Datasheet

PART NUMBER
 TS80C186EA-20-ROC

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All re-creations are done with the approval of the Original Component Manufacturer. (OCM)

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-38535
- Class Q Military
- Class V Space Level

Qualified Suppliers List of Distributors (QSLD)

- Rochester is a critical supplier to DLA and meets all industry and DLA standards.
Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OCM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

80C186EA/80C188EA AND 80L186EA/80L188EA 16-BIT HIGH-INTEGRATION EMBEDDED PROCESSORS

■ 80C186 Upgrade for Power Critical Applications
 - Fully Static Operation
 ■ True CMOS Inputs and Outputs

■ Integrated Feature Set

- Static 186 CPU Core
- Power Save, Idle and Powerdown Modes
- Clock Generator
- 2 Independent DMA Channels
- 3 Programmable 16-Bit Timers
- Dynamic RAM Refresh Control Unit
- Programmable Memory and Peripheral Chip Select Logic
- Programmable Wait State Generator
- Local Bus Controller
- System-Level Testing Support (High Impedance Test Mode)
- Speed Versions Available (5V):
- 25 MHz (80C186EA25/80C188EA25)
- 20 MHz (80C186EA20/80C188EA20)
- 13 MHz (80C186EA13/80C188EA13)

■ Speed Versions Available (3V):

- 13 MHz (80L186EA13/80L188EA13)
- 8 MHz (80L186EA8/80L188EA8)
- Direct Addressing Capability to 1 Mbyte Memory and 64 Kbyte I/O
- Supports 80C187 Numeric Coprocessor Interface (80C186EA only)
■ Available in the Following Packages: -68-Pin Plastic Leaded Chip Carrier (PLCC)
- 80-Pin EIAJ Quad Flat Pack (QFP)
- 80-Pin Shrink Quad Flat Pack (SQFP)

■ Available in Extended Temperature Range ($-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$)

The 80 C 186 EA is a CHMOS high integration embedded microprocessor. The 80C186EA includes all of the features of an "Enhanced Mode" 80C186 while adding the additional capabilities of Idle and Powerdown Modes. In Numerics Mode, the 80C186EA interfaces directly with an 80C187 Numerics Coprocessor.

80C186EA/80C188EA AND 80L186EA/80L188EA 16-Bit High Integration Embedded Processor
 CONTENTS
 PAGE PAGE
 CONTENTS

INTRODUCTION4
80C186EA CORE ARCHITECTURE 4
Bus Interface Unit 4
Clock Generator 4
80C186EA PERIPHERAL ARCHITECTURE 5
Interrupt Control Unit 5
Timer/Counter Unit 5
DMA Control Unit 7
Chip-Select Unit 7
Refresh Control Unit 7
Power Management 7
80C187 Interface (80C186EA Only) 8
ONCE Test Mode 8
DIFFERENCES BETWEEN THE 80C186XL AND THE 80C186EA 8
Pinout Compatibility 8
Operating Modes 8
TTL vs CMOS Inputs 8
Timing Specifications 8
PACKAGE INFORMATION 9
Prefix Identification 9
Pin Descriptions 9
80C186EA Pinout 15
PACKAGE THERMAL SPECIFICATIONS 20
ELECTRICAL SPECIFICATIONS 21
Absolute Maximum Ratings 21
Recommended Connections 21
DC SPECIFICATIONS 22
ICC versus Frequency and Voltage 24
PDTMR Pin Delay Calculation 24
AC SPECIFICATIONS 25
AC Characteristics—80C186EA20/13 25
AC Characteristics-80L186EA13/8 27
Relative Timings 29
AC TEST CONDITIONS 30
AC TIMING WAVEFORMS 30
DERATING CURVES 33
RESET 33
BUS CYCLE WAVEFORMS 36
EXECUTION TIMINGS 43
INSTRUCTION SET SUMMARY 44
REVISION HISTORY 50
ERRATA 50

Figure 1. 80C186EA/80C188EA Block Diagram

INTRODUCTION

Unless specifically noted, all references to the 80C186EA apply to the 80C188EA, 80L186EA, and 80L188EA. References to pins that differ between the 80C186EA/80L186EA and the 80C188EA/ 80L188EA are given in parentheses. The " L " in the part number denotes low voltage operation. Physically and functionally, the " C " and " L " devices are identical.

The 80C186EA is the second product in a new generation of low-power, high-integration microprocessors. It enhances the existing 80C186XL family by offering new features and operating modes. The 80C186EA is object code compatible with the 80C186XL embedded processor.

The 80L186EA is the 3 V version of the 80C186EA. The 80L186EA is functionally identical to the 80C186EA embedded processor. Current 80C186EA customers can easily upgrade their designs to use the 80L186EA and benefit from the reduced power consumption inherent in 3 V operation.

The feature set of the 80C186EA/80L186EA meets the needs of low-power, space-critical applications. Low-power applications benefit from the static design of the CPU core and the integrated peripherals as well as low voltage operation. Minimum current consumption is achieved by providing a Powerdown Mode that halts operation of the device, and freezes the clock circuits. Peripheral design enhancements ensure that non-initialized peripherals consume little current.

Space-critical applications benefit from the integration of commonly used system peripherals. Two flexible DMA channels perform CPU-independent data transfers. A flexible chip select unit simplifies memory and peripheral interfacing. The interrupt unit provides sources for up to 128 external interrupts and will prioritize these interrupts with those generated from the on-chip peripherals. Three general purpose timer/counters round out the feature set of the 80C186EA.

Figure 1 shows a block diagram of the 80C186EA/ 80C188EA. The Execution Unit (EU) is an enhanced 8086 CPU core that includes: dedicated hardware to speed up effective address calculations, enhance execution speed for multiple-bit shift and rotate instructions and for multiply and divide instructions, string move instructions that operate at full bus bandwidth, ten new instructions, and static operation. The Bus Interface Unit (BIU) is the same as that found on the original 80C186 family products. An independent internal bus is used to allow communication between the BIU and internal peripherals.

80C186EA CORE ARCHITECTURE

Bus Interface Unit

The 80C186EA core incorporates a bus controller that generates local bus control signals. In addition, it employs a HOLD/HLDA protocol to share the local bus with other bus masters.

The bus controller is responsible for generating 20 bits of address, read and write strobes, bus cycle status information and data (for write operations) information. It is also responsible for reading data off the local bus during a read operation. SRDY and ARDY input pins are provided to extend a bus cycle beyond the minimum four states (clocks).

The local bus controller also generates two control signals ($\overline{\mathrm{DEN}}$ and $\mathrm{DT} / \overline{\mathrm{R}}$) when interfacing to external transceiver chips. This capability allows the addition of transceivers for simple buffering of the mulitplexed address/data bus.

Clock Generator

The processor provides an on-chip clock generator for both internal and external clock generation. The clock generator features a crystal oscillator, a divide-by-two counter, and two low-power operating modes.

The oscillator circuit is designed to be used with either a parallel resonant fundamental or third-overtone mode crystal network. Alternatively, the oscillator circuit may be driven from an external clock source. Figure 2 shows the various operating modes of the oscillator circuit.

The crystal or clock frequency chosen must be twice the required processor operating frequency due to the internal divide-by-two counter. This counter is used to drive all internal phase clocks and the external CLKOUT signal. CLKOUT is a 50% duty cycle processor clock and can be used to drive other system components. All AC timings are referenced to CLKOUT.

The following parameters are recommended when choosing a crystal:

Temperature Range: Application Specific
ESR (Equivalent Series Resistance): $\quad 60 \Omega$ max C0 (Shunt Capacitance of Crystal): $\quad 7.0 \mathrm{pF}$ max C_{L} (Load Capacitance): $\quad 20 \mathrm{pF} \pm 2 \mathrm{pF}$ Drive Level: 2 mW max

(A) Crystal Connection

272432-3
(B) Clock Connection

NOTE:
The $L_{1} C_{1}$ network is only required when using a third-overtone crystal.
Figure 2. Clock Configurations

80C186EA PERIPHERAL ARCHITECTURE

The 80C186EA has integrated several common system peripherals with a CPU core to create a compact, yet powerful system. The integrated peripherals are designed to be flexible and provide logical interconnections between supporting units (e.g., the interrupt control unit supports interrupt requests from the timer/counters or DMA channels).

The list of integrated peripherals include:

- 4-Input Interrupt Control Unit
- 3-Channel Timer/Counter Unit
- 2-Channel DMA Unit
- 13-Output Chip-Select Unit
- Refresh Control Unit
- Power Management logic

The registers associated with each integrated periheral are contained within a 128×16 register file called the Peripheral Control Block (PCB). The PCB can be located in either memory or I/O space on any 256 byte address boundary.

Figure 3 provides a list of the registers associated with the PCB when the processor's Interrupt Control Unit is in Master Mode. In Slave Mode, the definitions of some registers change. Figure 4 provides register definitions specific to Slave Mode.

Interrupt Control Unit

The 80C186EA can receive interrupts from a number of sources, both internal and external. The Interrupt Control Unit (ICU) serves to merge these requests on a priority basis, for individual service by the CPU. Each interrupt source can be independently masked by the Interrupt Control Unit or all interrupts can be globally masked by the CPU.

Internal interrupt sources include the Timers and DMA channels. External interrupt sources come from the four input pins INT3:0. The NMI interrupt pin is not controlled by the ICU and is passed directly to the CPU. Although the timers only have one request input to the ICU, separate vector types are generated to service individual interrupts within the Timer Unit.

Timer/Counter Unit

The 80C186EA Timer/Counter Unit (TCU) provides three 16-bit programmable timers. Two of these are highly flexible and are connected to external pins for control or clocking. A third timer is not connected to any external pins and can only be clocked internally. However, it can be used to clock the other two timer channels. The TCU can be used to count external events, time external events, generate non-repetitive waveforms, generate timed interrupts, etc.

PCB Offset	Function
00H	Reserved
02H	Reserved
04H	Reserved
06H	Reserved
08H	Reserved
OAH	Reserved
OCH	Reserved
OEH	Reserved
10H	Reserved
12 H	Reserved
14H	Reserved
16H	Reserved
18H	Reserved
1AH	Reserved
1 CH	Reserved
1EH	Reserved
20 H	Reserved
22 H	End of Interrupt
24H	Poll
26 H	Poll Status
28 H	Interrupt Mask
2AH	Priority Mask
2 CH	In-Service
2EH	Interrupt Request
30 H	Interrupt Status
32H	Timer Control
34H	DMAO Int. Control
36 H	DMA1 Int. Control
38 H	INT0 Control
3AH	INT1 Control
3CH	INT2 Control
3EH	INT3 Control

PCB Offset	Function	PCB Offset	Function
40 H	Reserved	80 H	Reserved
42H	Reserved	82H	Reserved
44H	Reserved	84H	Reserved
46 H	Reserved	86 H	Reserved
48 H	Reserved	88 H	Reserved
4AH	Reserved	8AH	Reserved
4 CH	Reserved	8CH	Reserved
4EH	Reserved	8EH	Reserved
50 H	Timer 0 Count	90 H	Reserved
52H	Timer 0 Compare A	92H	Reserved
54H	Timer 0 Compare B	94H	Reserved
56 H	Timer 0 Control	96 H	Reserved
58 H	Timer 1 Count	98H	Reserved
5AH	Timer 1 Compare A	9 AH	Reserved
5CH	Timer 1 Compare B	9 CH	Reserved
5EH	Timer 1 Control	9EH	Reserved
60 H	Timer 2 Count	AOH	UMCS
62H	Timer 2 Compare	A2H	LMCS
64H	Reserved	A4H	PACS
66H	Timer 2 Control	A6H	MMCS
68H	Reserved	A8H	MPCS
6AH	Reserved	AAH	Reserved
6 CH	Reserved	ACH	Reserved
6EH	Reserved	AEH	Reserved
70 H	Reserved	BOH	Reserved
72H	Reserved	B2H	Reserved
74H	Reserved	B4H	Reserved
76H	Reserved	B6H	Reserved
78H	Reserved	B8H	Reserved
7AH	Reserved	BAH	Reserved
7CH	Reserved	BCH	Reserved
7EH	Reserved	BEH	Reserved

$\begin{aligned} & \text { PCB } \\ & \text { Offset } \end{aligned}$	Function
COH	DMAO Src. Lo
C 2 H	DMAO Src. Hi
C4H	DMAO Dest. Lo
C6H	DMAO Dest. Hi
C8H	DMAO Count
CAH	DMAO Control
CCH	Reserved
CEH	Reserved
DOH	DMA1 Src. Lo
D2H	DMA1 Src. Hi
D4H	DMA1 Dest. Lo
D6H	DMA1 Dest. Hi
D8H	DMA1 Count
DAH	DMA1 Control
DCH	Reserved
DEH	Reserved
EOH	Refresh Base
E2H	Refresh Time
E4H	Refresh Control
E6H	Reserved
E8H	Reserved
EAH	Reserved
ECH	Reserved
EEH	Reserved
FOH	Power-Save
F2H	Power Control
F4H	Reserved
F6H	Step ID
F8H	Reserved
FAH	Reserved
FCH	Reserved
FEH	Relocation

Figure 3. Peripheral Control Block Registers

PCB Offset	Function
20 H	Interrupt Vector
22 H	Specific EOI
24 H	Reserved
26 H	Reserved
28 H	Interrupt Mask
2 AH	Priority Mask
2 C	In-Service
2 E	Interrupt Request
30	Interrupt Status
32	DMA0 Interrupt Control
34	DMA1 Interrupt Control Control
36	TMR1 Interrupt Control
38	TMR2 Interrupt Control
3 A	Reserved
3 C	Reserved
3 E	

Figure 4. 80C186EA Slave Mode Peripheral Control Block Registers

DMA Control Unit

The 80C186EA DMA Contol Unit provides two independent high-speed DMA channels. Data transfers can occur between memory and I/O space in any combination: memory to memory, memory to I/O, I/O to I/O or I/O to memory. Data can be transferred either in bytes or words. Transfers may proceed to or from either even or odd addresses, but even-aligned word transfers proceed at a faster rate. Each data transfer consumes two bus cycles (a minimum of eight clocks), one cycle to fetch data and the other to store data. The chip-select/ready logic may be programmed to point to the memory or 1/O space subject to DMA transfers in order to provide hardware chip select lines. DMA cycles run at higher priority than general processor execution cycles.

