

1-Cell Li-Ion Battery Protection IC

NO.EA-323-181116

OUTLINE

The R5472 is high voltage tolerance CMOS-based protection IC for over-charge/discharge and over-current of rechargeable one-cell Lithium-ion (Li+)/Lithium polymer battery. The R5472 can detect overcharge/discharge of Li+ one-cell and excess load current, further include a short circuit protector for preventing large external short circuit current and the excess charge-current. The R5472 consists of four voltage detectors, a reference unit, a delay circuit, a short circuit detector, an oscillator, a counter, and a logic circuit.

When the R5472 detects over-charge or over-charge current, the output of Cout pin switches to "L" level, that is, the charger's negative pin level after the internal fixed delay time. When the R5472 detects over-discharge or excess discharge current, the output of Dout pin switches to "L" level after the internal fixed delay time.

After detecting over-charge or excess charge current, theR5472 can be reset and the output of COUT becomes "H" when a charger is disconnected from the battery pack, and the cell voltage becomes lower than overcharge detector threshold.

However, depending on the characteristics of external components such as MOSFETs, release conditions may be not enough just removing a charger from the battery pack. In that case, a kind of load must be set to release the over-charge detect.

If a charger is continuously connected to the battery pack, even if the cell voltage becomes lower than overcharge detector threshold, over-charge state is not released.

After detecting over-discharge voltage, connect a charger to the battery pack, and when the battery supply voltage becomes higher than over-discharge detector threshold, the R5472 is released and the voltage of DOUT pin becomes "H". If the battery is discharged lower than maximum voltage for inhibition of charger, recharge current is not acceptable. Once after detecting excess discharge-current or short circuit, the R5472 is released and DOUT level becomes "H" with detaching a battery pack from a load system. After detecting over-discharge, supply current is kept extremely low by halting internal circuits' operation.

When the output of COUT is "H", by setting the V- pin at equal or lower than the delay shortening mode voltage (Typ. -2.0V), the output delay can be shortened. Especially, the delay time of over charge detector can be reduced into approximately 1/110. Thus, testing time of protector circuit board can be reduced. Output type of COUT and DOUT is CMOS.

NO.EA-323-181116

FEATURES

Manufactured with High Voltage Tolerant Process	
Absolute Maximum Rating	- 30V
Low supply current	
Supply current (At normal mode)	· ΤΥΡ.4.0μΑ
Standby current ·····	- MAX 0.1μA
 High accuracy detector threshold 	
Over-charge detector ·····	· ±20mV
Over-discharge detector ·····	· ±35mV
Excess discharge-current detector	· ±10mV
Excess charge-current detector ·····	· ±10mV
 Variety of detector threshold 	
Over-charge detector threshold ······	4.1V to 4.405V in step of 0.005V
Over-discharge detector threshold	2.1V to 3.0V in step of 0.050V
Excess discharge-current threshold	· 0.050V to 0.12V in step of 0.005V
Excess charge-current threshold	· -0.050V to -0.12V in step of 0.005V
 Internal fixed Output delay time 	
Over-charge detector Output Delay	· 1.0s
Over-discharge detector Output Delay	· 20ms
Excess discharge-current detector Output Delay ····	· 12ms
Excess charge-current detector Output Delay ·······	· 16ms
Short Circuit detector Output Delay	· 250µs
Output Delay Time Shortening Function	· At Cou⊤ is "H", if V- level is set at −2.0V, the Output
Delay time of detect the over-charge and over-disc	charge can be reduced. (Delay Time for over-charge
becomes about 1/100 of normal state.)	
Conditions for release over-charge detector ······	· Latch type
Conditions for release over-discharge detector · · · · · · · · · · · · · · · · · · ·	· Latch type
0V-battery charge option ·····	· unacceptable
Ultra Small package	· R5472L : DFN1414-6 ,
	R5472K : DFN(PLP)1414-6

APPLICATIONS

- Li+ / Li Polymer protector of over-charge, over-discharge, excess-current for battery pack
- High precision protectors for smart-phones and any other gadgets using on board Li+ / Li Polymer battery

NO.EA-323-181116

SELECTION GUIDE

The input threshold of over-charge, over-discharge, excess discharge current, and the package and taping can be designated.

