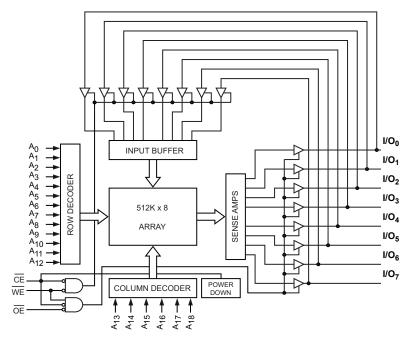


Features

- Very high speed: 55 ns □ Wide voltage range: 2.20 V to 3.60 V
- Temperature range: □ Automotive-E: -40 °C to +125 °C
- Pin compatible with CY62148DV30
- Ultra low standby power
 Typical standby current: 3 μA
 Maximum standby current: 20 μA
- Ultra low active power
 Typical active current: 2 mA at f = 1 MHz
- Easy memory expansion with CE and OE features
- Automatic power down when deselected
- Complementary metal oxide semiconductor (CMOS) for optimum speed and power
- Available in Pb-free, 32-pin thin small outline package (TSOP II).

Functional Description


The CY62148EV30LL Automotive is a high performance CMOS static RAM organized as 512 K words by 8 bits. This device features advanced circuit design to provide ultra low active current. This is ideal for providing More Battery LifeTM (MoBL[®]) in portable applications such as cellular telephones. The device also has an automatic power down feature that significantly reduces power consumption. Placing the device into standby mode reduces power consumption by more than 99 percent when deselected (CE HIGH). The eight input and output pins (I/O₀ through I/O₇) are placed in a high impedance state when the device is deselected (CE HIGH), the outputs are disabled (OE HIGH), or during a write operation (CE LOW and WE LOW).

To write to the device, take Chip Enable ($\overline{\text{CE}}$) and Write Enable ($\overline{\text{WE}}$) inputs LOW. Data on the eight I/O pins (I/O₀ through I/O₇) is then written into the location specified on the address pins (A₀ through A₁₈).

To read <u>from</u> the device, take Chip Enable (\overline{CE}) and Output Enable (\overline{OE}) LOW while forcing Write Enable (WE) HIGH. Under these conditions, the contents of the memory location specified by the address pins appear on the I/O pins.

For a complete list of related documentation, click here.

Logic Block Diagram

Contents

Pin Configuration	3
Product Portfolio	
Maximum Ratings	
Operating Range	
Electrical Characteristics	
Capacitance	
Thermal Resistance	
AC Test Loads and Waveforms	
Data Retention Characteristics	-
Data Retention Waveform	
Switching Characteristics	
Switching Waveforms	
Truth Table	

Ordering Information	12
Ordering Code Definitions	
Package Diagrams	
Acronyms	14
Document Conventions	14
Units of Measure	14
Document History Page	15
Sales, Solutions, and Legal Information	
Worldwide Sales and Design Support	
Products	
PSoC® Solutions	
Cypress Developer Community	
Technical Support	
e e e prese	

Pin Configuration

Figure 1. 32-pin TSOP II pinout (Top View) ^[1]

A ₁₇ □ 1	32 VCC
$A_{16} \square 2$	31 A15
A ₁₄ \square 3	₃₀ A ₁₈
A ₁₂ 4	29 🗖 WE
	28 A13
	27 A8
$A_5 \square_7$	₂₆ 🗖 A ₉
	₂₅ 🗖 A ₁₁
A ₃ \square_{9}	24 🗌 OE
	₂₃ 🗖 A ₁₀
	22 🗆 CE
	21 🗖 I/Ō7
	20 🗖 I/O ₆
	19 🛛 I/O ₅
	18 🗆 I/O4
V _{SS} 16	17 🗌 I/O3

Product Portfolio

							Po	ower Di	ssipati	on		
Produc		Pango	Vcc	; Range	e (V)	Speed	Op	erating	g I _{CC} (m	A)	Standb	oy I _{SB2}
Flouic	L	Range	(ns)		(ns)	f = 1	MHz	f = f		(μ.	A)	
			Min	Typ ^[2]	Мах		Typ ^[2]	Мах	Typ ^[2]	Мах	Typ ^[2]	Max
CY62148EV30LL	TSOP II	Automotive-E	2.2	3.0	3.6	55	2	3	15	30	3	20

Notes
NC pins are not connected on the die.
Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = V_{CC(typ)}, T_A = 25 °C.