Chip-Select Unit

The 80C186EA Chip-Select Unit integrates logic which provides up to 13 programmable chip-selects to access both memories and peripherals. In addition, each chip-select can be programmed to automatically terminate a bus cycle independent of the condition of the SRDY and ARDY input pins. The chip-select lines are available for all memory and I/O bus cycles, whether they are generated by the CPU, the DMA unit, or the Refresh Control Unit.

Refresh Control Unit

The Refresh Control Unit (RCU) automatically generates a periodic memory read bus cycle to keep dynamic or pseudo-static memory refreshed. A 9-bit counter controls the number of clocks between refresh requests.

A 9-bit address generator is maintained by the RCU with the address presented on the A9:1 address lines during the refresh bus cycle. Address bits A19:13 are programmable to allow the refresh address block to be located on any 8 Kbyte boundary.

Power Management

The 80C186EA has three operational modes to control the power consumption of the device. They are Power Save Mode, Idle Mode, and Powerdown Mode.

Power Save Mode divides the processor clock by a programmable value to take advantage of the fact that current is linearly proportional to frequency. An unmasked interrupt, NMI, or reset will cause the 80C186EA to exit Power Save Mode.

Idle Mode freezes the clocks of the Execution Unit and the Bus Interface Unit at a logic zero state while all peripherals operate normally.

Powerdown Mode freezes all internal clocks at a logic zero level and disables the crystal oscillator. All internal registers hold their values provided V_{CC} is maintained. Current consumption is reduced to transistor leakage only.

80C187 Interface (80C186EA Only)

The 80C187 Numerics Coprocessor may be used to extend the 80C186EA instruction set to include floating point and advanced integer instructions. Connecting the 80C186EA RESOUT and TEST/ BUSY pins to the 80C187 enables Numerics Mode operation. In Numerics Mode, three of the four MidRange Chip Select (MCS) pins become handshaking pins for the interface. The exchange of data and control information proceeds through four dedicated I/O ports.

If an 80C187 is not present, the 80C186EA configures itself for regular operation at reset.

NOTE:

The 80 C 187 is not specified for 3 V operation and therefore does not interface directly to the 80L186EA.

ONCE Test Mode

To facilitate testing and inspection of devices when fixed into a target system, the 80C186EA has a test mode available which forces all output and input/ output pins to be placed in the high-impedance state. ONCE stands for "ON Circuit Emulation". The ONCE mode is selected by forcing the UCS and $\overline{\mathrm{LCS}}$ pins LOW (0) during a processor reset (these pins are weakly held to a HIGH (1) level) while RESIN is active.

DIFFERENCES BETWEEN THE 80C186XL AND THE 80C186EA

The 80C186EA is intended as a direct functional upgrade for 80C186XL designs. In many cases, it will be possible to replace an existing 80C186XL with little or no hardware redesign. The following sections describe differences in pinout, operating modes, and AC and DC specifications to keep in mind.

Pinout Compatibility

The 80C186EA requires a PDTMR pin to time the processor's exit from Powerdown Mode. The original pin arrangement for the 80C186XL in the PLCC package did not have any spare leads to use for PDTMR, so the DT/ \bar{R} pin was sacrificed. The arrangement of all the other leads in the 68-lead PLCC is identical between the 80 C 186 XL and the 80C186EA. DT/R may be synthesized by latching the $\overline{\mathrm{S} 1}$ status output. Therefore, upgrading a PLCC 80C186XL to PLCC 80C186EA is straightforward.

The 80-lead QFP (EIAJ) pinouts are different between the 80C186XL and the 80C186EA. In addition to the PDTMR pin, the 80C186EA has more power and ground pins and the overall arrangement of pins was shifted. A new circuit board layout for the 80C186EA is required.

Operating Modes

The 80C186XL has two operating modes, Compatible and Enhanced. Compatible Mode is a pin-to-pin replacement for the NMOS 80186, except for numerics coprocessing. In Enhanced Mode, the processor has a Refresh Control Unit, the Power-Save feature and an interface to the 80C187 Numerics Coprocessor. The $\overline{\mathrm{MCSO}}, \overline{\mathrm{MCS} 1}$, and $\overline{\mathrm{MCS3}}$ pins change their functions to constitute handshaking pins for the 80C187.

The 80C186EA allows all non-80C187 users to use all the $\overline{\mathrm{MCS}}$ pins for chip-selects. In regular operation, all 80C186EA features (including those of the Enhanced Mode 80C186) are present except for the interface to the 80C187. Numerics Mode disables the three chip-select pins and reconfigures them for connection to the 80 C 187 .

TTL vs CMOS Inputs

The inputs of the 80C186EA are rated for CMOS switching levels for improved noise immunity, but the 80C186XL inputs are rated for TTL switching levels. In particular, the 80C186EA requires a minimum V_{IH} of 3.5 V to recognize a logic one while the 80 C 186 XL requires a minimum V_{IH} of only 1.9 V (assuming 5.0 V operation). The solution is to drive the 80C186EA with true CMOS devices, such as those from the HC and AC logic families, or to use pullup resistors where the added current draw is not a problem.

Timing Specifications

80C186EA timing relationships are expressed in a simplified format over the 80C186XL. The AC performance of an 80C186EA at a specified frequency will be very close to that of an 80C186XL at the same frequency. Check the timings applicable to your design prior to replacing the 80C186XL.

PACKAGE INFORMATION

This section describes the pins, pinouts, and thermal characteristics for the 80C186EA in the Plastic Leaded Chip Carrier (PLCC) package, Shrink Quad Flat Pack (SQFP), and Quad Flat Pack (QFP) package. For complete package specifications and information, see the Intel Packaging Outlines and Dimensions Guide (Order Number: 231369).

With the extended temperature range operational characteristics are guaranteed over a temperature range corresponding to $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ ambient. Package types are identified by a two-letter prefix to the part number. The prefixes are listed in Table 1.

Table 1. Prefix Identification

Prefix	Note	Package Type	Temperature Range
TN		PLCC	Extended
TS		QFP (EIAJ)	Extended
SB	1	SQFP	Extended/Commercial
N	1	PLCC	Commercial
S	1	QFP (EIAJ)	Commercial

NOTE:

1. The 25 MHz version is only available in commercial temperature range corresponding to $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ ambient.

Pin Descriptions

Each pin or logical set of pins is described in Table 3. There are three columns for each entry in the Pin Description Table.

The Pin Name column contains a mnemonic that describes the pin function. Negation of the signal name (for example, $\overline{\mathrm{RESIN}}$) denotes a signal that is active low.

The Pin Type column contains two kinds of information. The first symbol indicates whether a pin is power (P), ground (G), input only (I), output only (O) or
input/output (I/O). Some pins have multiplexed functions (for example, A19/S6). Additional symbols indicate additional characteristics for each pin. Table 3 lists all the possible symbols for this column.

The Input Type column indicates the type of input (asynchronous or synchronous).

Asynchronous pins require that setup and hold times be met only in order to guarantee recognition at a particular clock edge. Synchronous pins require that setup and hold times be met to guarantee proper operation. For example, missing the setup or hold time for the SRDY pin (a synchronous input) will result in a system failure or lockup. Input pins may also be edge- or level-sensitive. The possible characteristics for input pins are $S(E), S(L), A(E)$ and $A(L)$.

The Output States column indicates the output state as a function of the device operating mode. Output states are dependent upon the current activity of the processor. There are four operational states that are different from regular operation: bus hold, reset, Idle Mode and Powerdown Mode. Appropriate characteristics for these states are also indicated in this column, with the legend for all possible characteristics in Table 2.

The Pin Description column contains a text description of each pin.

As an example, consider AD15:0. I/O signifies the pins are bidirectional. $S(\mathrm{~L})$ signifies that the input function is synchronous and level-sensitive. $\mathrm{H}(\mathrm{Z})$ signifies that, as outputs, the pins are high-impedance upon acknowledgement of bus hold. $R(Z)$ signifies that the pins float during reset. $P(X)$ signifies that the pins retain their states during Powerdown Mode.

Table 2. Pin Description Nomenclature

Symbol	Description
$\begin{aligned} & \hline P \\ & G \\ & \mathrm{I} \\ & \mathrm{O} \\ & \mathrm{I} / \mathrm{O} \end{aligned}$	Power Pin (Apply $+\mathrm{V}_{\mathrm{CC}}$ Voltage) Ground (Connect to V_{SS}) Input Only Pin Output Only Pin Input/Output Pin
S(E) S(L) A(E) A(L)	Synchronous, Edge Sensitive Synchronous, Level Sensitive Asynchronous, Edge Sensitive Asynchronous, Level Sensitive
$\begin{aligned} & H(1) \\ & H(0) \\ & H(Z) \\ & H(Q) \\ & H(X) \end{aligned}$	Output Driven to V_{CC} during Bus Hold Output Driven to VSs during Bus Hold Output Floats during Bus Hold Output Remains Active during Bus Hold Output Retains Current State during Bus Hold
$\begin{aligned} & \mathrm{R}(\mathrm{WH}) \\ & \mathrm{R}(1) \\ & \mathrm{R}(0) \\ & \mathrm{R}(\mathrm{Z}) \\ & \mathrm{R}(\mathrm{Q}) \\ & \mathrm{R}(\mathrm{X}) \\ & \hline \end{aligned}$	Output Weakly Held at V_{CC} during Reset Output Driven to V_{CC} during Reset Output Driven to $\mathrm{V}_{\text {SS }}$ during Reset Output Floats during Reset Output Remains Active during Reset Output Retains Current State during Reset
I(1) I(0) I(Z) I(Q) I(X)	Output Driven to V_{CC} during Idle Mode Output Driven to V_{SS} during Idle Mode Output Floats during Idle Mode Output Remains Active during Idle Mode Output Retains Current State during Idle Mode
$\begin{aligned} & \hline P(1) \\ & P(0) \\ & P(Z) \\ & P(Q) \\ & P(X) \\ & \hline \end{aligned}$	Output Driven to V_{CC} during Powerdown Mode Output Driven to VSS during Powerdown Mode Output Floats during Powerdown Mode Output Remains Active during Powerdown Mode Output Retains Current State during Powerdown Mode

Table 3. Pin Descriptions

Pin Name	$\begin{gathered} \hline \text { Pin } \\ \text { Type } \end{gathered}$	Input Type	Output States	Description
$\mathrm{V}_{\text {cc }}$	P			POWER connections consist of six pins which must be shorted externally to a V_{CC} board plane.
$\mathrm{V}_{\text {SS }}$	G			GROUND connections consist of five pins which must be shorted externally to a V_{SS} board plane.
CLKIN	1	A(E)		CLocK INput is an input for an external clock. An external oscillator operating at two times the required processor operating frequency can be connected to CLKIN. For crystal operation, CLKIN (along with OSCOUT) are the crystal connections to an internal Pierce oscillator.
OSCOUT	0		$\begin{aligned} & \hline H(Q) \\ & R(Q) \\ & P(Q) \end{aligned}$	OSCillator OUTput is only used when using a crystal to generate the external clock. OSCOUT (along with CLKIN) are the crystal connections to an internal Pierce oscillator. This pin is not to be used as 2X clock output for non-crystal applications (i.e., this pin is N.C. for non-crystal applications). OSCOUT does not float in ONCE mode.
CLKOUT	0		$\begin{aligned} & \hline H(Q) \\ & R(Q) \\ & P(Q) \end{aligned}$	CLocK OUTput provides a timing reference for inputs and outputs of the processor, and is one-half the input clock (CLKIN) frequency. CLKOUT has a 50% duty cycle and transistions every falling edge of CLKIN.
RESIN	1	A(L)		RESet IN causes the processor to immediately terminate any bus cycle in progress and assume an initialized state. All pins will be driven to a known state, and RESOUT will also be driven active. The rising edge (low-to-high) transition synchronizes CLKOUT with CLKIN before the processor begins fetching opcodes at memory location OFFFFOH.
RESOUT	0		$\begin{aligned} & H(0) \\ & R(1) \\ & P(0) \end{aligned}$	RESet OUTput that indicates the processor is currently in the reset state. RESOUT will remain active as long as RESIN remains active. When tied to the TEST/BUSY pin, RESOUT forces the 80C186EA into Numerics Mode.
PDTMR	1/O	A(L)	$\begin{gathered} \hline \mathrm{H}(\mathrm{WH}) \\ \mathrm{R}(\mathrm{Z}) \\ \mathrm{P}(1) \end{gathered}$	Power-Down TiMeR pin (normally connected to an external capacitor) that determines the amount of time the processor waits after an exit from power down before resuming normal operation. The duration of time required will depend on the startup characteristics of the crystal oscillator.
NMI	1	A(E)		Non-Maskable Interrupt input causes a Type 2 interrupt to be serviced by the CPU. NMI is latched internally.
TEST/BUSY (TEST)	1	A(E)		TEST/BUSY is sampled upon reset to determine whether the 80C186EA is to enter Numerics Mode. In regular operation, the pin is TEST. TEST is used during the execution of the WAIT instruction to suspend CPU operation until the pin is sampled active (low). In Numerics Mode, the pin is BUSY. BUSY notifies the 80C186EA of 80C187 Numerics Coprocessor activity.
$\begin{array}{\|l} \hline \text { AD15:0 } \\ \text { (AD7:0) } \end{array}$	I/O	S(L)	$\begin{aligned} & \mathrm{H}(\mathrm{Z}) \\ & \mathrm{R}(\mathrm{Z}) \\ & \mathrm{P}(\mathrm{X}) \end{aligned}$	These pins provide a multiplexed Address and Data bus. During the address phase of the bus cycle, address bits 0 through 15 (0 through 7 on the 8 -bit bus versions) are presented on the bus and can be latched using ALE. 8 - or 16 -bit data information is transferred during the data phase of the bus cycle.

