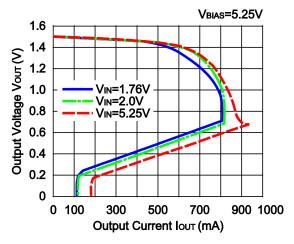
PCB Layout

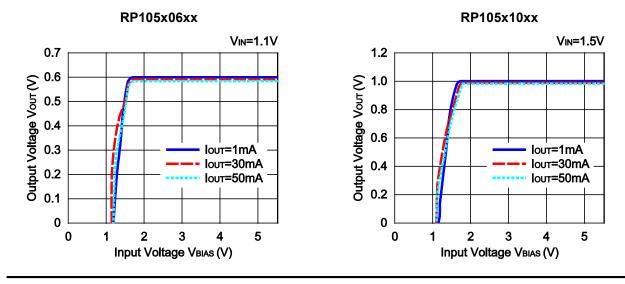

Make V_{BIAS} , V_{IN} , and GND lines sufficient. If their impedance is high, noise pickup or unstable operation may result. Connect a capacitor with a capacitance value as much as 1.0 μ F or more between V_{BIAS} pin and GND, between V_{IN} pin and GND, and as close as possible to the pins.

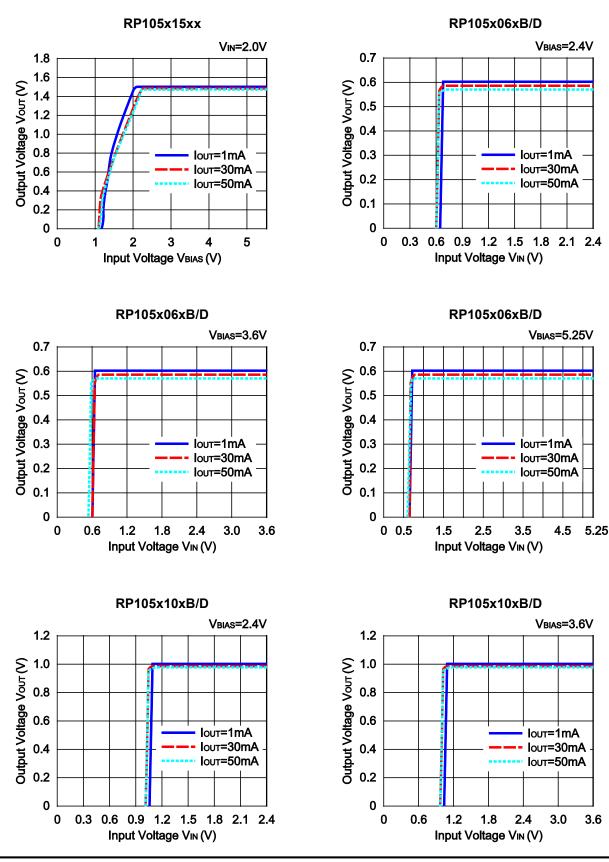

Set external components, especially the output capacitor, as close as possible to the device, and make wiring as short as possible. V_{IN} source is supposed to be the output of the DC/DC converter. The value should be equal or lower than V_{BIAS} voltage.

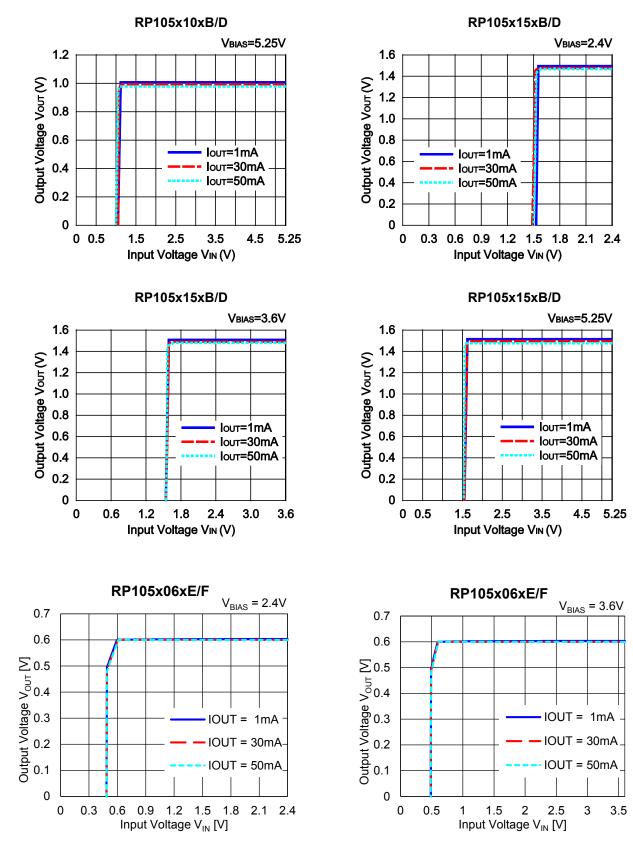

TYPICAL CHARACTERISTICS

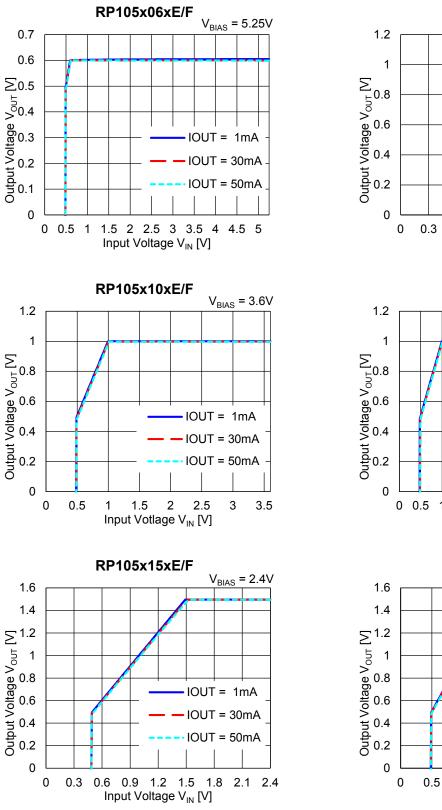
Note: Typical Characteristics are intended to be used as reference data; they are not guaranteed.