Maximum Ratings

Exceeding the maximum ratings may shorten the useful life of the device. These user guidelines are not tested.

Storage temperature65 °C to +150 °C
Ambient temperature with power applied
Supply voltage to ground potential–0.3 V to $V_{CC(max)}$ + 0.3 V
DC voltage applied to outputs in High-Z State $^{[3,4]}$ 0.3 V to V_{CC(max)} + 0.3 V

DC input voltage $^{[3,\;4]}$ 0.3 V to V_{CC(max)} + 0.3 V
Output current into outputs (LOW) 20 mA
Static discharge voltage (MIL-STD-883, Method 3015) > 2001 V
Latch up current> 200 mA

Operating Range

Product	Range	Ambient Temperature	V_{CC} ^[5]
CY62148EV30LL Automotive	Automotive-E	–40 °C to +125 °C	2.2 V to 3.6 V

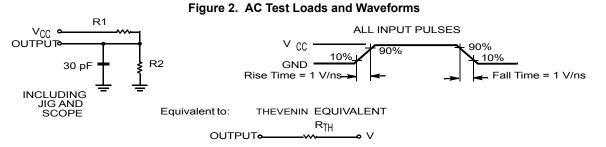
Electrical Characteristics

Over the Operating Range

Devenueter	Description	Test Canditians			Lin:4	
Parameter	Description	Test Conditions	Min	Тур ^[6]	Max	Unit
V _{OH}	Output high voltage	I _{OH} = -0.1 mA	2.0	-	-	V
		I_{OH} = -1.0 mA, $V_{CC} \ge 2.70$ V	2.4	-	-	V
V _{OL}	Output low voltage	I _{OL} = 0.1 mA	-	-	0.4	V
		I _{OL} = 2.1 mA, V _{CC} ≥ 2.70 V	-	-	0.4	V
V _{IH}	Input high voltage	V_{CC} = 2.2 V to 2.7 V	1.8	-	V _{CC} + 0.3 V	V
		V _{CC} = 2.7 V to 3.6 V	2.2	-	V _{CC} + 0.3 V	V
V _{IL}	Input low voltage	$V_{\rm CC}$ = 2.2 V to 2.7 V	-0.3	-	0.6	V
		V _{CC} = 2.7 V to 3.6 V	-0.3	-	0.8	V
I _{IX}	Input leakage current	$GND \le V_{IN} \le V_{CC}$	-5	_	+5	μA
I _{OZ}	Output leakage current	$GND \le V_O \le V_{CC}$, Output disabled	-5	_	+5	μA
I _{CC}	V _{CC} operating supply current	$\begin{array}{c} f = f_{max} = 1/t_{RC} \\ f = 1 \text{ MHz} \end{array} \begin{array}{c} V_{CC} = V_{CC(max)}, \\ I_{OUT} = 0 \text{ mA}, \end{array}$	-	15	30	mA
		f = 1 MHz I _{OUT} = 0 mA, CMOS levels	_	2	3	
I _{SB1} ^[7]	Automatic CE power down current – CMOS inputs		-	3	20	μΑ
		f = f _{max} (Address and Data Only), f = 0 (\overline{OE} and \overline{WE}), V _{CC} = 3.60 V				
I _{SB2} ^[7]	Automatic CE power down current – CMOS inputs	$\label{eq:VCC} \begin{split} \overline{CE} &\geq V_{CC} - 0.2 \ V, \\ V_{IN} &\geq V_{CC} - 0.2 \ V \ \text{or} \ V_{IN} \leq 0.2 \ V, \\ f &= 0, \ V_{CC} = 3.60 \ V \end{split}$	_	3	20	μΑ