NOTE:
Pin names in parentheses apply to the 80C188EA and 80L188EA.

Table 3. Pin Descriptions (Continued)

Pin Name	Pin Type	Input Type	Output States	Description		
$\begin{aligned} & \text { A18:16 } \\ & \text { A19/S6-A16 } \\ & \text { (A19-A8) } \end{aligned}$	O		$\begin{aligned} & \hline H(Z) \\ & R(Z) \\ & P(X) \end{aligned}$	These pins provide multiplexed Address during the address phase of the bus cycle. Address bits 16 through 19 are presented on these pins and can be latched using ALE. A18:16 are driven to a logic 0 during the data phase of the bus cycle. On the 8 -bit bus versions, A15-A8 provide valid address information for the entire bus cycle. Also during the data phase, S 6 is driven to a logic 0 to indicate a CPU-initiated bus cycle or logic 1 to indicate a DMA-initiated bus cycle or a refresh cycle.		
$\overline{\text { S2:0 }}$	0		$\begin{aligned} & \hline H(Z) \\ & R(Z) \end{aligned}$	Bus cycle Status are encoded on these pins to provide bus transaction information. $\overline{\text { S2:0 }}$ are encoded as follows:		
			P (1)	$\overline{\mathrm{S} 2} \mathrm{~S}$	So	Bus Cycle Initiated
				O S 0 0 0 0 0 1 0 1 1 0 1 0 1 1 1 1	0 1 0 1 0 1 0 1	Interrupt Acknowledge Read I/O Write I/O Processor HALT Queue Instruction Fetch Read Memory Write Memory Passive (no bus activity)
ALE/QSO	0		$\begin{aligned} & \hline H(0) \\ & R(0) \\ & P(0) \end{aligned}$	Address Latch Enable output is used to strobe address information into a transparent type latch during the address phase of the bus cycle. In Queue Status Mode, QSO provides queue status information along with QS1.		
$\begin{aligned} & \hline \overline{\overline{\mathrm{BHE}}} \\ & (\overline{\mathrm{RFSH}}) \end{aligned}$	0		$\begin{aligned} & \hline \mathrm{H}(\mathrm{Z}) \\ & \mathrm{R}(\mathrm{Z}) \\ & \mathrm{P}(\mathrm{X}) \end{aligned}$	Byte High Enable output to indicate that the bus cycle in progress is transferring data over the upper half of the data bus. $\overline{B H E}$ and AO have the following logical encoding:		
				A0	$\overline{\text { BHE }}$	Encoding (For 80C186EA/80L186EA Only)
				0 0 1 1	0 1 0 1	Word Transfer Even Byte Transfer Odd Byte Transfer Refresh Operation
				On the 80C188EA/80L188EA, RFSH is asserted low to indicate a Refresh bus cycle.		
$\overline{\mathrm{RD}} / \overline{\mathrm{QSMD}}$	0		R(WH) $P(1)$	ReaD output signals that the accessed memory or I/O device must drive data information onto the data bus. Upon reset, this pin has an alternate function. As $\overline{\text { QSMD, }}$, it enables Queue Status Mode when grounded. In Queue Status Mode, the ALE/QS0 and WR/QS1 pins provide the following information about processor/instruction queue interaction:		
				QS1	QSO	Queue Operation
				0 0 1 1	0 1 1 0	No Queue Operation First Opcode Byte Fetched from the Queue Subsequent Byte Fetched from the Queue Empty the Queue

NOTE:

Pin names in parentheses apply to the 80C188EA and 80L188EA.

Table 3. Pin Descriptions (Continued)

Pin Name	$\begin{gathered} \hline \text { Pin } \\ \text { Tvpe } \end{gathered}$	Input Type	Output States	Description
$\overline{\mathrm{WR}} / \mathrm{QS} 1$	\bigcirc		$\begin{aligned} & \hline H(Z) \\ & R(Z) \\ & P(1) \end{aligned}$	WRite output signals that data available on the data bus are to be written into the accessed memory or I/O device. In Queue Status Mode, QS1 provides queue status information along with QSO.
ARDY	1	$\begin{aligned} & \hline A(L) \\ & S(L) \end{aligned}$		Asychronous ReaDY is an input to signal for the end of a bus cycle. ARDY is asynchronous on rising CLKOUT and synchronous on falling CLKOUT. ARDY or SRDY must be active to terminate any processor bus cycle, unless they are ignored due to correct programming of the Chip Select Unit.
SRDY	1	S(L)		Synchronous ReaDY is an input to signal for the end of a bus cycle. ARDY or SRDY must be active to terminate any processor bus cycle, unless they are ignored due to correct programming of the Chip Select Unit.
$\overline{\mathrm{DEN}}$	0	$\begin{aligned} & \mathrm{H}(\mathrm{Z}) \\ & \mathrm{R}(\mathrm{Z}) \\ & \mathrm{P}(1) \\ & \hline \end{aligned}$		Data ENable output to control the enable of bidirectional transceivers when buffering a system. $\overline{D E N}$ is active only when data is to be transferred on the bus.
DT/ \bar{R}	0		$\begin{aligned} & \hline H(Z) \\ & R(Z) \\ & P(X) \end{aligned}$	Data Transmit/Receive output controls the direction of a bidirectional buffer in a buffered system. DT/ \bar{R} is only available on the QFP (EIAJ) package and the SQFP package.
$\overline{\text { LOCK }}$	0		$\begin{gathered} \mathrm{H}(\mathrm{Z}) \\ \mathrm{R}(\mathrm{WH}) \\ \mathrm{P}(1) \end{gathered}$	LOCK output indicates that the bus cycle in progress is not to be interrupted. The processor will not service other bus requests (such as HOLD) while LOCK is active. This pin is configured as a weakly held high input while RESIN is active and must not be driven low.
HOLD	1	A(L)		HOLD request input to signal that an external bus master wishes to gain control of the local bus. The processor will relinquish control of the local bus between instruction boundaries not conditioned by a LOCK prefix.
HLDA	0		$\begin{aligned} & H(1) \\ & R(0) \\ & P(0) \end{aligned}$	HoLD Acknowledge output to indicate that the processor has relinquished control of the local bus. When HLDA is asserted, the processor will (or has) floated its data bus and control signals allowing another bus master to drive the signals directly.
$\overline{\text { UCS }}$	0		$\begin{aligned} & \hline H(1) \\ & R(1) \\ & P(1) \end{aligned}$	Upper Chip Select will go active whenever the address of a memory or I/O bus cycle is within the address limitations programmed by the user. After reset, UCS is configured to be active for memory accesses between OFFCOOH and OFFFFFH. During a processor reset, UCS and $\overline{\text { LCS }}$ are used to enable ONCE Mode.
$\overline{\text { LCS }}$	0		$\begin{aligned} & \hline H(1) \\ & R(1) \\ & P(1) \end{aligned}$	Lower Chip Select will go active whenever the address of a memory bus cycle is within the address limitations programmed by the user. $\overline{\text { LCS }}$ is inactive after a reset. During a processor reset, $\overline{U C S}$ and $\overline{\text { LCS }}$ are used to enable ONCE Mode.

NOTE:
Pin names in parentheses apply to the 80C188EA and 80L188EA.

Table 3. Pin Descriptions (Continued)

Pin Name	$\begin{gathered} \text { Pin } \\ \text { Type } \end{gathered}$	Input Type	Output States	Description
$\overline{M C S O} / P E R E Q$ $\overline{\text { MCS1 }} / \overline{\text { ERROR }}$ MCS2 $\overline{\mathrm{MCS}} / \overline{\mathrm{NCS}}$	I/O	A(L)	$\begin{aligned} & H(1) \\ & R(1) \\ & P(1) \end{aligned}$	These pins provide a multiplexed function. If enabled, these pins normally comprise a block of Mid-Range Chip Select outputs which will go active whenever the address of a memory bus cycle is within the address limitations programmed by the user. In Numerics Mode (80C186EA only), three of the pins become handshaking pins for the 80C187. The CoProcessor REQuest input signals that a data transfer is pending. ERROR is an input which indicates that the previous numerics coprocessor operation resulted in an exception condition. An interrupt Type 16 is generated when ERROR is sampled active at the beginning of a numerics operation. Numerics Coprocessor Select is an output signal generated when the processor accesses the 80C187.
$\overline{\text { PCS4:0 }}$	0		$\begin{aligned} & \hline H(1) \\ & R(1) \\ & P(1) \\ & \hline \end{aligned}$	Peripheral Chip Selects go active whenever the address of a memory or I/O bus cycle is within the address limitations programmed by the user.
$\begin{aligned} & \overline{\mathrm{PCS5} / \mathrm{A} 1} \\ & \overline{\mathrm{PCS6} / \mathrm{A} 2} \end{aligned}$	0		$\begin{gathered} \mathrm{H}(1) / \mathrm{H}(\mathrm{X}) \\ \mathrm{R}(1) \\ \mathrm{P}(1) \end{gathered}$	These pins provide a multiplexed function. As additional Peripheral Chip Selects, they go active whenever the address of a memory or I/O bus cycle is within the address limitations by the user. They may also be programmed to provide latched Address A2:1 signals.
$\begin{aligned} & \text { TOOUT } \\ & \text { T1OUT } \end{aligned}$	0		$\begin{aligned} & \hline H(Q) \\ & R(1) \\ & P(Q) \\ & \hline \end{aligned}$	Timer OUTput pins can be programmed to provide a single clock or continuous waveform generation, depending on the timer mode selected.
TOIN T1IN	1	$\begin{aligned} & A(L) \\ & A(E) \end{aligned}$		Timer INput is used either as clock or control signals, depending on the timer mode selected.
$\begin{aligned} & \text { DRQ0 } \\ & \text { DRQ1 } \end{aligned}$	1	A(L)		DMA ReQuest is asserted by an external request when it is prepared for a DMA transfer.
$\begin{aligned} & \text { INTO } \\ & \text { INT1/SELECT } \end{aligned}$	1	A(E,L)		Maskable INTerrupt input will cause a vector to a specific Type interrupt routine. To allow interrupt expansion, INTO and/or INT1 can be used with INTA0 and INTA1 to interface with an external slave controller. INT1 becomes SELECT when the ICU is configured for Slave Mode.
INT2/INTAO INT3//NTA1/IRQ	I/O	A(E,L)	$\begin{aligned} & H(1) \\ & R(Z) \\ & P(1) \end{aligned}$	These pins provide multiplexed functions. As inputs, they provide a maskable INTerrupt that will cause the CPU to vector to a specific Type interrupt routine. As outputs, each is programmatically controlled to provide an INTerrupt Acknowledge handshake signal to allow interrupt expansion. INT3/INTA1 becomes IRQ when the ICU is configured for Slave Mode.
N.C.				No Connect. For compatibility with future products, do not connect to these pins.

NOTE:

Pin names in parentheses apply to the 80C188EA and 80L188EA.

80C186EA PINOUT

Tables 4 and 5 list the 80C186EA pin names with package location for the 68-pin Plastic Leaded Chip Carrier (PLCC) component. Figure 9 depicts the complete 80C186EA/80L186EA pinout (PLCC package) as viewed from the top side of the component (i.e., contacts facing down).

Tables 6 and 7 list the 80C186EA pin names with package location for the 80-pin Quad Flat Pack (EIAJ) component. Figure 6 depicts the complete

80C186EA/80C188EA (EIAJ QFP package) as viewed from the top side of the component (i.e., contacts facing down).

Tables 8 and 9 list the 80C186EA/80C188EA pin names with package location for the 80-pin Shrink Quad Flat Pack (SQFP) component. Figure 7 depicts the complete 80C186EA/80C188EA (SQFP) as viewed from the top side of the component (i.e., contacts facing down).

Table 4. PLCC Pin Names with Package Location

Address/Data Bus	
Name	Location
AD0	17
AD1	15
AD2	13
AD3	11
AD4	8
AD5	6
AD6	4
AD7	2
AD8 (A8)	16
AD9 (A9)	14
AD10 (A10)	12
AD11 (A11)	10
AD12 (A12)	7
AD13 (A13)	5
AD14 (A14)	3
AD15 (A15)	1
A16	68
A17	67
A18	66
A19/S6	65

Bus Control	
Name	Location
ALE/QS0	61
$\overline{\mathrm{BHE}}(\overline{\mathrm{RFSH}})$	64
$\overline{\mathrm{So}}$	52
$\overline{\mathrm{~S} 1}$	53
$\overline{\mathrm{~S} 2}$	54
$\overline{\mathrm{RD}} / \overline{\mathrm{QSMD}}$	62
$\overline{\mathrm{WR} / Q S 1}$	63
ARDY	55
SRDY	49
$\overline{\mathrm{DEN}}$	39
$\overline{\mathrm{LOCK}}$	48
HOLD	50
HLDA	51
Power	
Name	
VSS	Location
VCC	26,60

Processor Control	
Name	Location
$\overline{\text { RESIN }}$	24
RESOUT	57
CLKIN	59
OSCOUT	58
CLKOUT	56
TEST/BUSY	47
PDTMR	40
NMI	46
INTO	45
INT1/SELECT	44
INT2/INTA0	42
INT3/INTA1/	41
IRQ	

1/0	
Name	Location
$\overline{\text { UCS }}$	34
$\overline{\text { LCS }}$	33
MCS0/PEREQ	38
$\overline{\text { MCS1/ERROR }}$	37
$\overline{\mathrm{MCS2}}$	36
$\overline{\mathrm{MCS3}} / \overline{\mathrm{NCS}}$	35
$\overline{\text { PCSO }}$	25
$\overline{\text { PCS1 }}$	27
$\overline{\text { PCS2 }}$	28
$\overline{\text { PCS3 }}$	29
$\overline{\text { PCS4 }}$	30
PCS5/A1	31
$\overline{\text { PCS6 } / A 2 ~}$	32
TOOUT	22
TOIN	20
T10UT	23
T1IN	21
DRQ0	18
DRQ1	19

NOTE:

Pin names in parentheses apply to the 80C188EA/80L188EA.