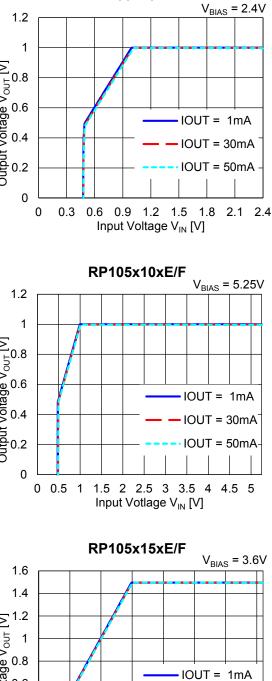

1) Output Voltage vs. Output Current ($C_{BIAS} = 1.0 \ \mu\text{F}$, $C_{IN} = C_{OUT} = 2.2 \ \mu\text{F}$, Ta = 25°C)






RP105x15xx




2) Output Voltage vs. Input Voltage (C_{BIAS} = 1.0 μ F, C_{IN} = C_{OUT} = 2.2 μ F, Ta = 25°C)

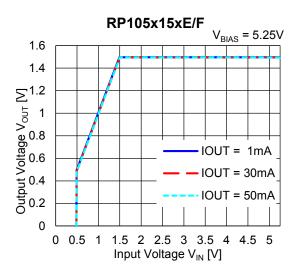
1.5

1

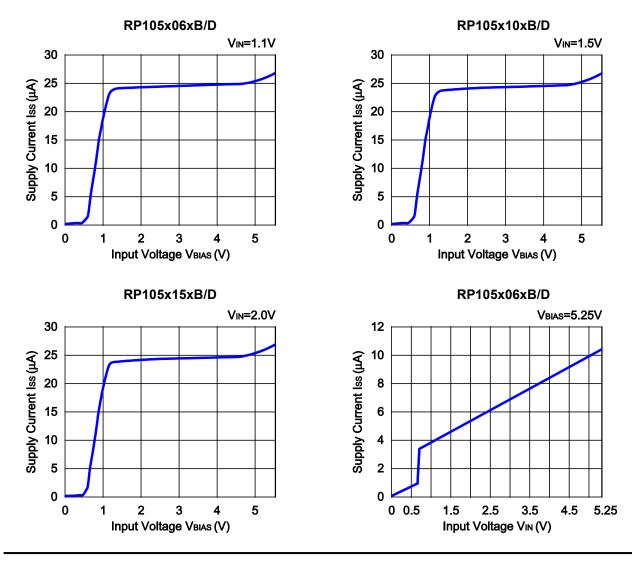
2

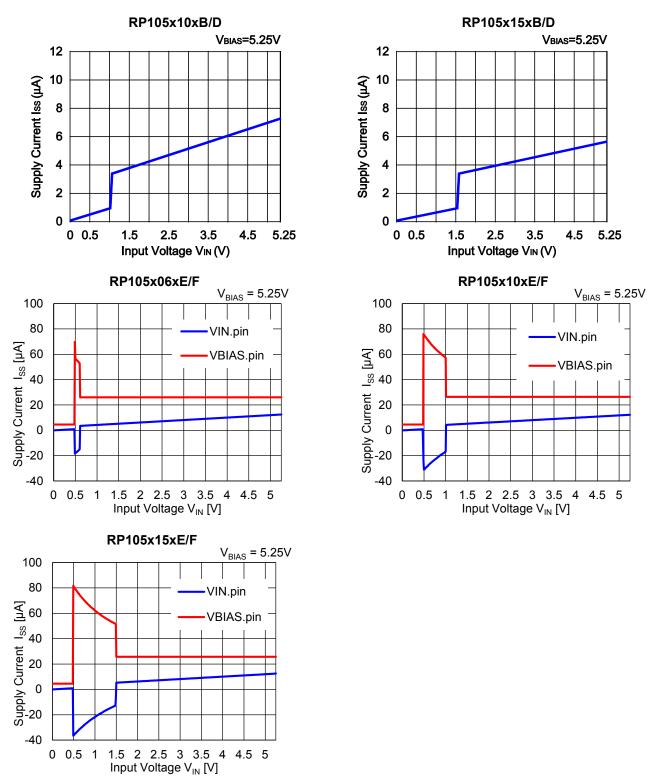
Input Voltage V_{IN} [V]