Notes

- Notes
 V_{IL}(min) = -2.0V for pulse durations less than 20 ns.
 V_{IH}(max) = V_{CC} + 0.75 V for pulse durations less than 20 ns.
 Full device AC operation assumes a minimum of 100 μs ramp time from 0 to V_{CC}(min) and 200 μs wait time after V_{CC} stabilization.
 Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = V_{CC}(typ), T_A = 25 °C.
- 7. Chip Enable (CE) must be HIGH at CMOS level to meet the I_{SB1} / I_{SB2} / I_{CCDR} spec. Other inputs can be left floating.


Capacitance

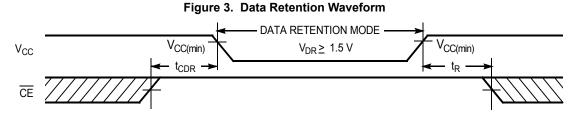
Parameter ^[8]	Description	Test Conditions	Max	Unit
C _{IN}	Input capacitance	$T_A = 25 \text{ °C}, f = 1 \text{ MHz}, V_{CC} = V_{CC(typ)}$	10	pF
C _{OUT}	Output capacitance		10	pF

Thermal Resistance

Parameter ^[8]	Description	Test Conditions	TSOP II Package	Unit
θ_{JA}	Thermal resistance (junction to ambient)	Still air, soldered on a 3×4.5 inch, four-layer printed circuit board	79.03	°C/W
θ^{JC}	Thermal resistance (junction to case)		17.44	°C/W

AC Test Loads and Waveforms

Parameters	2.50 V	3.0 V	Unit
R1	16667	1103	Ω
R2	15385	1554	Ω
R _{TH}	8000	645	Ω
V _{TH}	1.20	1.75	V



Data Retention Characteristics

Over the Operating Range

Parameter	Description	Conditions		Min	Typ ^[9]	Max	Unit
V _{DR}	V _{CC} for data retention			1.5	-	-	V
I _{CCDR} ^[10]	Data retention current	V _{CC} = 1.5 V,	Automotive-E	_	3	20	μΑ
		$\overline{\text{CE}} \ge \text{V}_{\text{CC}} - 0.2 \text{ V},$					
		$V_{IN} \ge V_{CC} - 0.2 \text{ V or}$ $V_{IN} \le 0.2 \text{ V}$					
t _{CDR} ^[11]	Chip deselect to data retention time			0	-	-	ns
t _R ^[12]	Operation recovery time			55	_	-	-

Data Retention Waveform

Notes

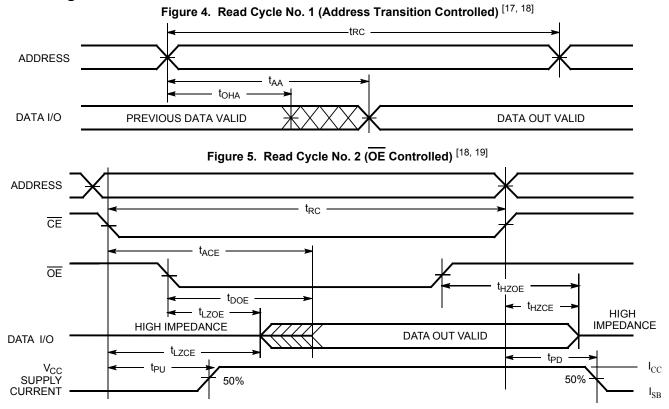
9. Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = V_{CC(typ)}, T_A = 25 °C.

10. Chip Enable ($\overline{\text{CE}}$) must be HIGH at CMOS level to meet the I_{SB1} / I_{SB2} / I_{CCDR} spec. Other inputs can be left floating. 11. Tested initially and after any design or process changes that may affect these parameters. 12. Full device AC operation requires linear V_{CC} ramp from V_{DR} to V_{CC(min)} \geq 100 µs or stable at V_{CC(min)} \geq 100 µs.