Table 5. PLCC Package Location with Pin Names

Location	Name	Location	Name	Location	Name	Location	Name
1	AD15 (A15)	18	DRQ0	35	$\overline{\mathrm{MCS3}} / \overline{\mathrm{NCS}}$	52	S0
2	AD7	19	DRQ1	36	$\overline{\mathrm{MCS2}}$	53	S1
3	AD14 (A14)	20	TOIN	37	$\overline{\mathrm{MCS1}} / \overline{\mathrm{ERROR}}$	54	$\overline{\mathrm{S} 2}$
4	AD6	21	T1IN	38	$\overline{\text { MCSO }}$ /PEREQ	55	ARDY
5	AD13 (A13)	22	T0OUT	39	$\overline{\mathrm{DEN}}$	56	CLKOUT
6	AD5	23	T10UT	40	PDTMR	57	RESOUT
7	AD12 (A12)	24	$\overline{\text { RESIN }}$	41	INT3/INTA1/	58	OSCOUT
8	AD4	25	$\overline{\text { PCSO }}$		IRQ	59	CLKIN
9	V_{CC}	26	$\mathrm{V}_{\text {SS }}$	42	INT2/INTAO	60	$V_{S S}$
10	AD11 (A11)	27	$\overline{\text { PCS1 }}$	43	V_{CC}	61	ALE/QS0
11	AD3	28	$\overline{\text { PCS2 }}$	44	INT1/SELECT	62	$\overline{\mathrm{RD}} / \overline{\mathrm{QSMD}}$
12	AD10 (A10)	29	$\overline{\text { PCS3 }}$	45	INTO	63	$\overline{\text { WR/QS1 }}$
13	AD2	30	$\overline{\text { PCS4 }}$	46	NMI	64	$\overline{\mathrm{BHE}}$ ($\overline{\mathrm{RFSH}})$
14	AD9 (A9)	31	PCS5/A1	47	TEST/BUSY	65	A19/S6
15	AD1	32	$\overline{\text { PCS6 } / A 2 ~}$	48	LOCK	66	A18
16	AD8 (A8)	33	LCS	49	SRDY	67	A17
17	AD0	34	$\overline{\text { UCS }}$	50	HOLD	68	A16
				51	HLDA		

NOTE:
Pin names in parentheses apply to the 80C186EA/80L188EA.

Figure 5. 68-Lead PLCC Pinout Diagram

Table 6. QFP (EIAJ) Pin Names with Package Location

Address/Data Bus		Bus Control		Processor Control		1/0	
Name	Location	Name	Location	Name	Location	Name	Location
AD0	64	ALE/QSO	10	$\overline{\text { RESIN }}$	55	$\overline{U C S}$	45
AD1	66	$\overline{\mathrm{BHE}}$ ($\overline{\mathrm{RFSH}})$	7	RESOUT	18	$\overline{\text { LCS }}$	46
AD2	68	$\overline{\mathrm{SO}}$	23	CLKIN	16	MCS0/PEREQ	40
AD3	70	$\overline{\mathrm{S} 1}$	22	OSCOUT	17	$\overline{\mathrm{MCS1}} / \overline{\mathrm{ERROR}}$	41
AD4	74	$\overline{\mathrm{S} 2}$	21	CLKOUT	19	$\overline{\mathrm{MCS2}}$	42
AD5	76	$\overline{\mathrm{RD}} / \overline{\mathrm{QSMD}}$	9	TEST/BUSY	29	$\overline{\mathrm{MCS3}} / \overline{\mathrm{NCS}}$	43
AD6	78	WR/QS1	8	PDTMR	38	$\overline{\text { PCSO }}$	54
AD7	80	ARDY	20	NMI	30	$\overline{\text { PCS1 }}$	52
AD8 (A8)	65	SRDY	27	INTO	31	$\overline{\text { PCS2 }}$	51
AD9 (A9)	67	DT/ \bar{R}	37	INT1/SELECT	32	$\overline{\text { PCS3 }}$	50
AD10 (A10)	69	$\overline{\mathrm{DEN}}$	39	INT2/INTAO	35	$\overline{\text { PCS4 }}$	49
AD11 (A11)	71	$\overline{\text { LOCK }}$	28	INT3/INTA1/	36	PCS5/A1	48
AD12 (A12)	75	HOLD	26	IRQ		PCS6/A2	47
AD13 (A13)	77	HLDA	25	N.C.	11, 14,	T00UT	57
AD14 (A14)	79				15, 63	TOIN	59
AD15 (A15)	1					T10UT	56
A16	3	Power				T1IN	58
A17	4					DRQ0	61
A18	5	Name	Location			DRQ1	60
A19/S6	6	$\begin{aligned} & \mathrm{V}_{\mathrm{SS}} \\ & \mathrm{~V}_{\mathrm{CC}} \end{aligned}$	$\begin{gathered} 12,13,24 \\ 53,62 \\ 2,33,34 \\ 44,72,73 \end{gathered}$				

NOTE:
Pin names in parentheses apply to the 80C186EA/80L188EA.

Table 7. QFP (EIAJ) Package Location with Pin Names

Location	Name	Location	Name	Location	Name	Location	Name
1	AD15 (A15)	21	S2	41	MCS1/ERROR	61	DRQ0
2	$\mathrm{V}_{\text {CC }}$	22	S1	42	$\overline{\mathrm{MCS}} 2$	62	$\mathrm{V}_{\text {SS }}$
3	A16	23	So	43	$\overline{\mathrm{MCS3}} / \overline{\mathrm{NCS}}$	63	N.C.
4	A17	24	$\mathrm{V}_{\text {SS }}$	44	V_{CC}	64	ADO
5	A18	25	HLDA	45	$\overline{\text { UCS }}$	65	AD8 (A8)
6	A19/S6	26	HOLD	46	LCS	66	AD1
7	$\overline{\text { BHE (}} \overline{\text { RFSH }}$)	27	SRDY	47	$\overline{\text { PCS6/A2 }}$	67	AD9 (A9)
8	WR/QS1	28	LOCK	48	$\overline{\text { PCS5/A1 }}$	68	AD2
9	$\overline{\mathrm{RD}} / \overline{\mathrm{QSMD}}$	29	TEST/BUSY	49	$\overline{\text { PCS4 }}$	69	AD10 (A10)
10	ALE/QSO	30	NMI	50	$\overline{\text { PCS3 }}$	70	AD3
11	N.C.	31	INTO	51	PCS2	71	AD11 (A11)
12	$\mathrm{V}_{\text {ss }}$	32	INT1/SELECT	52	PCS1	72	$\mathrm{V}_{\text {CC }}$
13	$\mathrm{V}_{\text {SS }}$	33	$\mathrm{V}_{\text {CC }}$	53	$\mathrm{V}_{S S}$	73	V_{CC}
14	N.C.	34	$\mathrm{V}_{\text {cc }}$	54	PCSO	74	AD4
15	N.C.	35	INT2/INTA0	55	$\overline{\text { RESIN }}$	75	AD12 (A12)
16	CLKIN	36	INT3/INTA1/	56	TIOUT	76	AD5
17	OSCOUT		IRQ	57	TOOUT	77	AD13 (A13)
18	RESOUT	37	DT/ \bar{R}	58	T1IN	78	AD6
19	CLKOUT	38	PDTMR	59	TOIN	79	AD14 (A14)
20	ARDY	39	$\overline{\text { DEN }}$	60	DRQ1	80	AD7
		40	MCSO/PEREQ				

NOTE:
Pin names in parentheses apply to the 80C186EA/80L188EA.

Figure 6. Quad Flat Pack (EIAJ) Pinout Diagram

Table 8. SQFP Pin Functions with Package Location

AD Bus	
AD0	1
AD1	3
AD2	6
AD3	8
AD4	12
AD5	14
AD6	16
AD7	18
AD8 (A8)	2
AD9 (A9)	5
AD10 (A10)	7
AD11 (A11)	9
AD12 (A12)	13
AD13(A13)	15
AD14 (A14)	17
AD15 (A15)	19
A16/S3	21
A17/S4	22
A18/S5	23
A19/S6	24

Bus Control	
ALE/QS0	29
$\overline{\mathrm{BHE}} /(\overline{\mathrm{RFSH}})$	26
$\overline{\mathrm{S0}}$	40
$\overline{\mathrm{~S} 1}$	39
$\overline{\mathrm{~S} 2}$	38
$\overline{\mathrm{RD}} / \overline{\mathrm{QSMD}}$	28
$\overline{\mathrm{WR}} / \mathrm{QS} 1$	27
ARDY	37
SRDY	44
$\overline{\mathrm{DEN}}$	56
$\mathrm{DT} / \overline{\mathrm{R}}$	54
$\overline{\mathrm{LOCK}}$	45
HOLD	43
HLDA	42

Processor Control	
RESIN	73
RESOUT	34
CLKIN	32
OSCOUT	33
CLKOUT	36
TEST/BUSY	46
NMI	47
INTO	48
INT1/SELECT	49
INT2/INTAO	52
INT3/\/NTA1	53
PDTMR	55

I/O	
$\overline{\text { UCS }}$	62
LCS	63
$\overline{\text { MCSO/PEREQ }}$	57
$\overline{\mathrm{MCS1}}$ /ERROR	58
MCS2	59
$\overline{\mathrm{MCS3}} / \overline{\mathrm{NPS}}$	60
$\overline{\text { PCSO }}$	71
PCS1	69
$\overline{\text { PCS2 }}$	68
$\overline{\text { PCS3 }}$	67
PCS4	66
PCS5/A1	65
PCS6/A2	64
TMR IN 0	77
TMR IN 1	76
TMR OUT 0	75
TMR OUT 1	74
DRQ0	79
DRQ1	78

NOTE:
Pin names in parentheses apply to the 80C186EA/80L188EA.
Table 9. SQFP Pin Locations with Pin Names

1	AD0
2	AD8 (A8)
3	AD1
4	N.C.
5	AD9 (A9)
6	AD2
7	AD10 (A10)
8	AD3
9	AD11 (A11)
10	$\mathrm{~V}_{\mathrm{CC}}$
11	$\mathrm{~V}_{\mathrm{CC}}$
12	AD4
13	AD12 (A12)
14	AD5
15	AD13 (A13)
16	AD6
17	AD14 (A14)
18	AD7
19	AD15 (A15)
20	$\mathrm{~V}_{\mathrm{CC}}$

21	A16/S3
22	A17/S4
23	A18/S5
24	A19/S6
25	N.C.
26	$\overline{\mathrm{BHE}} /(\overline{\mathrm{RFSH}})$
27	WR/QS1
28	RD/ $\overline{\text { QSMD }}$
29	ALE/QS0
30	$V_{S S}$
31	$V_{S S}$
32	X1
33	X2
34	RESET
35	N.C.
36	CLKOUT
37	ARDY
38	$\overline{\mathrm{S} 2}$
39	$\overline{\mathrm{S} 1}$
40	$\overline{\mathrm{S} 0}$

41	$V_{S S}$
42	HLDA
43	HOLD
44	SRDY
45	LOCK
46	TEST/BUSY
47	NMI
48	INTO
49	INT1/SELECT
50	V_{CC}
51	V_{CC}
52	INT2/INTAO
53	INT3/INTA1
54	DT/R
55	PDTMR
56	$\overline{\text { DEN }}$
57	$\overline{\mathrm{MCSO}} / \mathrm{PEREQ}$
58	$\overline{\mathrm{MCS1}} / \overline{\mathrm{ERROR}}$
59	MCS2
60	$\overline{\mathrm{MCS3}} / \overline{\mathrm{NPS}}$

61	V_{CC}
62	UCS
63	LCS
64	PCS6/A2
65	PCS5/A1
66	PCS4
67	PCS3
68	$\overline{\text { PCS2 }}$
69	PCS1
70	$\mathrm{V}_{\text {SS }}$
71	$\overline{\text { PCS0 }}$
72	N.C.
73	$\overline{R E S}$
74	TMR OUT 1
75	TMR OUT 0
76	TMR IN 1
77	TMR IN 0
78	DRQ1
79	DRQ0
80	$\mathrm{V}_{\text {SS }}$

NOTE
Pin names in parentheses apply to the 80C186EA/80L188EA.

Figure 7. Shrink Quad Flat Pack (SQFP) Pinout Diagram

NOTES:

1. XXXXXXXXD indicates the Intel FPO number.
2. Pin names in parentheses apply to the 80C188EA.

PACKAGE THERMAL SPECIFICATIONS

The 80C186EA/80L186EA is specified for operation when T_{C} (the case temperature) is within the range of $0^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (PLCC package) or $0^{\circ} \mathrm{C}$ to $106^{\circ} \mathrm{C}$ (QFP-EIAJ) package. T_{C} may be measured in any environment to determine whether the processor is within the specified operating range. The case temperature must be measured at the center of the top surface.
T_{A} (the ambient temperature) can be calculated from θ_{CA} (thermal resistance from the case to ambient) with the following equation:

$$
\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{C}}-\mathrm{P} \times \theta_{\mathrm{CA}}
$$

Typical values for θ_{CA} at various airflows are given in Table 10.
P (the maximum power consumption, specified in watts) is calculated by using the maximum ICC as tabulated in the DC specifications and V_{CC} of 5.5 V .