2.5

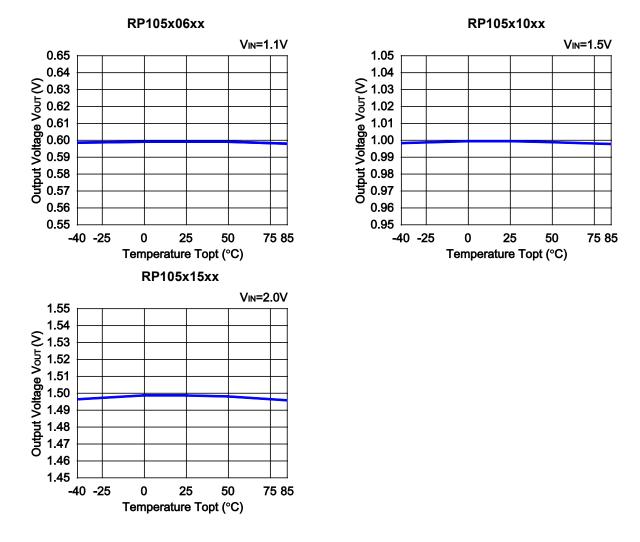

IOUT = 30mA

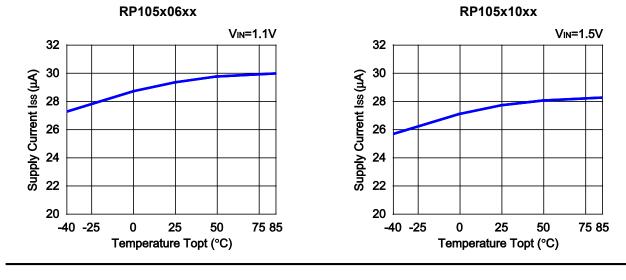
IOUT = 50mA

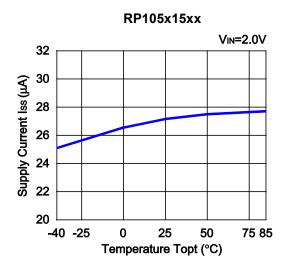

3

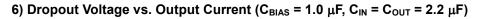

3.5

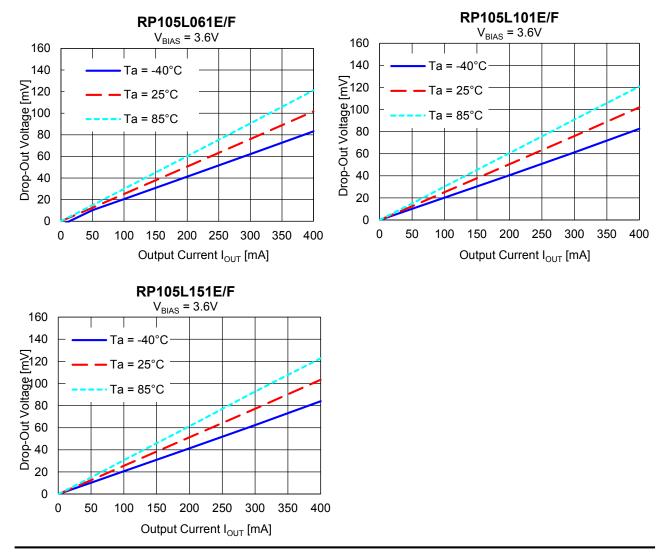
RP105x10xE/F

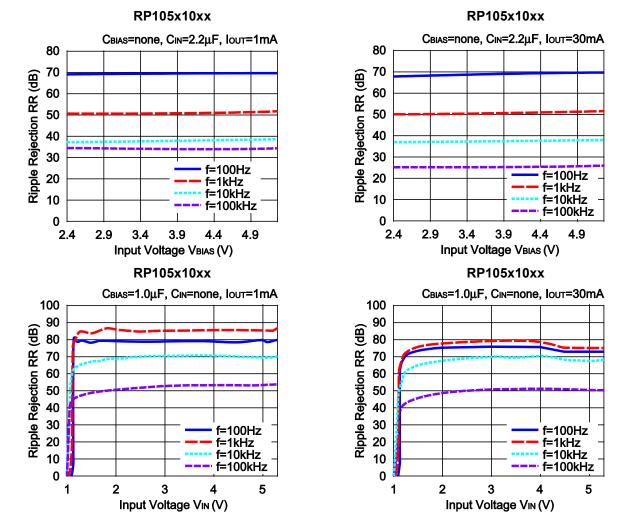


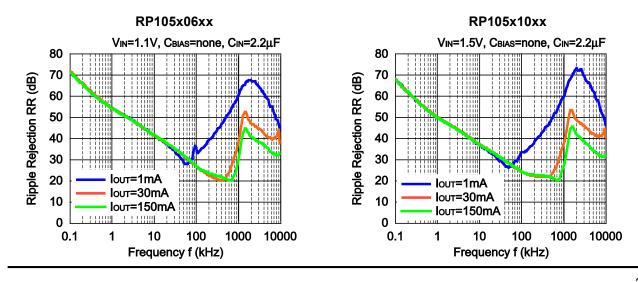


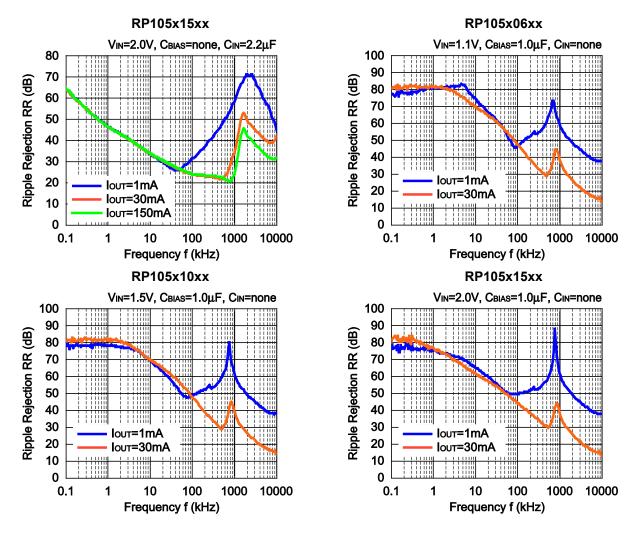

In RP105xxxxE/F, the current flows from V_{BIAS} pin to V_{IN} pin via the inside IC when the input voltage V_{IN} drops below the set output voltage V_{SET} .