Switching Characteristics

Over the Operating Range

Parameter [13]	Description	-4	-55				
Parameter	Description		Max	Unit			
Read Cycle	tead Cycle						
t _{RC}	Read cycle time	55	_	ns			
t _{AA}	Address to data valid	_	55	ns			
t _{OHA}	Data hold from address change	10	-	ns			
t _{ACE}	CE LOW to data valid	-	55	ns			
t _{DOE}	OE LOW to data valid	_	25	ns			
t _{LZOE}	OE LOW to Low Z ^[14]	5	-	ns			
t _{HZOE}	OE HIGH to High Z ^[14, 15]	_	20	ns			
t _{LZCE}	CE LOW to Low Z ^[14]	10	-	ns			
t _{HZCE}	CE HIGH to High Z [14, 15]	-	20	ns			
t _{PU}	CE LOW to power up	0	-	ns			
t _{PD}	CE HIGH to power up	-	55	ns			
Write Cycle [16]							
t _{WC}	Write cycle time	55	-	ns			
t _{SCE}	CE LOW to write end	40	-	ns			
t _{AW}	Address setup to write end	40	-	ns			
t _{HA}	Address hold from write end	0	-	ns			
t _{SA}	Address setup to write start	0	_	ns			
t _{PWE}	WE pulse width	40	_	ns			
t _{SD}	Data setup to write end	25	_	ns			
t _{HD}	Data hold from write end	0	_	ns			
t _{HZWE}	WE LOW to High Z ^[14, 15]	-	20	ns			
t _{LZWE}	WE HIGH to Low Z ^[14]	10	_	ns			


Notes

Test Conditions for all parameters other than tri-state parameters assume signal transition time of 3 ns or less (1 V/ns), timing reference levels of V_{CC(typ)}/2, input pulse levels of 0 to V_{CC(typ)}, and output loading of the specified I_{OL}/I_{OH} as shown in the Figure 2 on page 5.
 At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE}, t_{HZOE} is less than t_{LZOE}, and t_{HZWE} for any given device.
 t_{HZOE}, t_{HZCE}, and t_{HZWE} transitions are measured when the output enter a high impedance state.

16. The internal write time of the memory is defined by the overlap of WE, CE = V_{IL}. All signals must be ACTIVE to initiate a write and any of these signals can terminate a write by going INACTIVE. The data input setup and hold timing must be referenced to the edge of the signal that terminates the write.

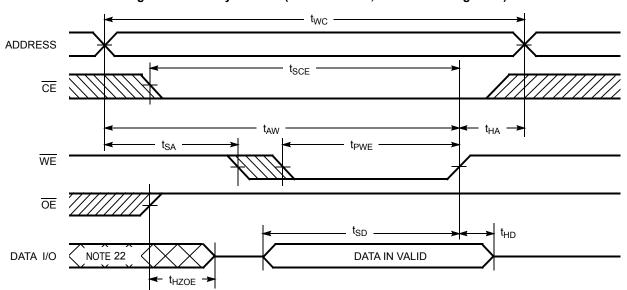
Switching Waveforms

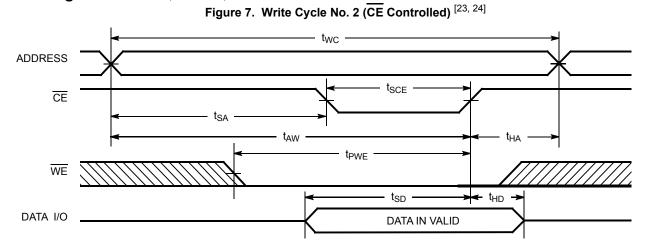
Notes

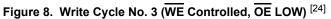
17. Device is continuously selected. \overline{OE} , $\overline{CE} = V_{IL}$.