Table 10. Thermal Resistance (θ_{CA}) at Various Airflows (in ${ }^{\circ} \mathrm{C} /$ Watt)

	Airflow Linear ft/min (m/sec)					
	$\begin{gathered} 0 \\ (0) \end{gathered}$	$\begin{gathered} 200 \\ (1.01) \end{gathered}$	$\begin{array}{\|c} \hline 400 \\ (2.03) \end{array}$	$\begin{gathered} 600 \\ (3.04) \end{gathered}$	$\begin{gathered} 800 \\ (4.06) \end{gathered}$	$\begin{gathered} 1000 \\ (5.07) \end{gathered}$
$\theta_{\text {CA }}$ (PLCC)	29	25	21	19	17	16.5
$\theta_{\text {CA }}$ (QFP)	66	63	60.5	59	58	57
$\theta_{\text {CA }}$ (SQFP)	70					

ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings*

Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Case Temperature under Bias $\ldots-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Supply Voltage with Respect
to $\mathrm{V}_{\mathrm{SS}} \ldots .$. -0.5 V to +6.5 V
Voltage on Other Pins with Respect
to $\mathrm{V}_{\mathrm{SS}} \ldots \ldots . \ldots \ldots . .$.

Recommended Connections

Power and ground connections must be made to multiple $V_{\text {CC }}$ and $V_{\text {SS }}$ pins. Every 80C186EA based circuit board should contain separate power (V_{CC}) and ground (V_{SS}) planes. All V_{CC} and V_{SS} pins must be connected to the appropriate plane. Pins identified as "N.C." must not be connected in the system. Decoupling capacitors should be placed near the processor. The value and type of decoupling capac-

NOTICE: This data sheet contains preliminary information on new products in production. It is valid for the devices indicated in the revision history. The specifications are subject to change without notice.
*WARNING: Stressing the device beyond the "Absolute Maximum Ratings" may cause permanent damage. These are stress ratings only. Operation beyond the "Operating Conditions" is not recommended and extended exposure beyond the "Operating Conditions" may affect device reliability.
itors is application and board layout dependent. The processor can cause transient power surges when its output buffers transition, particularly when connected to large capacitive loads.

Always connect any unused input pins to an appropriate signal level. In particular, unused interrupt pins (NMI, INT3:0) should be connected to $\mathrm{V}_{\text {SS }}$ to avoid unwanted interrupts. Leave any unused output pin or any "N.C." pin unconnected.

DC SPECIFICATIONS (80C186EA/80C188EA)

Symbol	Parameter	Min	Max	Units	Conditions
$V_{\text {CC }}$	Supply Voltage	4.5	5.5	V	
$\mathrm{V}_{\text {IL }}$	Input Low Voltage for All Pins	-0.5	$0.3 \mathrm{~V}_{\mathrm{CC}}$	V	
$\mathrm{V}_{1 \mathrm{H}}$	Input High Voltage for All Pins	0.7 V CC	$\mathrm{V}_{\mathrm{CC}}+0.5$	V	
$\mathrm{V}_{\text {OL }}$	Output Low Voltage		0.45	V	$\mathrm{l}_{\mathrm{OL}}=3 \mathrm{~mA}(\mathrm{~min})$
V_{OH}	Output High Voltage	$\mathrm{V}_{\mathrm{CC}}-0.5$		V	$\mathrm{IOH}^{(1)}$
$\mathrm{V}_{\text {HYR }}$	Input Hysterisis on RESIN	0.30		V	
IL1	Input Leakage Current (except $\overline{\mathrm{RD}} / \overline{\mathrm{QSMD}}, \overline{\mathrm{UCS}}, \overline{\mathrm{LCS}}, \overline{\mathrm{MCSO}} / \mathrm{PEREQ}$, $\overline{\text { MCS1 }} / \overline{\mathrm{ERROR}}, \overline{\mathrm{LOCK}}$ and TEST/BUSY)		± 10	$\mu \mathrm{A}$	$\mathrm{OV} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{CC}}$
IIL2	Input Leakage Current ($\overline{\mathrm{RD}} / \overline{\mathrm{QSMD}}, \overline{\mathrm{UCS}}, \overline{\mathrm{LCS}}, \overline{\mathrm{MCSO}} / \mathrm{PEREQ}$, MCS1, ERROR, LOCK and TEST/BUSY	-275		$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\text {IN }}=0.7 \mathrm{~V}_{\mathrm{CC}} \\ & \text { (Note 1) } \end{aligned}$
${ }^{\text {loL }}$	Output Leakage Current		± 10	$\mu \mathrm{A}$	$\begin{aligned} & 0.45 \leq \mathrm{V}_{\text {OUT }} \leq \mathrm{V}_{\mathrm{CC}} \\ & \text { (Note 2) } \end{aligned}$
Icc	Supply Current Cold (RESET) 80C186EA25/80C188EA25 80C186EA20/80C188EA20 80C186EA13/80C188EA13		$\begin{gathered} 105 \\ 90 \\ 65 \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$	(Notes 3, 5)
${ }_{\text {I ID }}$	Supply Current In Idle Mode 80C186EA25/80C188EA25 80C186EA20/80C188EA20 80C186EA13/80C188EA13		$\begin{aligned} & 90 \\ & 70 \\ & 46 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$	(Note 5)
IPD	Supply Current In Powerdown Mode 80C186EA25/80C188EA25 80C186EA20/80C188EA20 80C186EA13/80C188EA13		$\begin{aligned} & 100 \\ & 100 \\ & 100 \\ & \hline \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$	(Note 5)
Cout	Output Pin Capacitance	0	15	pF	$\mathrm{T}_{\mathrm{F}}=1 \mathrm{MHz}$ (Note 4)
$\mathrm{CIN}_{\text {IN }}$	Input Pin Capacitance	0	15	pF	$\mathrm{T}_{\mathrm{F}}=1 \mathrm{MHz}$

NOTES:

1. $\overline{\operatorname{RD}} / \overline{\mathrm{QSMD}}, \overline{\mathrm{UCS}}, \overline{\mathrm{LCS}}, \overline{M C S O} / P E R E Q, \overline{M C S 1} / \overline{\mathrm{ERROR}}, \overline{\mathrm{LOCK}}$ and $\overline{\mathrm{TEST}} / B U S Y$ have internal pullups that are only activated during RESET. Loading these pins above $\mathrm{I}_{\mathrm{OL}}=-275 \mu \mathrm{~A}$ will cause the processor to enter alternate modes of operation.
2. Output pins are floated using HOLD or ONCE Mode.
3. Measured at worst case temperature and V_{C} with all outputs loaded as specified in the AC Test Conditions, and with the device in RESET (RESIN held low). RESET is worst case for ICC-
4. Output capacitance is the capacitive load of a floating output pin.
5. Operating conditions for 25 MHz are $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%$.

DC SPECIFICATIONS (80L186EA/80L188EA)

Symbol	Parameter	Min	Max	Units	Conditions
$\mathrm{V}_{\text {CC }}$	Supply Voltage	2.7	5.5	V	
$\mathrm{V}_{\text {IL }}$	Input Low Voltage for All Pins	-0.5	$0.3 \mathrm{~V}_{\mathrm{CC}}$	V	
V_{IH}	Input High Voltage for All Pins	$0.7 \mathrm{~V}_{\mathrm{CC}}$	$\mathrm{V}_{\mathrm{CC}}+0.5$	V	
$\mathrm{V}_{\text {OL }}$	Output Low Voltage		0.45	V	$\mathrm{I}_{\mathrm{OL}}=1.6 \mathrm{~mA}(\mathrm{~min})$
V_{OH}	Output High Voltage	$\mathrm{V}_{\mathrm{CC}}-0.5$		V	$\mathrm{IOH}=-1 \mathrm{~mA}(\mathrm{~min})$
$\mathrm{V}_{\text {HYR }}$	Input Hysterisis on RESIN	0.30		V	
IL1	Input Leakage Current (except $\overline{\mathrm{RD}} / \overline{\mathrm{QSMD}}, \overline{\mathrm{UCS}}, \overline{\mathrm{LCS}}, \overline{\mathrm{MCSO}} / \mathrm{PEREQ}$, $\overline{\text { MCS1, }}$ LOCK and TEST)		± 10	$\mu \mathrm{A}$	$\mathrm{OV} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{CC}}$
ILL2	Input Leakage Current ($\overline{\mathrm{RD}} / \overline{\mathrm{QSMD}}, \overline{\mathrm{UCS}}, \overline{\mathrm{LCS}}, \overline{\mathrm{MCSO}}$, MCS1, LOCK and TEST)	-275		$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0.7 \mathrm{~V}_{\mathrm{CC}} \\ & \text { (Note 1) } \end{aligned}$
loL	Output Leakage Current		± 10	$\mu \mathrm{A}$	$\begin{aligned} & 0.45 \leq \mathrm{V}_{\text {OUT }} \leq \mathrm{V}_{\text {CC }} \\ & \text { (Note 2) } \end{aligned}$
$\mathrm{I}_{\mathrm{CC} 5}$	Supply Current (RESET, 5.5V) 80L186EA-13 80L186EA-8		$\begin{aligned} & 65 \\ & 40 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$	(Note 3) (Note 3)
$\mathrm{I}_{\mathrm{CC} 3}$	$\begin{aligned} & \text { Supply Current (RESET, 2.7V) } \\ & \text { 80L186EA-13 } \\ & \text { 80L186EA-8 } \end{aligned}$		$\begin{aligned} & 34 \\ & 20 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$	(Note 3) (Note 3)
IID5	Supply Current Idle (5.5V) 80L186EA-13 80L186EA-8		$\begin{aligned} & 46 \\ & 28 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$	
IID5	Supply Current Idle (2.7V) 80L186EA-13 80L186EA-8		$\begin{aligned} & 24 \\ & 14 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$	
IPD5	Supply Current Powerdown (5.5V) 80L186EA-13 80L186EA-8		$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$	
IPD3	```Supply Current Powerdown (2.7V) 80L186EA-13 80L186EA-8```		$\begin{aligned} & 50 \\ & 50 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$	
Cout	Output Pin Capacitance	0	15	pF	$\mathrm{T}_{\mathrm{F}}=1 \mathrm{MHz}$ (Note 4)
$\mathrm{C}_{\text {IN }}$	Input Pin Capacitance	0	15	pF	$\mathrm{T}_{\mathrm{F}}=1 \mathrm{MHz}$

NOTES:

1. $\overline{\mathrm{RD}} / \overline{\mathrm{QSMD}}, \overline{\mathrm{UCS}}, \overline{\mathrm{LCS}}, \overline{\mathrm{MCSO}}, \overline{\mathrm{MCS}}, \overline{\mathrm{LOCK}}$ and $\overline{\mathrm{TEST}}$ have internal pullups that are only activated during RESET. Loading these pins above $\mathrm{l}_{\mathrm{OL}}=-275 \mu \mathrm{~A}$ will cause the processor to enter alternate modes of operation.
2. Output pins are floated using HOLD or ONCE Mode.
3. Measured at worst case temperature and $V_{C C}$ with all outputs loaded as specified in the $A C$ Test Conditions, and with the device in RESET ($\overline{R E S I N}$ held low).
4. Output capacitance is the capacitive load of a floating output pin.

Icc VERSUS FREQUENCY AND VOLTAGE

The current (I_{CC}) consumption of the processor is essentially composed of two components; IPD and Iccs.
$I_{P D}$ is the quiescent current that represents internal device leakage, and is measured with all inputs or floating outputs at GND or V_{CC} (no clock applied to the device). IPD is equal to the Powerdown current and is typically less than $50 \mu \mathrm{~A}$.

ICCS is the switching current used to charge and discharge parasitic device capacitance when changing logic levels. Since ICCS is typically much greater than $I_{P D}$, $I_{P D}$ can often be ignored when calculating ICC.

ICCS is related to the voltage and frequency at which the device is operating. It is given by the formula:

$$
\begin{aligned}
& \text { Power }=\mathrm{V} \times \mathrm{I}=\mathrm{V}^{2} \times \mathrm{C}_{\mathrm{DEV}} \times \mathrm{f} \\
& \therefore \mathrm{I}=\mathrm{I}_{\mathrm{CC}}=\mathrm{I}_{\mathrm{CCS}}=\mathrm{V} \times \mathrm{C}_{\mathrm{DEV}} \times \mathrm{f}
\end{aligned}
$$

Where: $\mathrm{V}=$ Device operating voltage $\left(\mathrm{V}_{\mathrm{CC}}\right)$ $C_{\text {DEV }}=$ Device capacitance $\mathrm{f}=$ Device operating frequency $I_{C C S}=I_{C C}=$ Device current

Measuring $C_{D E V}$ on a device like the 80C186EA would be difficult. Instead, $\mathrm{C}_{\text {DEV }}$ is calculated using the above formula by measuring I_{CC} at a known V_{CC} and frequency (see Table 11). Using this $\mathrm{C}_{\text {DEV }}$ value, $l_{\text {CC }}$ can be calculated at any voltage and frequency within the specified operating range.

EXAMPLE: Calculate the typical ICC when operating at $20 \mathrm{MHz}, 4.8 \mathrm{~V}$.

PDTMR PIN DELAY CALCULATION

The PDTMR pin provides a delay between the assertion of NMI and the enabling of the internal clocks when exiting Powerdown. A delay is required only when using the on-chip oscillator to allow the crystal or resonator circuit time to stabilize.

NOTE:

The PDTMR pin function does not apply when $\overline{\text { RESIN }}$ is asserted (i.e., a device reset during Powerdown is similar to a cold reset and RESIN must remain active until after the oscillator has stabilized).