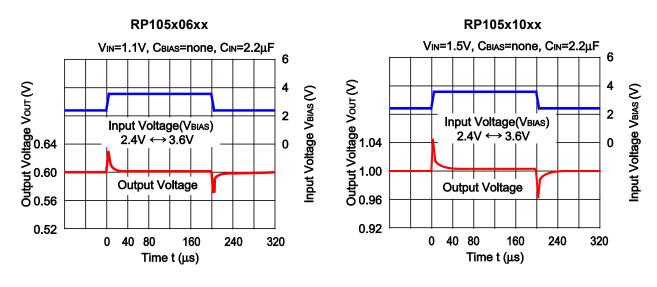


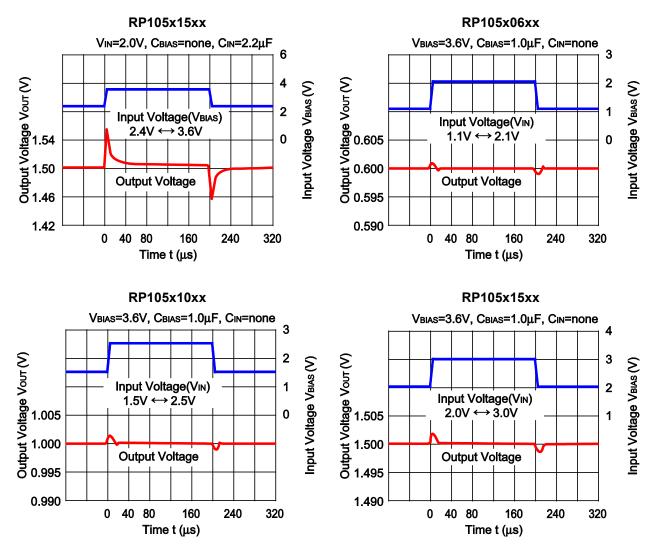

4) Output Voltage vs. Temperature ($C_{BIAS} = 1.0 \ \mu\text{F}$, $C_{IN} = C_{OUT} = 2.2 \ \mu\text{F}$, $I_{OUT} = 1 \ \text{mA}$, $V_{BIAS} = 3.6 \text{ V}$)

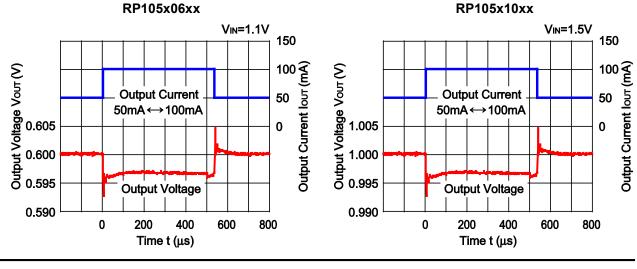

5) Supply Current vs. Temperature ($C_{BIAS} = C_{IN} = C_{OUT} = none$, $V_{BIAS} = 3.6$ V)