Selection Guide

Product Name	Package	Quantity per Reel	Pb Free	Halogen Free
R5472Lxxx\$*-TR	DFN1414-6	5,000 pcs	Yes	Yes
R5472Kxxx\$*-TR	DFN(PLP)1414-6	5,000 pcs	Yes	Yes

xxx: Set Voltage Code

Refer to R5472x Code List.

\$: Delay Time Version

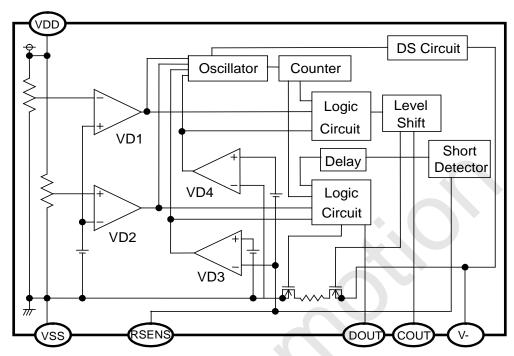
Version	t _{VDET1} (s)	t _{VDET2} (ms)	t _{VDET3} (ms)	t _{VDET4} (ms)	t _{SHORT} (µs)
С	1	20	12	16	250

*: Function Version

Version	Return from Over-Charge	Return from Over-Discharge	0-V Charge	
G	Latch	Latch	NG	

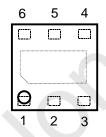
Product Code List

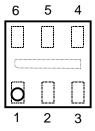
R5472LCode List


	Set Voltage [V]					Delay Time				Function		
Code	V _{DET1}	V _{REL1}	V _{DET2}	V _{REL2}	V _{DET3}	V _{DET4}	t _{VDET1}	t _{VDET2} (ms)	t _{VDET3} (ms)	t _{VDET4} (ms)	tshort (µs)	0V Charge
R5472L206CG	4.280	-	2.400	-	0.080	-0.060	1	20	12	16	250	NG
R5472L225CG	4.280	-	2.400	-	0.100	-0.080	1	20	12	16	250	NG
R5472L230CG	4.280	1	2.800	-	0.100	-0.080	1	20	12	16	250	NG
R5472L231CG	4.280	-	2.800	-	0.080	-0.060	1	20	12	16	250	NG

NO.EA-323-181116

R5472KCode List


	Set Voltage [V]					Delay Time				Function		
Code	V _{DET1}	V _{REL1}	V _{DET2}	V _{REL2}	V _{DET3}	V _{DET4}	t _{VDET1}	t _{VDET2} (ms)	t _{VDET3} (ms)	t _{VDET4} (ms)	t _{SHORT} (µs)	0V Charge
R5472K206CG	4.280	-	2.400	-	0.080	-0.060	1	20	12	16	250	NG
R5472K231CG	4.280	-	2.800	-	0.080	-0.060	1	20	12	16	250	NG
R5472K234CG	4.405	-	2.400	-	0.080	-0.050	1	20	12	16	250	NG
R5472K236CG	4.230	-	2.800	-	0.080	-0.060	1	20	12	16	250	NG
R5472K246CG	4.405	-	2.800	-	0.080	-0.060	1	20	12	16	250	NG
R5472K251CG	4.230	-	3.000	-	0.080	-0.060	1	20	12	16	250	NG
R5472K252CG	4.280	-	3.000	-	0.080	-0.060	1	20	12	16	250	NG