To calculate the value of capacitor required to provide a desired delay, use the equation:

$$
440 \times \mathrm{t}=\mathrm{C}_{\mathrm{PD}} \quad\left(5 \mathrm{~V}, 25^{\circ} \mathrm{C}\right)
$$

Where: $t=$ desired delay in seconds

$$
\begin{aligned}
\mathrm{C}_{\mathrm{PD}}= & \text { capacitive load on PDTMR in mi- } \\
& \text { crofarads }
\end{aligned}
$$

EXAMPLE: To get a delay of $300 \mu \mathrm{~s}$, a capacitor value of $\mathrm{C}_{\mathrm{PD}}=440 \times\left(300 \times 10^{-6}\right)=0.132 \mu \mathrm{~F}$ is required. Round up to standard (available) capacitive values.

NOTE:
The above equation applies to delay times greater than $10 \mu \mathrm{~s}$ and will compute the TYPICAL capacitance needed to achieve the desired delay. A delay variance of $+50 \%$ or -25% can occur due to temperature, voltage, and device process extremes. In general, higher V_{CC} and/or lower temperature will decrease delay time, while lower V_{CC} and/or higher temperature will increase delay time.

$$
\mathrm{I}_{\mathrm{CC}}=\mathrm{I}_{\mathrm{CCS}}=4.8 \times 0.515 \times 20 \approx 49 \mathrm{~mA}
$$

Table 11. C ${ }_{\text {DEV }}$ Values

Parameter	Typ	Max	Units	Notes
$\mathrm{C}_{\text {DEV }}$ (Device in Reset)	0.515	0.905	$\mathrm{~mA} / \mathrm{V} * \mathrm{MHz}$	1,2
$\mathrm{C}_{\text {DEV }}$ (Device in Idle)	0.391	0.635	$\mathrm{~mA} / \mathrm{V} * \mathrm{MHz}$	1,2

1. Max $C_{D E V}$ is calculated at $-40^{\circ} \mathrm{C}$, all floating outputs driven to V_{CC} or GND, and all outputs loaded to 50 pF (including CLKOUT and OSCOUT).
2. Typical $\mathrm{C}_{\text {DEV }}$ is calculated at $25^{\circ} \mathrm{C}$ with all outputs loaded to 50 pF except CLKOUT and OSCOUT, which are not loaded.

AC SPECIFICATIONS

AC Characteristics-80C186EA25/80C186EA20/80C186EA13

Symbol	Parameter	Min	Max	Min	Max	Min	Max	Units	Notes
INPUT CLOCK		25 MHz (12)		20 MHz		13 MHz			
T_{F}	CLKIN Frequency	0	50	0	40	0	26	MHz	1
T_{C}	CLKIN Period	20	∞	25	∞	38.5	∞	ns	1
T_{CH}	CLKIN High Time	10	∞	10	∞	12	∞	ns	1, 2
T_{CL}	CLKIN Low Time	10	∞	10	∞	12	∞	ns	1, 2
TCR	CLKIN Rise Time	1	8	1	8	1	8	ns	1, 3
$\mathrm{T}_{\text {CF }}$	CLKIN Fall Time	1	8	1	8	1	8	ns	1, 3

OUTPUT CLOCK

$T_{C D}$	CLKIN to CLKOUT Delay	0	15	0	17	0	23	ns	1,4
$\mathrm{~T}^{\mathrm{T}}$	CLKOUT Period		$2 \mathrm{~T}_{\mathrm{C}}$		$2 * \mathrm{~T}_{\mathrm{C}}$		$2 * \mathrm{~T}_{\mathrm{C}}$	ns	1
$\mathrm{~T}_{\mathrm{PH}}$	CLKOUT High Time	$(\mathrm{T} / 2)-5$		$(\mathrm{~T} / 2)-5$		$(\mathrm{~T} / 2)-5$		ns	1
$\mathrm{~T}_{\mathrm{PL}}$	CLKOUT Low Time	$(\mathrm{T} / 2)-5$		$(\mathrm{~T} / 2)-5$		$(\mathrm{~T} / 2)-5$		ns	1
$\mathrm{~T}_{\mathrm{PR}}$	CLKOUT Rise Time	1	6	1	6	1	6	ns	1,5
$\mathrm{~T}_{\mathrm{PF}}$	CLKOUT Fall Time	1	6	1	6	1	6	ns	1,5

OUTPUT DELAYS

$\mathrm{T}_{\text {CHOV } 1}$	ALE, $\overline{S 2: 0}, \overline{D E N}, D T / \bar{R}$, BHE, ($\overline{\text { RFSH}}), \overline{\text { LOCK, }}$ A19:16	3	20	3	22	3	25	ns	1, 4, 6, 7
$\mathrm{T}_{\text {CHOV2 }}$	$\text { MCS3:0, LCS } \overline{\text { UCS }}, \overline{\text { PCS6:0 }}$ NCS, $\overline{R D}, \overline{W R}$	3	25	3	27	3	30	ns	1,4,6,8
TCLOV1	$\overline{\mathrm{BHE}}(\overline{\mathrm{RFSH}}), \overline{\mathrm{DEN}}, \overline{\mathrm{LOCK}}$, RESOUT, HLDA, T0OUT, T1OUT, A19:16	3	20	3	22	3	25	ns	1, 4, 6
TCLOV2	$\overline{\mathrm{RD}}, \overline{\mathrm{WR}}, \overline{\mathrm{MCS3}}: \overline{0}, \overline{\mathrm{LCS}}$, UCS, PCS6:0, AD15:0 (A15:8, AD7:0), $\overline{\text { NCS }}, \overline{\text { INTA1:0, }} \overline{\text { S2:0 }}$	3	25	3	27	3	30	ns	1, 4, 6
$\mathrm{T}_{\text {CHOF }}$	$\overline{\mathrm{RD}}, \overline{\mathrm{WR}}, \overline{\mathrm{BHE}}(\overline{\mathrm{RFSH}}), \mathrm{DT} / \overline{\mathrm{R}}$, $\overline{\text { LOCK, }}, \overline{\text { S2:0 }}, \mathrm{A} 19: 16$	0	25	0	25	0	25	ns	1
TCLOF	DEN, AD15:0 (A15:8, AD7:0)	0	25	0	25	0	25	ns	1

AC SPECIFICATIONS (Continued)

AC Characteristics-80C186EA25/80C186EA20/80C186EA13

Symbol	Parameter	Min	Max	Min	Max	Min	Max	Units	Notes
SYNCHRONOUS INPUTS		$25 \mathrm{MHz}{ }^{(12)}$		20 MHz		13 MHz			
T CHIS	TEST, NMI, INT3:0, T1:OIN, ARDY	8		10		10		ns	1, 9
$\mathrm{T}_{\mathrm{CHIH}}$	TEST, NMI, INT3:0, T1:OIN, ARDY	3		3		3		ns	1, 9
TCLIS	AD15:0 (AD7:0), ARDY, SRDY, DRQ1:0	10		10		10		ns	1,10
$\mathrm{T}_{\mathrm{CLIH}}$	AD15:0 (AD7:0), ARDY, SRDY, DRQ1:0	3		3		3		ns	1,10
TCLIS	HOLD, PEREQ, ERROR (80C186EA Only)	10		10		10		ns	1, 9
$\mathrm{T}_{\text {CLIH }}$	HOLD, PEREQ, ERROR (80C186EA Only)	3		3		3		ns	1, 9
TCLIS	$\overline{\text { RESIN (}}$ (o CLKIN)	10		10		10		ns	1, 9
TCLIH	$\overline{\text { RESIN }}$ (from CLKIN)	3		3		3		ns	1,9

NOTES:

1. See AC Timing Waveforms, for waveforms and definition.
2. Measured at V_{IH} for high time, V_{IL} for low time.
3. Only required to guarantee I_{CC}. Maximum limits are bounded by $\mathrm{T}_{\mathrm{C}}, \mathrm{T}_{\mathrm{CH}}$ and T_{CL}. 4. Specified for a 50 pF load, see Figure 13 for capacitive derating information.
4. Specified for a 50 pF load, see Figure 14 for rise and fall times outside 50 pF .
5. See Figure 14 for rise and fall times.
6. $\mathrm{T}_{\mathrm{CHOV}}^{1}$ applies to $\overline{\mathrm{BHE}}$ ($\overline{\mathrm{RFSH}}$), $\overline{\mathrm{LOCK}}$ and A19:16 only after a HOLD release.
7. TCHOV2 applies to $\overline{\mathrm{RD}}$ and $\overline{\mathrm{WR}}$ only after a HOLD release.

9 . Setup and Hold are required to guarantee recognition.
10. Setup and Hold are required for proper operation.
11. TCHOVs applies to $\overline{\mathrm{BHE}}$ ($\overline{\mathrm{RFSH}}$) and A19:16 only after a HOLD release.
12. Operating conditions for 25 MHz are $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%$,

Pin names in parentheses apply to the 80C188EA/80L188EA.

AC SPECIFICATIONS

AC Characteristics-80L186EA13/80L186EA8

Symbol	Parameter	Min	Max	Min	Max	Units	Notes
INPUT CLOCK		13 MHz		8 MHz			
T_{F}	CLKIN Frequency	0	26	0	16	MHz	1
T_{C}	CLKIN Period	38.5	∞	62.5	∞	ns	1
$\mathrm{T}_{\text {CH }}$	CLKIN High Time	12	∞	12	∞	ns	1,2
TCL	CLKIN Low Time	12	∞	12	∞	ns	1,2
$\mathrm{T}_{\text {CR }}$	CLKIN Rise Time		8	1	8	ns	1,3
TCF	CLKIN Fall Time	1	8	1	8	ns	1,3
OUTPUT	LOCK						
$\mathrm{T}_{C D}$	CLKIN to CLKOUT Delay	0	45	0	95	ns	1, 4
T	CLKOUT Period		${ }^{*} \mathrm{~T}_{\mathrm{C}}$		2* ${ }_{C}$	ns	1
$\mathrm{T}_{\text {PH }}$	CLKOUT High Time	(T/2) - 5		(T/2) - 5		ns	1
$\mathrm{T}_{\text {PL }}$	CLKOUT Low Time	(T/2) - 5		(T/2) - 5		ns	1
$\mathrm{T}_{\text {PR }}$	CLKOUT Rise Time	1	12	,	12	ns	1,5
$\mathrm{T}_{\text {PF }}$	CLKOUT Fall Time		12	1	12	ns	1,5

OUTPUT DELAYS

TCHOV1	ALE, LOCK	3	27	3	27	ns	1, 4, 6, 7
$\mathrm{T}_{\text {CHOV2 }}$	$\overline{\text { MCS3: }}, \overline{\text { LCS }}, \overline{\text { UCS }}$, $\overline{\text { PCS6:0 }}, \overline{\mathrm{RD}}, \overline{\mathrm{WR}}$	3	32	3	32	ns	$\begin{aligned} & 1,4, \\ & 6.8 \end{aligned}$
$\mathrm{T}_{\text {CHOV3 }}$	$\begin{aligned} & \overline{\text { S2:0 }}(\overline{\mathrm{DEN}}), \mathrm{DT} / \overline{\mathrm{R}}, \\ & \overline{\mathrm{BHE}}(\overline{\mathrm{RFSH}}), \mathrm{A} 19: 16 \end{aligned}$	3	30	3	30	ns	1
TCLOV1	LOCK, RESOUT, HLDA, TOOUT, T1OUT	3	27	3	27	ns	1, 4, 6
TCLOV2	$\overline{\mathrm{RD}}, \overline{\mathrm{WR}}, \overline{\mathrm{MCS3}}: 0, \overline{\mathrm{LCS}}$, UCS, PCS6:0, INTA1:0	3	32	3	35	ns	1, 4, 6
TCLOV3	$\overline{\mathrm{BHE}}$ ($\overline{\mathrm{RFSH}}), \overline{\mathrm{DEN}}, \mathrm{A19:16}$	3	30	3	30	ns	1,4,6
T CLOV4	AD15:0 (A15:8, AD7:0)	3	34	3	35	ns	1, 4, 6
TCLOV5	S2:0	3	38	3	40	ns	1,4,6
TCHOF	$\overline{\mathrm{RD}}, \overline{\mathrm{WR}}, \overline{\mathrm{BHE}}$ ($\overline{\mathrm{RFSH}})$, DT/信, $\overline{\text { LOCK }}$, S2:0, A19:16	0	27	0	27	ns	1
TCLOF	$\overline{\mathrm{DEN}}, \mathrm{AD} 15: 0$ (A15:8, AD7:0)	0	27	0	27	ns	1

NOTES:

1. See AC Timing Waveforms, for waveforms and definition.
2. Measured at V_{IH} for high time, V_{IL} for low time.
3. Only required to guarantee $I_{C C}$. Maximum limits are bounded by $T_{C}, T_{C H}$ and $T_{C L}$.
4. Specified for a 50 pF load, see Figure 13 for capacitive derating information.
5. Specified for a 50 pF load, see Figure 14 for rise and fall times outside 50 pF .
6. See Figure 14 for rise and fall times.
7. $\mathrm{T}_{\mathrm{CHOV}}^{1}$ applies to $\overline{\mathrm{BHE}}$ ($\overline{\mathrm{RFSH}}$), $\overline{\mathrm{LOCK}}$ and $\mathrm{A} 19: 16$ only after a HOLD release.
8. $\mathrm{T}_{\mathrm{CHOV} 2}$ applies to $\overline{\mathrm{RD}}$ and $\overline{\mathrm{WR}}$ only after a HOLD release.
9. Setup and Hold are required to guarantee recognition.
10. Setup and Hold are required for proper operation.
11. TCHOVS applies to $\overline{\mathrm{BHE}}(\overline{\mathrm{RFSH}})$ and $\mathrm{A} 19: 16$ only after a HOLD release.
12. Pin names in parentheses apply to the 80C188EA/80L188EA.