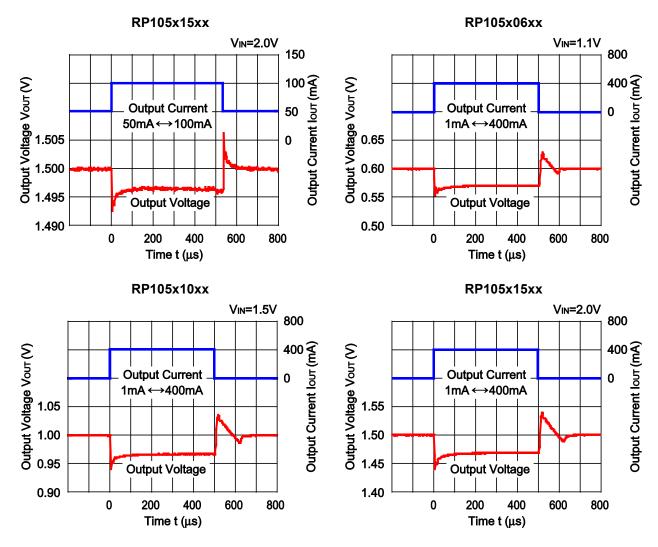


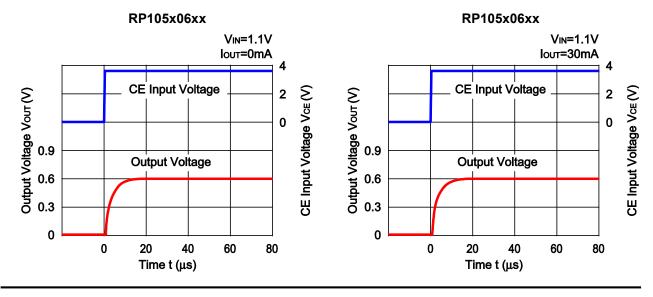


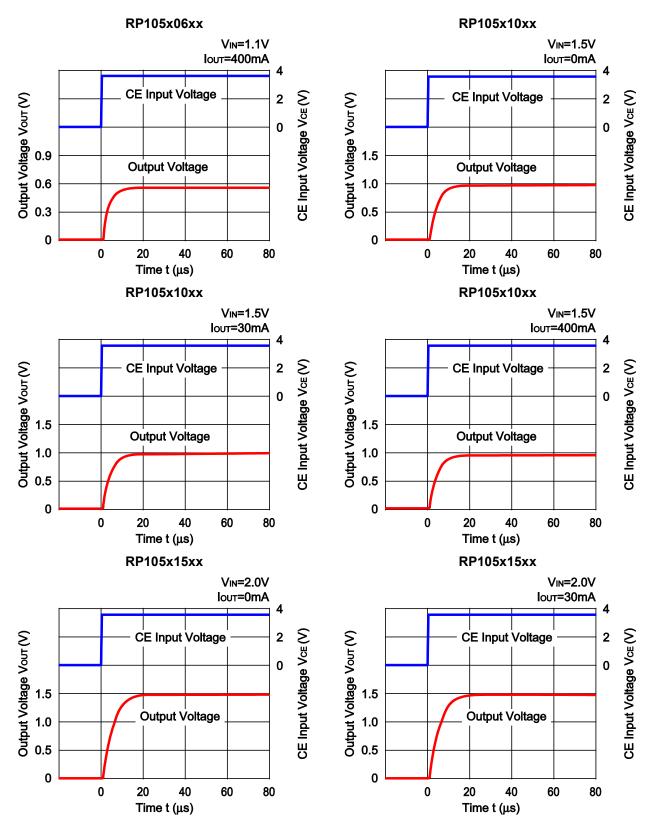

7) Ripple Rejection vs. Input Bias Voltage (C_{OUT} = 2.2 µF, Ripple = 0.2 Vp-p, Ta = 25°C)

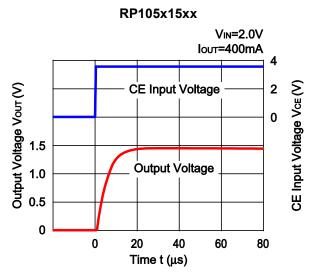

8) Ripple Rejection vs. Frequency (V_{BIAS} = 3.6 V, C_{OUT} = 2.2 μ F, Ta = 25°C)

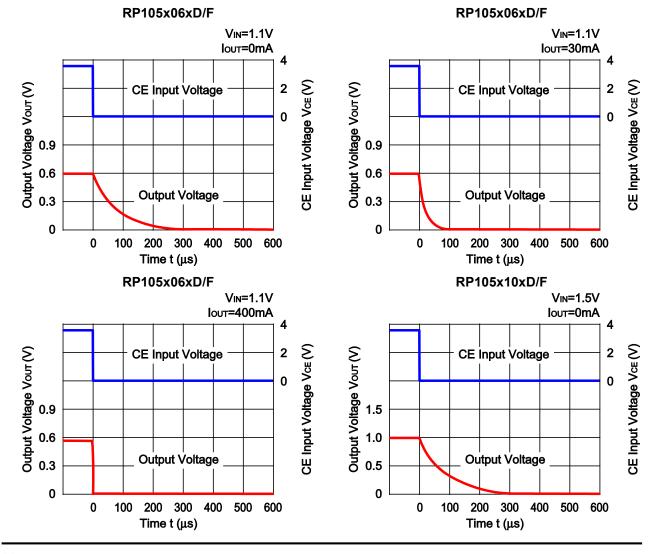


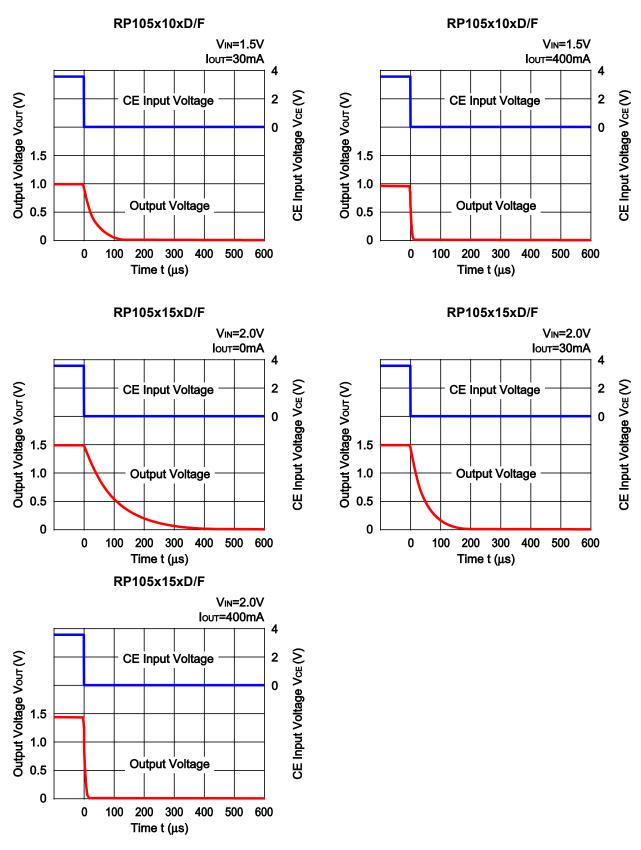

9) Input Transient Response (I_{OUT} = 30 mA, C_{OUT} = 1.0 μ F, tr = tf = 5 μ s, Ta = 25°C)