BLOCK DIAGRAM

R5472x Block Diagram

PIN DESCRIPTIONS

R5472L (DFN1414-6) Pin Configuration

R5472K (DFN(PLP)1414-6) Pin Configuration

R5472x Pin Description

Pin No.						
R5472L	L R5472K Syml		Description			
1	1	VSS	Vss pin. Ground pin for the IC			
2	2	VDD	Power supply pin, the substrate voltage level of the IC.			
3	3	RSENS	Input of overcurrent detection			
4	4	V-	Pin for charger negative input			
5	5	COUT	Output of over-charge detection, CMOS output			
6	6	DOUT	Output of over-discharge detection, CMOS output			

NO.EA-323-181116

ABSOLUTE MAXIMUM RATINGS

Absolute Maximum Ratings

 $(Ta = 25^{\circ}C, V_{SS} = 0 V)$

Symbol	Parameter	Ratings	Unit
V_{DD}	Supply Voltage	-0.3 to 12	V
V-	V- Pin Input Voltage	V _{DD} -30 to V _{DD} +0.3	V
VRSENS	RSENS Pin Input Voltage	V _{SS} -0.3 to V _{DD} +0.3	V
Vcouт	COUT Pin Output Voltage	V _{DD} -30 to V _{DD} +0.3	V
V_{DOUT}	DOUT Pin Output Voltage	Vss -0.3 to V _{DD} +0.3	V
Po	Power Dissipation	150	mW
Tj	Junction Temperature Range	-40 to 125	°C
Tstg	Storage Temperature Range	-55 to 125	°C

ABSOLUTE MAXIMUM RATINGS

Electronic and mechanical stress momentarily exceeded absolute maximum ratings may cause the permanent damages and may degrade the lifetime and safety for both device and system using the device in the field. The functional operation at or over these absolute maximum ratings is not assured.

RECOMMENDED OPERATING CONDITIONS

Recommended Operating Conditions

Symbol	Parameter	Rating	Unit
V_{DD1}	Operating Input Voltage	1.5 to 5.0	V
Та	Operating Temperature Range	−40 to 85	°C

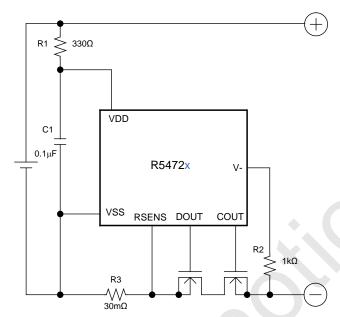
RECOMMENDED OPERATING CONDITIONS

All of electronic equipment should be designed that the mounted semiconductor devices operate within the recommended operating conditions. The semiconductor devices cannot operate normally over the recommended operating conditions, even if when they are used over such conditions by momentary electronic noise or surge. And the semiconductor devices may receive serious damage when they continue to operate over the recommended operating conditions.