AC SPECIFICATIONS

AC Characteristics-80L186EA13/80L186EA8

Symbol	Parameter	Min	Max	Min	Max	Units	Notes
SYNCHRONOUS INPUTS		$\mathbf{1 3} \mathbf{~ M H z}$		$\mathbf{8} \mathbf{~ M H z}$			
$\mathrm{T}_{\text {CHIS }}$	$\overline{\text { TEST, NMI, INT3:0, T1:OIN, ARDY }}$	22		22		ns	1,9
$\mathrm{~T}_{\text {CHIH }}$	$\overline{\mathrm{TEST}}$, NMI, INT3:0, T1:OIN, ARDY	3		3		ns	1,9
$\mathrm{~T}_{\text {CLIS }}$	AD15:0 (AD7:0), ARDY, SRDY, DRQ1:0	22		22		ns	1,10
$\mathrm{~T}_{\text {CLIH }}$	AD15:0 (AD7:0), ARDY, SRDY, DRQ1:0	3		3		ns	1,10
$\mathrm{~T}_{\text {CLIS }}$	HOLD	22		22		ns	1,9
$\mathrm{~T}_{\text {CLIH }}$	HOLD	3		3		ns	1,9
$\mathrm{~T}_{\text {CLIS }}$	$\overline{\text { RESIN }}$ (to CLKIN)	22		22		ns	1,9
$\mathrm{~T}_{\text {CLIH }}$	$\overline{\text { RESIN }}$ (from CLKIN)	3		3		ns	1,9

NOTES:

1. See AC Timing Waveforms, for waveforms and definition.
2. Measured at V_{IH} for high time, V_{IL} for low time.
3. Only required to guarantee I_{CC}. Maximum limits are bounded by $\mathrm{T}_{\mathrm{C}}, \mathrm{T}_{\mathrm{CH}}$ and T_{CL}.
4. Specified for a 50 pF load, see Figure 13 for capacitive derating information.
5. Specified for a 50 pF load, see Figure 14 for rise and fall times outside 50 pF .
6. See Figure 14 for rise and fall times.
7. $\mathrm{T}_{\mathrm{CHOV} 1}$ applies to $\overline{\mathrm{BHE}}$ ($\overline{\mathrm{RFSH}}$), $\overline{\mathrm{LOCK}}$ and A19:16 only after a HOLD release.
8. $\mathrm{T}_{\mathrm{CHOV} 2}$ applies to RD and WR only after a HOLD release.
9. Setup and Hold are required to guarantee recognition.
10. Setup and Hold are required for proper operation.
11. $\mathrm{T}_{\text {CHOVs }}$ applies to $\overline{\mathrm{BHE}}$ ($\overline{\mathrm{RFSH}}$) and A19:16 only after a HOLD release.
12. Pin names in parentheses apply to the 80C188EA/80L188EA.

AC SPECIFICATIONS (Continued)

Relative Timings (80C186EA25/20/13, 80L186EA13/8)

Symbol	Parameter	Min	Max	Unit	Notes
RELATIVE TIMINGS					
TLHLL	ALE Rising to ALE Falling	T-15		ns	
$\mathrm{T}_{\text {AVLL }}$	Address Valid to ALE Falling	$1 / 2 \mathrm{~T}-10$		ns	
TPLLL	Chip Selects Valid to ALE Falling	$1 / 2 \mathrm{~T}-10$		ns	1
TLLAX	Address Hold from ALE Falling	$1 / 2 \mathrm{~T}-10$		ns	
TLLWL	ALE Falling to $\overline{\mathrm{WR}}$ Falling	$1 / 2 \mathrm{~T}-15$		ns	1
TLLRL	ALE Falling to $\overline{\mathrm{RD}}$ Falling	$1 / 2 T-15$		ns	1
TRHLH	$\overline{\mathrm{RD}}$ Rising to ALE Rising	$1 / 2 T-10$		ns	1
TWHLH	$\overline{\text { WR Rising to ALE Rising }}$	$1 / 2 \mathrm{~T}-10$		ns	1
$\mathrm{T}_{\text {AFRL }}$	Address Float to $\overline{\mathrm{RD}}$ Falling	0		ns	
$\mathrm{T}_{\text {RLRH }}$	$\overline{\mathrm{RD}}$ Falling to $\overline{\mathrm{RD}}$ Rising	(2*T) - 5		ns	2
TWLWH	$\overline{\text { WR }}$ Falling to $\overline{\mathrm{WR}}$ Rising	(2*T) - 5		ns	2
TRHAV	$\overline{\mathrm{RD}}$ Rising to Address Active	T-15		ns	
T WHDX	Output Data Hold after $\overline{\text { WR Rising }}$	T-15		ns	
T WHDEX	$\overline{\text { WR Rising to } \overline{\text { DEN }} \text { Rising }}$	$1 / 2 T-10$		ns	1
TWHPH	$\overline{\text { WR Rising to Chip Select Rising }}$	$1 / 2 \mathrm{~T}-10$		ns	1,4
TRHPH	$\overline{\mathrm{RD}}$ Rising to Chip Select Rising	$1 / 2 \mathrm{~T}-10$		ns	1, 4
$\mathrm{T}_{\text {PHPL }}$	$\overline{\mathrm{CS}}$ Inactive to $\overline{\mathrm{CS}}$ Active	$1 / 2 \mathrm{~T}-10$		ns	1
T DXDL	$\overline{\text { DEN }}$ Inactive to DT/石 Low	0		ns	5
ToVRH	ONCE ($\overline{\text { UCS, }}$ LCS) Active to $\overline{\text { RESIN }}$ Rising	T		ns	3
TRHOX	ONCE (UCS, LCS) to RESIN Rising	T		ns	3

NOTES:

1. Assumes equal loading on both pins.
2. Can be extended using wait states.
3. Not tested.
4. Not applicable to latched A2:1. These signals change only on falling T_{1}.
5. For write cycle followed by read cycle.
6. Operating conditions for 25 MHz are $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%$.

AC TEST CONDITIONS

The AC specifications are tested with the 50 pF load shown in Figure 8. See the Derating Curves section to see how timings vary with load capacitance.

Specifications are measured at the $\mathrm{V}_{\mathrm{CC}} / 2$ crossing point, unless otherwise specified. See AC Timing Waveforms, for AC specification definitions, test pins, and illustrations.

AC TIMING WAVEFORMS

Figure 9. Input and Output Clock Waveform

Figure 10. Output Delay and Float Waveform

NOTE:
RESIN measured to CLKIN, not CLKOUT
Figure 11. Input Setup and Hold

Figure 12. Relative Signal Waveform

DERATING CURVES

Figure 13. Typical Output Delay Variations Versus Load Capacitance

RESET

The processor performs a reset operation any time the RESIN pin is active. The RESIN pin is actually synchronized before it is presented internally, which means that the clock must be operating before a reset can take effect. From a power-on state, RESIN must be held active (low) in order to guarantee correct initialization of the processor. Failure to provide RESIN while the device is powering up will result in unspecified operation of the device.

Figure 15 shows the correct reset sequence when first applying power to the processor. An external clock connected to CLKIN must not exceed the V_{CC} threshold being applied to the processor. This is normally not a problem if the clock driver is supplied with the same V_{CC} that supplies the processor. When attaching a crystal to the device, RESIN must remain active until both V_{CC} and CLKOUT are stable (the length of time is application specific and depends on the startup characteristics of the crystal circuit). The RESIN pin is designed to operate correctly using an RC reset circuit, but the designer

Figure 14. Typical Rise and Fall Variations Versus Load Capacitance
must ensure that the ramp time for V_{CC} is not so long that $\overline{\text { RESIN }}$ is never really sampled at a logic low level when $V_{C C}$ reaches minimum operating conditions.

Figure 16 shows the timing sequence when RESIN is applied after V_{CC} is stable and the device has been operating. Note that a reset will terminate all activity and return the processor to a known operating state. Any bus operation that is in progress at the time RESIN is asserted will terminate immediately (note that most control signals will be driven to their inactive state first before floating).

While $\overline{\mathrm{RESIN}}$ is active, signals $\overline{\mathrm{RD}} / \overline{\mathrm{QSMD}}, \overline{\mathrm{UCS}}$, LCS, MCSO/PEREQ, MCS1/ERROR, LOCK, and TEST/BUSY are configured as inputs and weakly held high by internal pullup transistors. Forcing UCS and $\overline{\text { LCS }}$ low selects ONCE Mode. Forcing QSMD low selects Queue Status Mode. Forcing TEST/ BUSY high at reset and low four clocks later enables Numerics Mode. Forcing LOCK low is prohibited and results in unspecified operation.

Figure 15. Powerup Reset Waveforms
inted.

Figure 16. Warm Reset Waveforms

BUS CYCLE WAVEFORMS

Figures 17 through 23 present the various bus cycles that are generated by the processor. What is shown in the figure is the relationship of the various bus signals to CLKOUT. These figures along with the information present in AC Specifications allow the user to determine all the critical timing analysis needed for a given application.

Figure 17. Read, Fetch and Refresh Cycle Waveform

intal.

Figure 18. Write Cycle Waveform
PRELUMONARY

Figure 19. Halt Cycle Waveform
inted.

Figure 20. INTA Cycle Waveform

Figure 21. HOLD/HLDA Waveform
PRELIMANARY
inted.

Figure 22. DRAM Refresh Cycle During Hold Acknowledge

Figure 23. Ready Waveform

80C186EA/80C188EA EXECUTION TIMINGS

A determination of program exeuction timing must consider the bus cycles necessary to prefetch instructions as well as the number of execution unit cycles necessary to execute instructions. The following instruction timings represent the minimum execution time in clock cycle for each instruction. The timings given are based on the following assumptions:

- The opcode, along with any data or displacement required for execution of a particular instruction, has been prefetched and resides in the queue at the time it is needed.
- No wait states or bus HOLDs occur.
- All word-data is located on even-address boundaries. (80C186EA only)

All jumps and calls include the time required to fetch the opcode of the next instruction at the destination address.

All instructions which involve memory accesses can require one or two additional clocks above the minimum timings shown due to the asynchronous handshake between the bus interface unit (BIU) and execution unit.

With a 16-bit BIU, the 80C186EA has sufficient bus performance to endure that an adequate number of prefetched bytes will reside in the queue (6 bytes) most of the time. Therefore, actual program exeuction time will not be substanially greater than that derived from adding the instruction timings shown.

The 80C188EA 8-bit BIU is limited in its performance relative to the execution unit. A sufficient number of prefetched bytes may not reside in the prefetch queue (4 bytes) much of the time. Therefore, actual program execution time will be substantially greater than that derived from adding the instruction timings shown.

INSTRUCTION SET SUMMARY

Function	Format				80C186EA Clock	80C188EA Clock	Comments
DATA TRANSFER MOV = Move:							
Register to Register/Memory	1000100 w	mod reg r/m			2/12	2/12*	
Register/memory to register	1000101 w	mod reg r/m			2/9	2/9	
Immediate to register/memory	1100011 w	$\bmod 000 \mathrm{r} / \mathrm{m}$	data	data if $w=1$	12-13	12-13	8/16-bit
Immediate to register	1011 w reg	data	data if $w=1$		3-4	3-4	8/16-bit
Memory to accumulator	1010000 w	addr-low	addr-high		8	8*	
Accumulator to memory	1010001 w	addr-low	addr-high		9	9*	
Register/memory to segment register	10001110	$\bmod 0 \mathrm{reg} \mathrm{r} / \mathrm{m}$			2/9	2/13	
Segment register to register/memory	10001100	$\bmod 0 \mathrm{reg} \mathrm{r} / \mathrm{m}$			2/11	2/15	
PUSH = Push:							
Memory	11111111	$\bmod 110 \mathrm{r} / \mathrm{m}$			16	20	
Register	01010 reg				10	14	
Segment register	000 reg 110				9	13	
Immediate	011010 s 0	data	data if $s=0$		10	14	
PUSHA = Push All	01100000				36	68	
POP = Pop:							
Memory	10001111	$\bmod 000 \mathrm{r} / \mathrm{m}$			20	24	
Register	01011 reg				10	14	
Segment register	000 reg 111	$(\mathrm{reg}=01$)			8	12	
POPA $=$ Pop All	01100001				51	83	
XCHG = Exchange:							
Register/memory with register	1000011 w	mod reg r/m			4/17	4/17*	
Register with accumulator	10010 reg				3	3	
$\mathbf{I N}=$ Input from:							
Fixed port	1110010 w	port			10	10*	
Variable port	1110110 w				8	7*	
OUT = Output to:							
Fixed port	1110011 w	port			9	9*	
Variable port	1110111 w				7	7*	
XLAT $=$ Translate byte to AL	11010111				11	15	
LEA = Load EA to register	10001101	mod reg r/m			6	6	
LDS = Load pointer to DS	11000101	mod reg r/m	$(\bmod =11)$		18	26	
LES = Load pointer to ES	11000100	mod reg r/m	$(\bmod =11)$		18	26	
LAHF = Load AH with flags	10011111				2	2	
SAHF $=$ Store AH into flags	10011110				3	3	
PUSHF $=$ Push flags	10011100				9	13	
POPF $=$ Pop flags	10011101				8	12	

Shaded areas indicate instructions not available in 8086/8088 microsystems.

NOTE:

*Clock cycles shown for byte transfers. For word operations, add 4 clock cycles for all memory transfers.