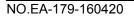


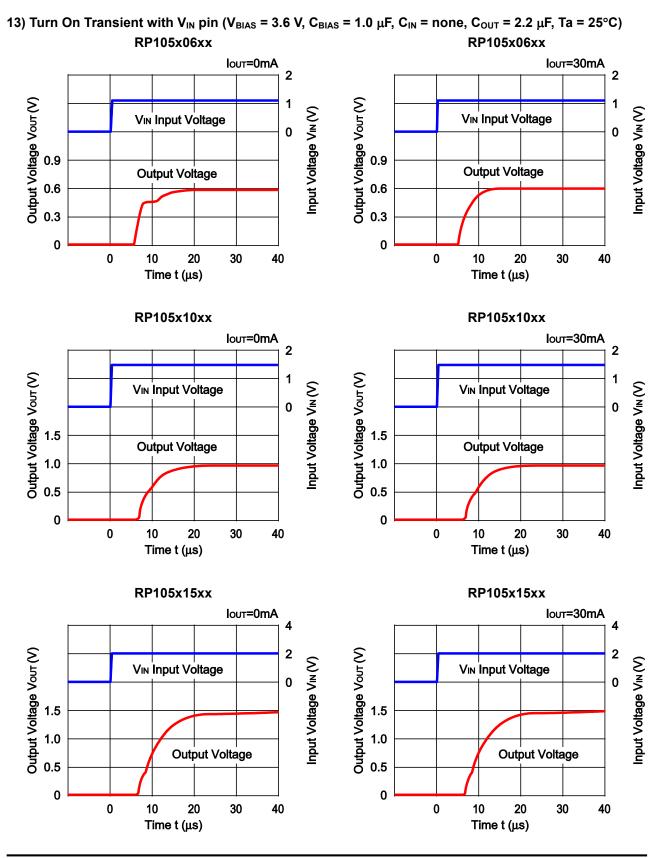

10) Load Transient Response (V_{BIAS} = 3.6 V, C_{BIAS} = 1.0 μ F, C_{IN} = C_{OUT} = 2.2 μ F, tr = tf = 0.5 μ s, Ta = 25°C)



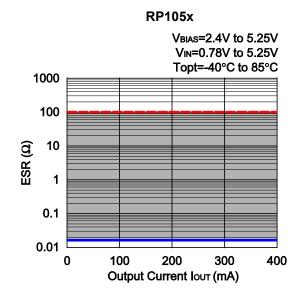

11) Turn On Speed with CE pin (V_{BIAS} = 3.6 V, C_{BIAS} = 1.0 μ F, C_{IN} = C_{OUT} = 2.2 μ F, Ta = 25°C)







12) Turn Off Speed with CE Pin (V_{BIAS} = 3.6 V, C_{BIAS} = 1.0 μ F, C_{IN} = C_{OUT} = 2.2 μ F, Ta = 25°C)



ESR vs. Output Current

Ceramic type output capacitor is recommended for this series; however, the other output capacitors with low ESR also can be used. The relations between I_{OUT} (Output Current) and ESR of an output capacitor are shown below. The conditions when the white noise level is under 40 μ V (Avg.) are marked as the hatched area in the graph.

Measurement conditions

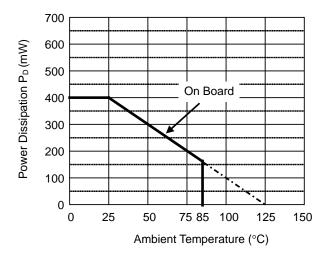
Frequency Band: 10 Hz to 2 MHz				
Temperature	: –40°C to 85°C			
Hatched Area	: Noise level is under 40 μV (Avg.)			
$C_{\text{BIAS}}, C_{\text{IN}}$: 1.0 μF			
COUT	: 2.2 μF			

POWER DISSIPATION

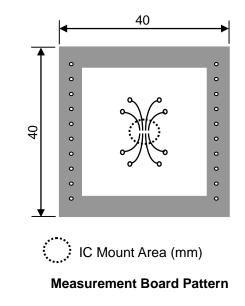
DFN(PLP)1212-6

Ver. A

Power Dissipation (P_D) depends on conditions of mounting on board. This specification is based on the measurement at the condition below.

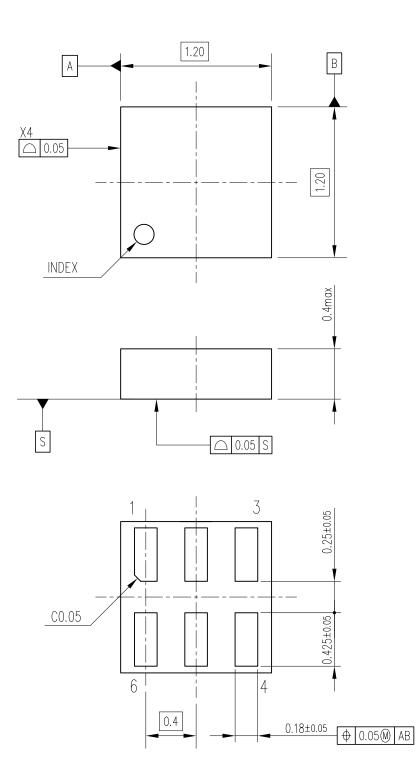

Measurement Conditions

	Standard Test Land Pattern
Environment	Mounting on Board (Wind velocity = 0 m/s)
Board Material	Glass cloth epoxy plastic (Double-Sided Board)
Board Dimensions	40 mm x 40 mm x 1.6 mm
Copper Ratio	Top side: 50%, Back side: 50%
Through-holes	φ 0.54 mm x 28 pcs


Measurement Result

(Ta = 25°C, Tjmax = 125°C)

	Standard Land Pattern
Power Dissipation	400 mW
	θja = (125 - 25°C) / 0.4 W= 250°C/W
Thermal Resistance	$\theta jc = 67^{\circ}C/W$


Power Dissipation vs. Ambient Temperature

PACKAGE DIMENSIONS

DFN(PLP)1212-6

Ver. A

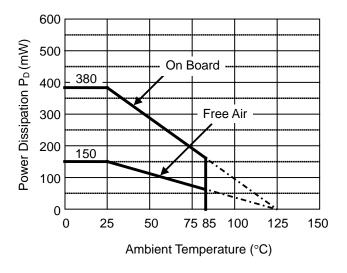
DFN(PLP)1212-6 Package Dimensions (Unit: mm)

POWER DISSIPATION

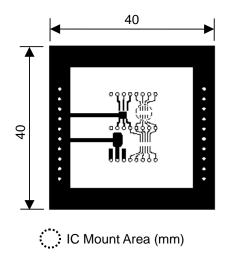
<u>SC-88A</u>

Ver. A

Power Dissipation (P_D) depends on conditions of mounting on board. This specification is based on the measurement at the condition below.