ELECTRICAL CHARACTERISTICS

R5472x Electrical Characteristics	Unless otherwise provided, Ta = 25°C

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
-	Maximum Operating Voltage for	Voltage Defined as				
VNOCHG	Inhibition of Charger	V _{DD} -Vss, VDD-V- = 4V	0.4	0.7	1.0	V
V _{DET1}	Over-charge Threshold	R1=330Ω	V _{DET1}	V _{DET1}	V _{DET1}	V
	Voltage	V _{DD} =3.6V→4.4V	-0.020	1.0	+0.020	
tvDET1	Output Delay of Over-charge Release Delay for VD1	$V_{DD}=3.6V\rightarrow4.4V$ $V_{DD}=4V, V-=0V\rightarrow1V$	0.7 11	1.0	1.3 21	S
tvrel1	Release Delay for VDT	-		16		ms
V _{DET2}	Over-discharge Threshold	Detect falling edge of supply voltage	V _{DET2} -0.035	V _{DET2}	V _{DET2} +0.035	V
tvdet2	Output Delay of Over-discharge	V _{DD} =3.6V→2.0V	14	20	26	ms
tvrel2	Release Delay for VD2	V _{DD} =3V, V-=3V→0V	0.7	1.2	1.7	ms
V _{DET3}	Excess discharge-current threshold	Detect rising edge of 'RSENS' pin voltage V- = V _{RSENS}	V _{DET3} -0.010	V _{DET3}	V _{DET3} +0.010	V
tvdet3	Output delay of excess discharge-current	V_{DD} =3.0V, V_{RSENS} = 0V to 0.4V V - = V_{RSENS}	8	12	16	ms
tvrel3	Output delay of release from excess discharge-current	V_{DD} =3.0V, V-=3V to 0V V- = V_{RSENS}	0.7	1.2	1.7	ms
Vshort	Short Protection Voltage	V _{DD} =3.0V, V _{RSENS} =V-	0.41	0.5	0.59	V
tshort	Delay Time for Short Protection	V _{DD} =3.0V, V _{RSENS} =0V to 3V V- = V _{RSENS}	180	250	425	μs
Rshort	Reset Resistance for Excess Current Protection	V _{DD} =3.6V,V- =1.0V	20	45	70	kΩ
V _{DET4}	Excess charge-current threshold	Detect falling edge of 'RSENS' pin voltage V- = V _{RSENS}	V _{DET4} +0.010	V _{DET4}	V _{DET4} -0.010	V
t _{VDET4}	Output delay of excess charge-current	V_{DD} =3.0V, V_{RSENS} =0V to -0.3V V -= V_{RSENS}	11	16	21	ms
tvrel4	Output delay of release from excess charge-current	V_{DD} =3.0V, V- = -1V to 0V V- = V_{RSENS}	0.7	1.2	1.7	ms
V _{DS}	Delay Time Shortening Mode Voltage	V _{DD} =3.6V	-2.6	-2.0	-1.4	V
V _{OL1}	Nch ON-Voltage of Cout	Iol=50μA, V _{DD} =4.5V		0.4	0.5	V
V _{OH1}	Pch ON-Voltage of Cout	Ioh=-50μA, V _{DD} =3.9V	3.4	3.7		V
V _{OL2}	Nch ON-Voltage of Dout	Iol=50μA, V _{DD} =2.0V		0.2	0.5	V
V _{OH2}	Pch ON-Voltage of Dout	Ioh=-50μA, V _{DD} =3.9V	3.4	3.7		V
I _{DD}	Supply Current	V _{DD} =3.9V, V- =0V		4.0	8	μΑ
Istandby	Standby Current	V _{DD} =2.0V			0.1	μΑ


R5472x	Electrical	Charac	teristics

(-20°C ≤ Ta ≤ 60°C)

