NTD5C446N

MOSFET - Power, Single, N-Channel

40 V, $3.5 \mathrm{~m} \Omega, 110$ A

Features

- Low $\mathrm{R}_{\mathrm{DS}(\mathrm{on})}$ to Minimize Conduction Losses
- Low Q_{G} and Capacitance to Minimize Driver Losses
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

MAXIMUM RATINGS $\left(T_{J}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Parameter			Symbol	Value	Unit
Drain-to-Source Voltage			$\mathrm{V}_{\text {DSS }}$	40	V
Gate-to-Source Voltage			V_{GS}	± 20	V
Continuous Drain Current $\mathrm{R}_{\text {өJC }}$ (Notes 1 \& 3)	Steady State	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	I_{D}	110	A
		$\mathrm{T}_{\mathrm{C}}=100^{\circ} \mathrm{C}$		75	
Power Dissipation $\mathrm{R}_{\text {өJC }}$ (Note 1)		$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	P_{D}	66	W
		$\mathrm{T}_{\mathrm{C}}=100^{\circ} \mathrm{C}$		33	
Continuous Drain Current $\mathrm{R}_{\theta \mathrm{JA}}$ (Notes 1, 2 \& 3)	Steady State	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$I_{\text {D }}$	27	A
		$\mathrm{T}_{\mathrm{A}}=100^{\circ} \mathrm{C}$		19	
Power Dissipation R 日JA (Notes 1 \& 2)		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	P_{D}	4.3	W
		$\mathrm{T}_{\mathrm{A}}=100^{\circ} \mathrm{C}$		2.1	
Pulsed Drain Current	$\mathrm{T}_{\mathrm{A}}=25$	C, $\mathrm{t}_{\mathrm{p}}=10 \mu \mathrm{~s}$	IDM	620	A
Operating Junction and Storage Temperature			$\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\text {stg }}$	$\begin{gathered} -55 \text { to } \\ 175 \end{gathered}$	${ }^{\circ} \mathrm{C}$
Source Current (Body Diode)			Is	73	A
Single Pulse Drain-to-Source Avalanche Energy ($\mathrm{L}_{\mathrm{L}(\mathrm{pk})}=11 \mathrm{~A}$)			$\mathrm{E}_{\text {AS }}$	214	mJ
Lead Temperature for Soldering Purposes ($1 / 8^{\prime \prime}$ from case for 10 s)			T_{L}	260	${ }^{\circ} \mathrm{C}$

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.
THERMAL RESISTANCE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Junction-to-Case (Drain) (Note 1)	$\mathrm{R}_{\text {өJC }}$	2.3	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Junction-to-Ambient - Steady State (Note 2)	$\mathrm{R}_{\text {日JA }}$	35	

1. The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.
2. Surface-mounted on FR4 board using a $650 \mathrm{~mm}^{2}, 2 \mathrm{oz}$. Cu pad.
3. Maximum current for pulses as long as 1 second is higher but is dependent on pulse duration and duty cycle.

ON Semiconductor ${ }^{\text {® }}$
www.onsemi.com

$\mathbf{V}_{\text {(BR)DSS }}$	$\mathbf{R}_{\mathbf{D S} \text { (on) }}$	$\mathbf{I}_{\mathbf{D}}$
40 V	$3.5 \mathrm{~m} \Omega @ 10 \mathrm{~V}$	110 A

N-CHANNEL MOSFET
CASE 369C
STYLE 2

MARKING DIAGRAM \& PIN ASSIGNMENT

A = Assembly Location
Y = Year
WW = Work Week
5C446N = Device Code
$\mathrm{G} \quad=\mathrm{Pb}-$ Free Package

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet.

NTD5C446N

ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Parameter	Symbol	Test Condition		Min	Typ	Max	Unit
OFF CHARACTERISTICS							
Drain-to-Source Breakdown Voltage	$\mathrm{V}_{\text {(BR) }{ }^{\text {dss }}}$	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$		40			V
Drain-to-Source Breakdown Voltage Temperature Coefficient					19		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Zero Gate Voltage Drain Current	$\mathrm{I}_{\text {DSS }}$	$\mathrm{s}=0 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$			10	$\mu \mathrm{A}$
		$V_{\text {DS }}=40 \mathrm{~V}$	$\mathrm{T}_{J}=125^{\circ} \mathrm{C}$			250	
Gate-to-Source Leakage Current	IGSS	$\mathrm{V}_{\mathrm{DS}}=0 \mathrm{~V}$,	$=20 \mathrm{~V}$			100	nA

ON CHARACTERISTICS (Note 4)

Gate Threshold Voltage	$\mathrm{V}_{\mathrm{GS}(\mathrm{TH})}$	$\mathrm{V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{DS}}, \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$	2.0		4.0	V
Negative Threshold Temperature Coefficient	$\mathrm{V}_{\mathrm{GS}(\mathrm{TH})} / \mathrm{T}_{\mathrm{J}}$			7.5		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Drain-to-Source On Resistance	$\mathrm{R}_{\mathrm{DS}(\mathrm{on})}$	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=50 \mathrm{~A}$		2.9	3.5	$\mathrm{~m} \Omega$
Forward Transconductance	g_{FS}	$\mathrm{V}_{\mathrm{DS}}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=50 \mathrm{~A}$		100		S