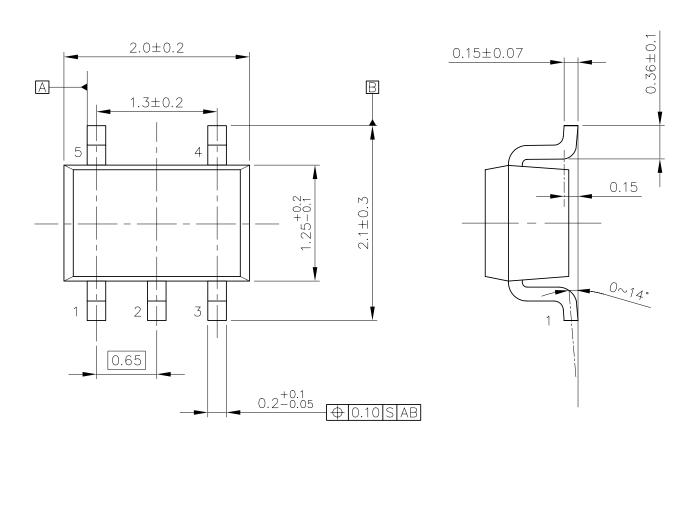

Measurement Conditions

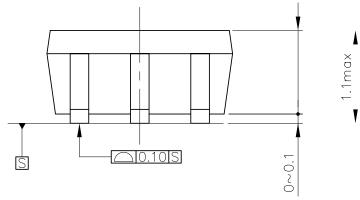
	Standard Test Land Pattern
Environment	Mounting on Board (Wind velocity = 0 m/s)
Board Material	Glass cloth epoxy plastic (Double-Sided Board)
Board Dimensions	40 mm x 40 mm x 1.6 mm
Copper Ratio	Top side: 50%, Back side: 50%
Through-holes	φ 0.5 mm x 44 pcs


Measurement Result

(Ta = 25°C, Tjmax = 125°C)

	Standard Land Pattern	Free Air
Power Dissipation	380 mW	150 mW
Thermal Resistance	θja = (125 - 25°C) / 0.38 W = 263°C/W	θja = (125 - 25°C) / 0.15W = 667°C/W
	θjc = 75°C/W	-


Power Dissipation vs. Ambient Temperature



Measurement Board Pattern

SC-88A

Ver. A

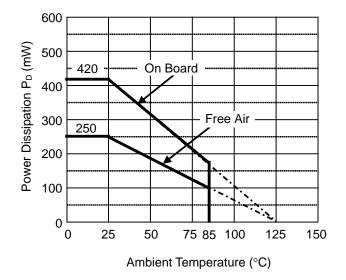
SC-88A Package Dimensions (Unit: mm)

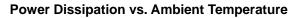
POWER DISSIPATION

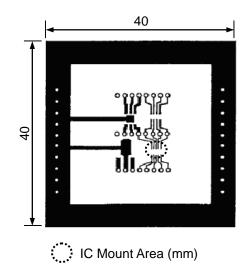
SOT-23-5

Ver. A

Power Dissipation (P_D) depends on conditions of mounting on board. This specification is based on the measurement at the condition below (Power Dissipation (SOT-23-5) is substitution of SOT-23-6).

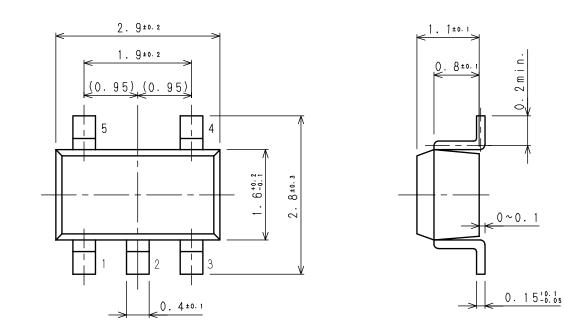

Measurement Conditions

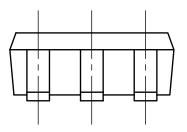

	Standard Test Land Pattern
Environment	Mounting on Board (Wind velocity = 0 m/s)
Board Material	Glass cloth epoxy plastic (Double-Sided Board)
Board Dimensions	40 mm x 40 mm x 1.6 mm
Copper Ratio	Top side: 50%, Back side: 50%
Through-holes	φ 0.5 mm x 44 pcs


Measurement Result

(Ta = 25°C, Tjmax = 125°C)

	Standard Land Pattern	Free Air
Power Dissipation	420 mW	250 mW
Thermal Resistance	θja = (125 - 25°C) / 0.42 W= 238°C/W	400°C/W





Measurement Board Pattern

SOT-23-5

Ver. A

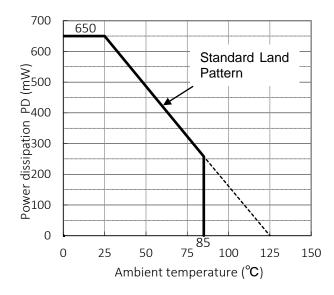
SOT-23-5 Package Dimensions (Unit: mm)

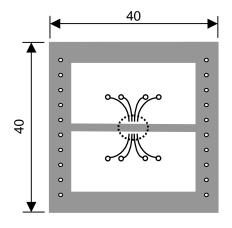
POWER DISSIPATION

DFN1212-5

Ver. A

The power dissipation of the package is dependent on PCB material, layout, and environmental conditions. The following conditions are used in this measurement.