	Parameter	Conditions	Min.		Max	
Symbol	Parameter		win.	Тур.	Max.	Unit
VNOCHG	Maximum Operating Voltage	Voltage Defined as	0.27	0.7	1.1	V
	for Inhibition of Charger	V _{DD} -Vss, VDD-V-=4V				
V _{DET1}	Over-charge Threshold	R1=330Ω	V_{DET1}	V _{DET1}	V _{DET1}	V
	Voltage		-0.025		+0.025	
t _{VDET1}	Output Delay of Over-charge	V _{DD} =3.6V→4.4V	0.67	1.0	1.55	S
tvrel1	Release Delay for VD1	V _{DD} =4V, V-=0V→1V	10.7	16	24.8	ms
V _{DET2}	Over-discharge Threshold	Detect falling edge of	V _{DET2}	V _{DET2}	V _{DET2}	V
		supply voltage	-0.040	V DE 12	+0.040	
tvdet2	Output Delay of Over-discharge	V _{DD} =3.6V→2.0V	13.4	20	31	ms
tvrel2	Release Delay for VD2	V _{DD} =3V, V-=3V→0V	0.65	1.2	1.86	ms
V _{DET3}	Excess discharge-current threshold	Detect rising edge of	V _{DET3} -0.013	V _{DET3}	V _{DET3} +0.013	V
		'RSENS' pin voltage				
		V- = V _{RSENS}				
tvdet3	Output delay of excess	V _{DD} =3.0V,V _{RSENS} =0V to 0.4V	7.5	12	18.6	ms
	discharge-current	V- = V _{RSENS}		<u> </u>		
	Output delay of release	V _{DD} =3.0V, V-=3V to 0V	0.65	1.2	1.86	ms
	from excess discharge-current	V- = V _{RSENS}	0.4	0.5	0.0	V
VSHORT	Short Protection Voltage	V _{DD} =3.0V, V _{RSENS} =V-	0.4	0.5	0.6	V
tshort	Delay Time for Short Protection	V _{DD} =3.0V, V _{RSENS} =0V to 3V V- = V _{RSENS}	160	250	490	μs
Rshort	Reset Resistance for Excess	V _{DD} =3.6V,V- =1.0V	17.3	45	73.3	kΩ
	Current Protection	· ·				
VDET4	Excess charge-current threshold	Detect falling edge of	V _{DET4} -0.015	V _{DET4}	V _{DET4} +0.015	V
		'RSENS' pin voltage				
	Output delay of evenes	V- = V _{RSENS}				
	Output delay of excess charge-current	V _{DD} =3.0V,V _{RSENS} =0Vto -0.3V V- = V _{RSENS}				
t _{VREL4}	Output delay of release	V _{DD} =3.0V, V-=-1V to 0V	0.65	1.2	1.86	ms
	from excess charge-current	V- = V _{RSENS}				
V _{DS}	Delay Time Shortening Mode	V _{DD} =3.6V				
	Voltage		-2.7	-2.0	-1.2	V
V _{OL1}	Nch ON-Voltage of Cout	Iol=50μA, V _{DD} =4.5V		0.4	0.5	V
V _{OH1}	Pch ON-Voltage of Cout	Ioh=-50μA, V _{DD} =3.9V	3.4	3.7		V
V _{OL2}	Nch ON-Voltage of Dout	Iol=50μA, V _{DD} =2.0V		0.2	0.5	V
V _{OH2}	Pch ON-Voltage of Dout	Ioh=-50μA, V _{DD} =3.9V	3.4	3.7		V
I _{DD}	Supply Current	V _{DD} =3.9V, V- =0V		4.0	8.7	μΑ
Istandby	Standby Current	V _{DD} =2.0V			0.12	μΑ
	•	1				

Note: All of this specification is guaranteed by design, not mass production tested.

APPLICATION INFORMATION

R5472x Typical Application Circuit

Cautions in selecting external components

- R1 and C1 stabilize a supply voltage to the R5472. A recommended R1 value is less than 1kΩ. A large value of R1 makes detection voltage shift higher because of conduction current flown in the R5472. Further, to stabilize the operation of R5472, use the C1 with the value of 0.01μF or more.
- R1 and R2 can operate also as parts for current limit circuit against reverse charge or applying a charger with excess charging voltage to the R5472, battery pack. While small value of R1 and R2 may cause over power dissipation rating of the R5472, therefore a total of "R1+R2" should be 1kΩ or more. Besides, if large value of R2 is set, release from over-discharge by connecting a charger might not be possible. Recommended R2 value is equal or less than 10kΩ.
- R3 is resistor to sense overdischarge or overcharge current. Recommended R3 value is 30m Ω.
- The typical application circuit diagram is just an example. This circuit performance largely depends on the PCB layout and external components. In the actual application, fully evaluation is necessary.
- Over-voltage and the over current beyond the absolute maximum rating should not be forced to the protection IC and external components.
- If positive terminal and negative terminal of the battery pack short, even though the short protection circuit is built in the IC, during the delay time until detecting the shortcircuit, a large current may flow through the FET.Select an FET with large enough current capacity in order to endure the large current during the delay time.