CHARGES, CAPACITANCES AND GATE RESISTANCES

Input Capacitance	$\mathrm{C}_{\text {iss }}$	$\begin{gathered} \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{f}=1.0 \mathrm{MHz}, \\ \mathrm{~V}_{\mathrm{DS}}=20 \mathrm{~V} \end{gathered}$	2300	pF
Output Capacitance	$\mathrm{C}_{\text {oss }}$		1200	
Reverse Transfer Capacitance	$\mathrm{C}_{\text {rss }}$		46	
Total Gate Charge	$\mathrm{Q}_{\mathrm{G} \text { (TOT) }}$	$\begin{gathered} V_{G S}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=20 \mathrm{~V}, \\ \mathrm{I}_{\mathrm{D}}=50 \mathrm{~A} \end{gathered}$	34.3	nC
Threshold Gate Charge	$\mathrm{Q}_{\mathrm{G}(\mathrm{TH})}$		5.0	
Gate-to-Source Charge	$Q_{G S}$		12.2	
Gate-to-Drain Charge	$Q_{G D}$		5.8	
Plateau Voltage	$\mathrm{V}_{\text {GP }}$		7.2	V

SWITCHING CHARACTERISTICS (Note 5)

Turn-On Delay Time	$\mathrm{t}_{\mathrm{d} \text { (on) }}$	$\begin{gathered} \mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=20 \mathrm{~V}, \\ \mathrm{I}_{\mathrm{D}}=50 \mathrm{~A}, \mathrm{R}_{\mathrm{G}}=2.5 \Omega \end{gathered}$	20	ns
Rise Time	t_{r}		62	
Turn-Off Delay Time	$\mathrm{t}_{\text {d(off) }}$		43	
Fall Time	t_{f}		17	

DRAIN-SOURCE DIODE CHARACTERISTICS

Forward Diode Voltage	$\mathrm{V}_{\text {SD }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{S}}=50 \mathrm{~A} \end{aligned}$	$\mathrm{T}_{J}=25^{\circ} \mathrm{C}$	0.9	1.2	V
			$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$	0.8		
Reverse Recovery Time	t_{RR}	$\begin{gathered} \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{dl}_{\mathrm{S}} / \mathrm{dt}=100 \mathrm{~A} / \mathrm{us}, \\ \mathrm{I}_{\mathrm{S}}=50 \mathrm{~A} \end{gathered}$		46		ns
Charge Time	ta			23		
Discharge Time	tb			23		
Reverse Recovery Charge	$\mathrm{Q}_{\text {RR }}$			40		nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
4. Pulse Test: Pulse Width $\leq 300 \mu \mathrm{~s}$, Duty Cycle $\leq 2 \%$.
5. Switching characteristics are independent of operating junction temperatures.

NTD5C446N

TYPICAL CHARACTERISTICS

Figure 1. On-Region Characteristics

Figure 3. On-Resistance vs. Gate-to-Source Voltage

Figure 5. On-Resistance Variation with Temperature

Figure 2. Transfer Characteristics

Figure 4. On-Resistance vs. Drain Current and Gate Voltage

Figure 6. Drain-to-Source Leakage Current vs. Voltage

NTD5C446N

TYPICAL CHARACTERISTICS

Figure 7. Capacitance Variation

Figure 9. Resistive Switching Time Variation vs. Gate Resistance

Figure 11. Maximum Rated Forward Biased Safe Operating Area

Figure 8. Gate-to-Source vs. Total Charge

Figure 10. Diode Forward Voltage vs. Current

Figure 12. IPEAK vs. Time in Avalanche

NTD5C446N

TYPICAL CHARACTERISTICS

Figure 13. Thermal Characteristics

ORDERING INFORMATION

Order Number	Package	Shipping †
NTD5C446NT4G	DPAK	$2500 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

NTD5C446N

PACKAGE DIMENSIONS

DPAK (SINGLE GAUGE)
 CASE 369C
 ISSUE F

NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994
2. CONTROLLING DIMENSION: INCHES
3. THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSIONS b3, L3 and Z.
4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.006 INCHES PER SIDE
5. DIMENSIONS D AND E ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY
6. DATUMS A AND B ARE DETERMINED AT DATUM PLANE H.
7. OPTIONAL MOLD FEATURE

	INCHES		MILLIMETERS			
DIM	MIN	MAX	MIN	MAX		
A	0.086	0.094	2.18	2.38		
A1	0.000	0.005	0.00	0.13		
b	0.025	0.035	0.63	0.89		
b2	0.028	0.045	0.72	1.14		
b3	0.180	0.215	4.57	5.46		
c	0.018	0.024	0.46	0.61		
c2	0.018	0.024	0.46	0.61		
D	0.235	0.245	5.97			
E	0.250	0.265	6.22			
e	0.090		BSC	2.29		BSC
H	0.370	0.410	9.40			
10.41						
L	0.055	0.070	1.40			
L1	0.114		REF	2.90		REF
L2	0.020		BSC	0.51		BSC
L3	0.035	0.050	0.89			
L4	---		1.27			
Z	0.155	0.040	---			

STYLE 2:
PIN 1. GATE
2. DRAIN

*For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

Abstract

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA
Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your loca Sales Representative