Measurement Conditions

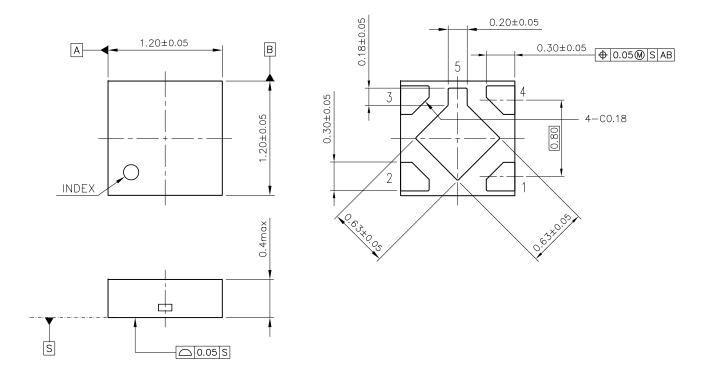

Standard Land Pattern		
Environment	Mounting on Board (Wind Velocity = 0 m/s)	
Board Material	Glass Cloth Epoxy Plastic (Two-Layer Boards)	
Board Dimensions	40 mm x 40 mm x 1.6 mm	
Copper Ratio	Font-side, Approx. 50% Back-side, Approx. 50%	
Through-holes	φ 0.5 mm x 28 pcs	

Measurement Result

(Ta = 25°C, Tjmax = 125°C)

	Standard Land Pattern
Power Dissipation	650 mW
Thermal Resistance	θja = (125 - 25°C) / 0.65 W = 153°C/W θjc = 30°C/W

() IC Mount Area (mm)


Power Dissipation vs. Ambient Temperature

Measurement Board Pattern

PACKAGE DIMENSIONS

DFN1212-5

Ver. A

DFN1212-5 Package Dimensions (Unit: mm)

- 1. The products and the product specifications described in this document are subject to change or discontinuation of production without notice for reasons such as improvement. Therefore, before deciding to use the products, please refer to Ricoh sales representatives for the latest information thereon.
- 2. The materials in this document may not be copied or otherwise reproduced in whole or in part without prior written consent of Ricoh.
- 3. Please be sure to take any necessary formalities under relevant laws or regulations before exporting or otherwise taking out of your country the products or the technical information described herein.
- 4. The technical information described in this document shows typical characteristics of and example application circuits for the products. The release of such information is not to be construed as a warranty of or a grant of license under Ricoh's or any third party's intellectual property rights or any other rights.
- 5. The products listed in this document are intended and designed for use as general electronic components in standard applications (office equipment, telecommunication equipment, measuring instruments, consumer electronic products, amusement equipment etc.). Those customers intending to use a product in an application requiring extreme quality and reliability, for example, in a highly specific application where the failure or misoperation of the product could result in human injury or death (aircraft, spacevehicle, nuclear reactor control system, traffic control system, automotive and transportation equipment, combustion equipment, safety devices, life support system etc.) should first contact us.
- 6. We are making our continuous effort to improve the quality and reliability of our products, but semiconductor products are likely to fail with certain probability. In order to prevent any injury to persons or damages to property resulting from such failure, customers should be careful enough to incorporate safety measures in their design, such as redundancy feature, fire containment feature and fail-safe feature. We do not assume any liability or responsibility for any loss or damage arising from misuse or inappropriate use of the products.
- 7. Anti-radiation design is not implemented in the products described in this document.
- 8. The X-ray exposure can influence functions and characteristics of the products. Confirm the product functions and characteristics in the evaluation stage.
- 9. WLCSP products should be used in light shielded environments. The light exposure can influence functions and characteristics of the products under operation or storage.
- 10. There can be variation in the marking when different AOI (Automated Optical Inspection) equipment is used. In the case of recognizing the marking characteristic with AOI, please contact Ricoh sales or our distributor before attempting to use AOL
- 11. Please contact Ricoh sales representatives should you have any questions or comments concerning the products or the technical information.

<u>/</u>

Ricoh is committed to reducing the environmental loading materials in electrical devices with a view to contributing to the protection of human health and the environment. Ricoh has been providing RoHS compliant products since April 1, 2006 and Halogen-free products since April 1, 2012.

RICOH RICOH ELECTRONIC DEVICES CO., LTD.

http://www.e-devices.ricoh.co.jp/en/

Sales & Support Offices

RICOH ELECTRONIC DEVICES CO., LTD. Higashi-Shinagawa Office (International Sales) 3-32-3, Higashi-Shinagawa, Shinagawa-ku, Tokyo 140-8655, Japan Phone: +81-3-5479-2857 Fax: +81-3-5479-0502

RICOH EUROPE (NETHERLANDS) B.V. Semiconductor Support Centre Prof. W.H. Keesomlaan 1, 1183 DJ Amstelveen, The Netherlands Phone: +31-20-5474-309

RICOH INTERNATIONAL B.V. - German Branch Semiconductor Sales and Support Centre Oberrather Strasse 6, 40472 Düsseldorf, Germany Phone: +49-211-6546-0

RICOH ELECTRONIC DEVICES KOREA CO., LTD. 3F, Haesung Bldg, 504, Teheran-ro, Gangnam-gu, Se Phone: +82-2-2135-5700 Fax: +82-2-2051-5713

RICOH ELECTRONIC DEVICES SHANGHAI CO., LTD. Room 403, No.2 Building, No.690 Bibo Road, Pu Dong New District, Shanghai 201203, People's Republic of China

Phone: +86-21-5027-3200 Fax: +86-21-5027-3299

RICOH ELECTRONIC DEVICES CO., LTD.

 Taipei office

 Room 109, 10F-1, No.51, Hengyang Rd., Taipei City, Taiwan (R.O.C.)

 Phone: +886-2-2313-1621/1622

 Fax: +886-2-2313-1621/1622