NO.EA-323-181116

Sense resistance and on resistance of the MOSFET selection guideline

Please select external MOSFET and sense resistor by the following expression.

$$\frac{1.3}{(R3 + MOSFETsRon)} \ge \frac{\text{vshort}}{R3}$$

 $V_{SHORT} = 0.5(V)$

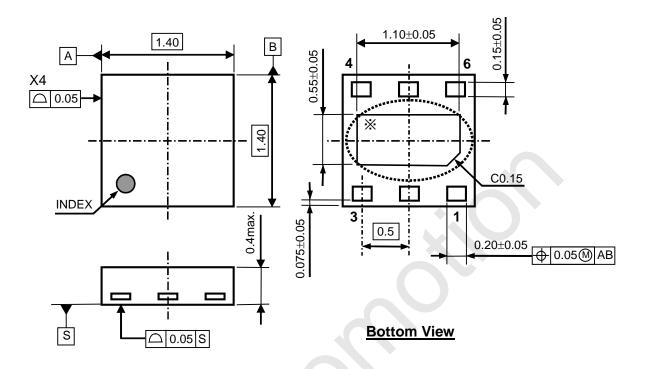
R3 = External current sense Resistance (Ω) MOSFETsRon = external MOSFET ON Resistance (Ω)

Notes:

ex.

*As the Rsense, in case the $10m\Omega$ is selected, to detect short at 50A with vshort=0.5V, The on resistance of the external MOSFET must be $15m\Omega$ or lower.

Otherwise, according to the Ron of the MOSFET, short current limit is lower than expected.

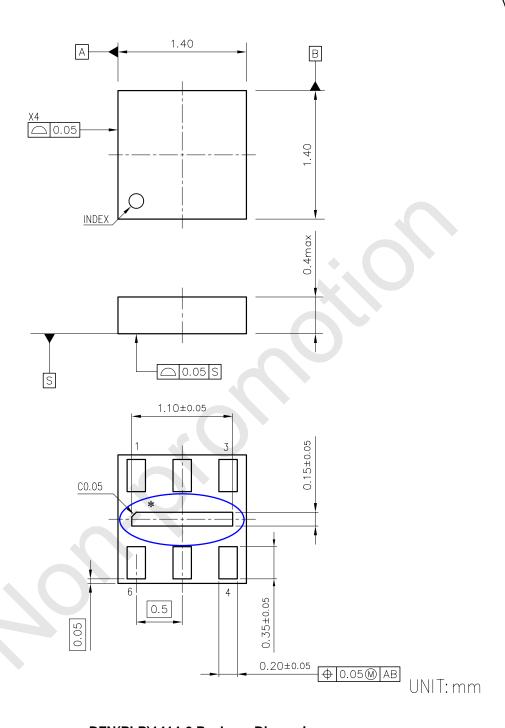

ex.

*As the Rsense, in case the $20m\Omega$ is selected, to detect short at 25A with vshort=0.5V, The on resistance of the external MOSFET must be $30m\Omega$ or lower.

ex.

*As the Rsense, in case the $30m\Omega$ is selected, to detect short at 16.6A with vshort=0.5V, The on resistance of the external MOSFETmust be $45m\Omega$ or lower.

Ver. A



HSOP-18 Package Dimensions (Unit: mm)

i

^{*} The tab on the bottom of the package shown by blue circle is a substrate potential (GND/V_{DD}). Do not connect to other wires or land patterns.

Ver. A

DFN(PLP)1414-6 Package Dimensions

i

^{*} The tab on the bottom of the package shown by blue circle is a substrate potential (VDD). It is recommended that this tab be connected to the VDD pin on the board but it is possible to leave the tab floating.