INSTRUCTION SET SUMMARY (Continued)

Function	Format				80C186EA Clock	80C188EA Clock	Comments
DATA TRANSFER (Continued)							
SEGMENT = Segment Override:							
CS	00101110				2	2	
SS	00110110				2	2	
DS	00111110				2	2	
ES	00100110				2	2	
ARITHMETIC ADD = Add:							
Reg/memory with register to either	000000 dw	mod reg r/m			3/10	3/10*	
Immediate to register/memory	100000 sw	$\bmod 000 \mathrm{r} / \mathrm{m}$	data	data if s w $=01$	4/16	4/16*	
Immediate to accumulator	0000010 w	data	data if $w=1$		3/4	3/4	8/16-bit
ADC = Add with carry:							
Reg/memory with register to either	000100 dw	mod reg r/m			3/10	3/10*	
Immediate to register/memory	100000 sw	$\bmod 010 \mathrm{r} / \mathrm{m}$	data	data if $\mathrm{s} w=01$	4/16	4/16*	
Immediate to accumulator	0001010 w	data	data if $w=1$		3/4	$3 / 4$	8/16-bit
INC = Increment:							
Register/memory	1111111 w	$\bmod 000 \mathrm{r} / \mathrm{m}$			3/15	3/15*	
Register	01000 reg				3	3	
SUB = Subtract:							
Reg/memory and register to either	001010 dw	mod reg r/m			3/10	3/10*	
Immediate from register/memory	100000 sw	$\bmod 101 \mathrm{r} / \mathrm{m}$	data	data if $s \mathrm{w}=01$	4/16	4/16*	
Immediate from accumulator	0010110 w	data	data if $w=1$		3/4	3/4	8/16-bit
SBB = Subtract with borrow:							
Reg/memory and register to either	000110 dw	mod reg r/m			3/10	3/10*	
Immediate from register/memory	100000 sw	$\bmod 011 \mathrm{r} / \mathrm{m}$	data	data if s w $=01$	4/16	4/16*	
Immediate from accumulator	0001110 w	data	data if $w=1$		3/4	$3 / 4^{*}$	8/16-bit
DEC $=$ Decrement							
Register/memory	1111111 w	$\bmod 001 \mathrm{r} / \mathrm{m}$			3/15	3/15*	
Register	01001 reg				3	3	
CMP = Compare:							
Register/memory with register	0011101 w	mod reg r/m			3/10	3/10*	
Register with register/memory	0011100 w	mod reg r/m			3/10	3/10*	
Immediate with register/memory	100000 sw	$\bmod 111 \mathrm{r} / \mathrm{m}$	data	data if s w=01	3/10	3/10*	
Immediate with accumulator	0011110 w	data	data if $w=1$		3/4	3/4	8/16-bit
NEG = Change sign register/memory	1111011 w	$\bmod 011 \mathrm{r} / \mathrm{m}$			3/10*	3/10*	
AAA $=$ ASCII adjust for add	00110111				8	8	
DAA $=$ Decimal adjust for add	00100111				4	4	
AAS = ASCII adjust for subtract	00111111				7	7	
DAS = Decimal adjust for subtract	00101111				4	4	
MUL $=$ Multiply (unsigned):	1111011 w	$\bmod 100 \mathrm{r} / \mathrm{m}$					
Register-Byte					26-28	26-28	
Register-Word					35-37	35-37	
Memory-Byte					32-34	32-34	
Memory-Word					41-43	41-48*	

Shaded areas indicate instructions not available in $8086 / 8088$ microsystems.

NOTE:

*Clock cycles shown for byte transfers. For word operations, add 4 clock cycles for all memory transfers.
PRERUMONARY

INSTRUCTION SET SUMMARY (Continued)

Shaded areas indicate instructions not available in 8086/8088 microsystems.

NOTE:

*Clock cycles shown for byte transfers. For word operations, add 4 clock cycles for all memory transfers.

INSTRUCTION SET SUMMARY (Continued)

Function	Format				80C186EA Clock	80C188EA Clock	Comments
LOGIC (Continued) XOR = Exclusive or:							
Reg/memory and register to either	001100 dw	mod reg r/m			3/10	3/10*	
Immediate to register/memory	1000000 w	mod 110 r/m	data	data if $w=1$	4/16	4/16*	
Immediate to accumulator	0011010 w	data	data if $w=1$		3/4	3/4	8/16-bit
NOT = Invert register/memory	1111011 w	$\bmod 010 \mathrm{r} / \mathrm{m}$			3/10	3/10*	
STRING MANIPULATION							
MOVS = Move byte/word	1010010 w				14	14*	
CMPS $=$ Compare byte/word	1010011 w				22	22*	
SCAS $=$ Scan byte/word	1010111 w				15	15*	
LODS = Load byte/wd to AL/AX	1010110 w				12	12*	
STOS = Store byte/wd from AL/AX	1010101 w				10	10*	
INS = Input byte/wd from DX port	0110110 w				14	14	
OUTS = Output byte/wd to DX port	0110111 w				14	14	
Repeated by count in CX (REP/REPE/REPZ/REPNE/REPNZ)							
MOVS = Move string	11110010	1010010 w			$8+8 n$	$8+8{ }^{*}$	
CMPS = Compare string	1111001 z	1010011 w			$5+22 n$	$5+22 n$	
SCAS $=$ Scan string	1111001 z	1010111 w			$5+15 n$	$5+15{ }^{*}$	
LODS = Load string	11110010	1010110 w			$6+11 n$	$6+11{ }^{*}$	
STOS $=$ Store string	11110010	1010101 w			$6+9 n$	$6+9{ }^{*}$	
INS $=$ Input string	11110010	0110110 w			$8+8 n$	$8+8{ }^{*}$	
OUTS = Output string	11110010	0110111 w			$8+8 n$	$8+8{ }^{*}$	
CONTROL TRANSFER							
CALL = Call:							
Direct within segment	11101000	disp-low	disp-high		15	19	
Register/memory	11111111	$\bmod 010 \mathrm{r} / \mathrm{m}$			13/19	17/27	
indirect within segment							
Direct intersegment	10011010	segment offset			23	31	
		segment selector					
Indirect intersegment	11111111	$\bmod 011 \mathrm{r} / \mathrm{m}$	$(\bmod \neq 11)$		38	54	
JMP = Unconditional jump:							
Short/long	11101011	disp-low			14	14	
Direct within segment	11101001	disp-low	disp-high		14	14	
Register/memory indirect within segment	11111111	$\bmod 100 \mathrm{r} / \mathrm{m}$			11/17	11/21	
Direct intersegment	11101010	segment offset			14	14	
		segment selector					
Indirect intersegment	11111111	$\bmod 101 \mathrm{r} / \mathrm{m}$	$(\bmod \neq 11)$		26	34	

Shaded areas indicate instructions not available in $8086 / 8088$ microsystems.

NOTE:

*Clock cycles shown for byte transfers. For word operations, add 4 clock cycles for all memory transfers.
PRELINMONARY

INSTRUCTION SET SUMMARY (Continued)

Function	Format				80C186EA Clock Cycles	80C188EA Clock Cycles	Comments
CONTROL TRANSFER (Continued) RET $=$ Return from CALL:							
Within segment	11000011				16	20	
Within seg adding immed to SP	11000010	data-low	data-high		18	22	
Intersegment	11001011				22	30	
Intersegment adding immediate to SP	11001010	data-low	data-high		25	33	
JE/JZ = Jump on equal/zero	01110100	disp			4/13	4/13	JMP not
JL/JNGE = Jump on less/not greater or equal	01111100	disp			4/13	4/13	taken/JMP taken
JLE/JNG = Jump on less or equal/not greater	01111110	disp			4/13	4/13	
JB/JNAE $=$ Jump on below/not above or equal	01110010	disp			4/13	4/13	
JBE/JNA = Jump on below or equal/not above	01110110	disp			4/13	4/13	
JP/JPE = Jump on parity/parity even	01111010	disp			4/13	4/13	
JO = Jump on overflow	01110000	disp			4/13	4/13	
JS = Jump on sign	01111000	disp			4/13	4/13	
JNE/JNZ = Jump on not equal/not zero	01110101	disp			4/13	4/13	
JNL/JGE = Jump on not less/greater or equal	01111101	disp			4/13	4/13	
JNLE/JG = Jump on not less or equal/greater	01111111	disp			4/13	4/13	
JNB/JAE $=$ Jump on not below/above or equal	01110011	disp			4/13	4/13	
JNBE/JA = Jump on not below or equal/above	01110111	disp			4/13	4/13	
JNP/JPO = Jump on not par/par odd	01111011	disp			4/13	4/13	
JNO = Jump on not overflow	01110001	disp			4/13	4/13	
JNS = Jump on not sign	01111001	disp			4/13	4/13	
JCXZ $=$ Jump on CX zero	11100011	disp			5/15	5/15	
LOOP $=$ Loop CX times	11100010	disp			6/16	6/16	LOOP not
LOOPZ/LOOPE = Loop while zero/equal	11100001	disp			6/16	6/16	taken/LOOP taken
LOOPNZ/LOOPNE = Loop while not zero/equal	11100000	disp			6/16	6/16	
ENTER = Enter Procedure	11001000	data-low	data-high	L			
$\mathrm{L}=0$					15	19	
$L=1$					25	29	
$L>1$					$22+16(n-1)$	$26+20(n-1)$	
LEAVE = Leave Procedure	11001001				8	8	
INT $=$ Interrupt:							
Type specified	11001101	type			47	47	
Type 3	11001100				45	45	if INT. taken/
INTO $=$ Interrupt on overflow	11001110				48/4	48/4	if INT. not taken
IRET $=$ Interrupt return	11001111				28	28	
BOUND $=$ Detect value out of range	01100010	mod reg r/m			33-35	33-35	

Shaded areas indicate instructions not available in $8086 / 8088$ microsystems.

NOTE:

*Clock cycles shown for byte transfers. For word operations, add 4 clock cycles for all memory transfers.

INSTRUCTION SET SUMMARY (Continued)

Function		Format	80C186EA Clock Cycles	80C188EA Clock Cycles	Comments
PROCESSOR CONTROL					
CLC $=$ Clear carry	11111000		2	2	
CMC $=$ Complement carry	11110101		2	2	
STC $=$ Set carry	11111001		2	2	
CLD $=$ Clear direction	11111100		2	2	
STD $=$ Set direction	11111101		2	2	
CLI $=$ Clear interrupt	11111010		2	2	
STI $=$ Set interrupt	11111011		2	2	
HLT $=$ Halt	11110100		2	2	
WAIT $=$ Wait	10011011		6	6	if $\overline{\text { TEST }}=0$
LOCK $=$ Bus lock prefix	11110000		2	2	
NOP $=$ No Operation	10010000		3	3	
	(TTT LLL are op	r extension)			

Shaded areas indicate instructions not available in 8086/8088 microsystems.

NOTE:

*Clock cycles shown for byte transfers. For word operations, add 4 clock cycles for all memory transfers.

The Effective Address (EA) of the memory operand is computed according to the mod and r/m fields:

od		1
if mod		00 then DISP $=0$ *, disp-low and disp high are absent
if mod		01 then DISP = disp-low sign-extended to 16 -bits, disp-high is absent
if mod		10 then DISP = disp-high: disp-low
if r / m	$=$	000 then EA $=(\mathrm{BX})+(\mathrm{SI})+$ DISP
if r / m	=	001 then EA $=(B X)+(D I)+$ DISP
if r / m	=	010 then EA $=(\mathrm{BP})+(\mathrm{SI})+$ DISP
if r / m		011 then EA $=(\mathrm{BP})+(\mathrm{DI})+$ DISP
if r / m	=	100 then EA $=(\mathrm{SI})+$ DISP
if r / m		101 then EA $=(\mathrm{DI})+$ DISP
if r / m		110 then EA $=(B P)+$ DISP*
if r / m	=	111 then EA $=(B X)+$ DISP

DISP follows 2nd byte of instruction (before data if required)
*except if $\bmod =00$ and $\mathrm{r} / \mathrm{m}=110$ then $\mathrm{EA}=$ disp-high: disp-low.

EA calculation time is 4 clock cycles for all modes, and is included in the execution times given whenever appropriate.

Segment Override Prefix

0	0	1	reg	1	1	0

reg is assigned according to the following:
Segment
Register
reg Register
00 ES

CS
SS
DS

REG is assigned according to the following table:

16-Bit $(\mathbf{w}=\mathbf{1})$	$\mathbf{8 - B i t}(\mathbf{w}=\mathbf{0})$
000 AX	000 AL
001 CX	001 CL
010 DX	010 DL
011 BX	011 BL
100 SP	100 AH
101 BP	101 CH
110 SI	110 DH
111 DI	111 BH

The physical addresses of all operands addressed by the BP register are computed using the SS segment register. The physical addresses of the destination operands of the string primitive operations (those addressed by the DI register) are computed using the ES segment, which may not be overridden.

REVISION HISTORY

Intel 80C186EA/80L186EA devices are marked with a 9-character alphanumeric Intel FPO number underneath the product number. This data sheet update is valid for devices with an "A", "B", " C ", " D ", or "E" as the ninth character in the FPO number, as illustrated in Figure 5 for the 68-lead PLCC package, Figure 6 for the 84-lead QFP (EIAJ) package, and Figure 7 for the 80 -lead SQFP device. Such devices may also be identified by reading a value of 01 H , $02 \mathrm{H}, 03 \mathrm{H}$ from the STEPID register.

This data sheet replaces the following data sheets:

```
272019-002-80C186EA
272020-002-80C188EA
272021-002-80L186EA
272022-002-80L188EA
272307-001—SB80C186EA/SB80L186EA
272308-001—SB80C188EA/SB80L188EA
```


ERRATA

An 80C186EA/80L186EA with a STEPID value of 01 H or 02 H has the following known errata. A device with a STEPID of 01 H or 02 H can be visually identified by noting the presence of an "A", "B", or "C" alpha character, next to the FPO number. The FPO number location is shown in Figures 5, 6, and 7.

1. An internal condition with the interrupt controller can cause no acknowledge cycle on the INTA1 line in response to INT1. This errata only occurs when Interrupt 1 is configured in cascade mode and a higher priority interrupt exists. This errata will not occur consistantly, it is dependent on interrupt timing.

An 80C186EA/80L186EA with a STEPID value of 03 H has no known errata. A device with a STEPID of 03 H can be visually identified by noting the presence of a "D" or "E" alpha character next to the FPO number. The FPO number location is shown in Figures 5,6 , and 7 .