- 1. The products and the product specifications described in this document are subject to change or discontinuation of production without notice for reasons such as improvement. Therefore, before deciding to use the products, please refer to Ricoh sales representatives for the latest information thereon.
- 2. The materials in this document may not be copied or otherwise reproduced in whole or in part without prior written consent of Ricoh.
- 3. Please be sure to take any necessary formalities under relevant laws or regulations before exporting or otherwise taking out of your country the products or the technical information described herein.
- 4. The technical information described in this document shows typical characteristics of and example application circuits for the products. The release of such information is not to be construed as a warranty of or a grant of license under Ricoh's or any third party's intellectual property rights or any other rights.
- 5. The products listed in this document are intended and designed for use as general electronic components in standard applications (office equipment, telecommunication equipment, measuring instruments, consumer electronic products, amusement equipment etc.). Those customers intending to use a product in an application requiring extreme quality and reliability, for example, in a highly specific application where the failure or misoperation of the product could result in human injury or death (aircraft, spacevehicle, nuclear reactor control system, traffic control system, automotive and transportation equipment, combustion equipment, safety devices, life support system etc.) should first contact us.
- 6. We are making our continuous effort to improve the quality and reliability of our products, but semiconductor products are likely to fail with certain probability. In order to prevent any injury to persons or damages to property resulting from such failure, customers should be careful enough to incorporate safety measures in their design, such as redundancy feature, fire containment feature and fail-safe feature. We do not assume any liability or responsibility for any loss or damage arising from misuse or inappropriate use of the products.
- 7. Anti-radiation design is not implemented in the products described in this document.
- 8. The X-ray exposure can influence functions and characteristics of the products. Confirm the product functions and characteristics in the evaluation stage.
- 9. WLCSP products should be used in light shielded environments. The light exposure can influence functions and characteristics of the products under operation or storage.
- 10. There can be variation in the marking when different AOI (Automated Optical Inspection) equipment is used. In the case of recognizing the marking characteristic with AOI, please contact Ricoh sales or our distributor before attempting
- 11. Please contact Ricoh sales representatives should you have any questions or comments concerning the products or the technical information.

Ricoh is committed to reducing the environmental loading materials in electrical devices with a view to contributing to the protection of human health and the environment.

Halogen Free

Ricoh has been providing RoHS compliant products since April 1, 2006 and Halogen-free products since April 1, 2012.

RICOH RICOH ELECTRONIC DEVICES CO., LTD.

https://www.e-devices.ricoh.co.jp/en/

Sales & Support Offices

Ricoh Electronic Devices Co., Ltd.

Shin-Yokohama Office (International Sales)
2-3, Shin-Yokohama 3-chome, Kohoku-ku, Yokohama-shi, Kanagawa, 222-8530, Japan
Phone: +81-50-3814-7687 Fax: +81-45-474-0074

Ricoh Americas Holdings, Inc

way, Suite 200 Campbell, CA 95008, U.S.A.

675 Campbell Technology Part Phone: +1-408-610-3105

Ricoh Europe (Netherlands) B.V.

Semiconductor Support Centre

Prof. W.H. Keesomlaan 1, 1183 DJ Amstelveen, The Netherlands Phone: +31-20-5474-309

Ricoh International B.V. - German Branch

Semiconductor Sales and Support Centre Oberrather Strasse 6, 40472 Düsseldorf, Germany

Phone: +49-211-6546-0

Ricoh Electronic Devices Korea Co., Ltd.

3F, Haesung Bldg, 504, Teheran-ro, Gangnam-gu, Seoul, 135-725, Korea Phone: +82-2-2135-5700 Fax: +82-2-2051-5713

Ricoh Electronic Devices Shanghai Co., Ltd.

Room 403, No.2 Building, No.690 Bibo Road, Pu Dong New District, Shanghai 201203, People's Republic of China

Phone: +86-21-5027-3200 Fax: +86-21-5027-3299

Ricoh Electronic Devices Shanghai Co., Ltd. Shenzhen Branch

1205, Block D(Jinlong Building), Kingkey 100, Hongbao Road, Luohu District,

Shenzhen, China Phone: +86-755-8348-7600 Ext 225

Ricoh Electronic Devices Co., Ltd.

Taipei office
Room 109, 10F-1, No.51, Hengyang Rd., Taipei City, Taiwan
Phone: +886-2-2313-1621/1622 Fax: +886-2-2313-1623