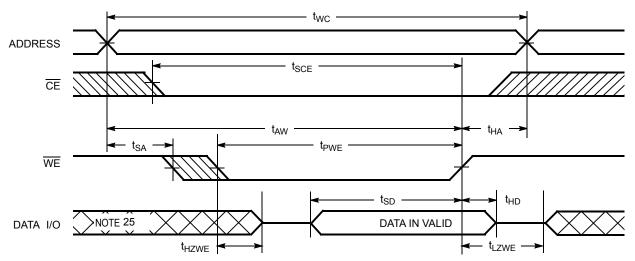
18. $\overline{\text{WE}}$ is HIGH for read cycles. 19. Address valid before or similar to $\overline{\text{CE}}$ transition LOW.

Switching Waveforms (continued)




Figure 6. Write Cycle No. 1 (WE Controlled, OE HIGH During Write) ^[20, 21]


Notes 20. Data I/O is high impedance if \overline{OE} = V_{IH}.


21. If $\overline{\text{CE}}$ goes HIGH simultaneously with $\overline{\text{WE}}$ HIGH, the output remains in high impedance state. 22. During this period, the I/Os are in output state. Do not apply input signals.

Switching Waveforms (continued)

Notes

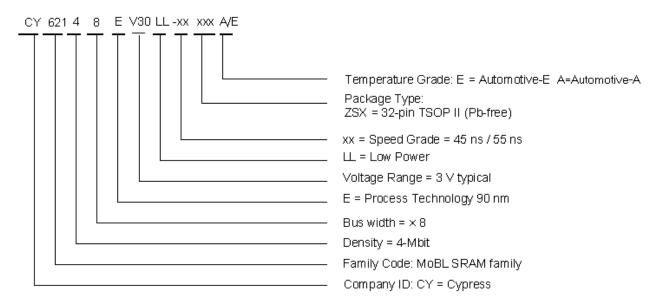
23. Data I/O is high impedance if $\overline{OE} = V_{IH}$.

24. If \overline{CE} goes HIGH simultaneously with \overline{WE} HIGH, the output remains in high impedance state. 25. During this period, the I/Os are in output state. Do not apply input signals.

Truth Table

CE [26]	WE	OE	Inputs/Outputs	Mode	Power
Н	Х	Х	High Z	Deselect/Power down	Standby (I _{SB})
L	Н	L	Data out	Read	Active (I _{CC})
L	Н	Н	High Z	Output disabled	Active (I _{CC})
L	L	Х	Data in	Write	Active (I _{CC})

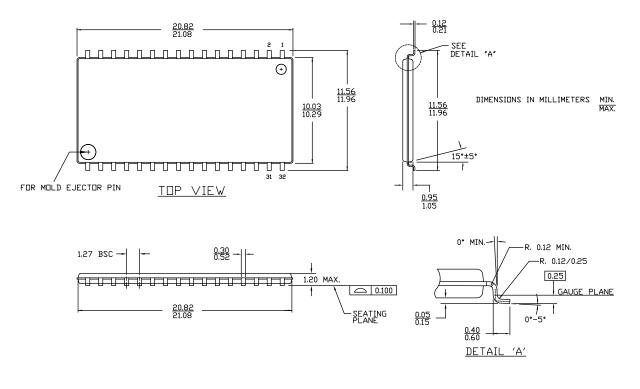
Notes 26. Chip enable must be at CMOS levels (not floating). Intermediate voltage levels on this pin is not permitted.



Ordering Information

Speed (ns)	Ordering Code	Package Diagram	Package Type	Operating Range
55	CY62148EV30LL-55ZSXE	51-85095	32-pin TSOP II	Automotive-E

Contact your local Cypress sales representative for availability of these parts.


Ordering Code Definitions

Package Diagrams

Figure 9. 32-pin TSOP II (20.95 × 11.76 × 1.0 mm) Package Outline, 51-85095

51-85095 *D

Acronyms

Acronym	Description			
BHE	Byte High Enable			
BLE	Byte Low Enable			
CMOS	Complementary Metal Oxide Semiconductor			
CE	Chip Enable			
I/O	Input/Output			
OE	Output Enable			
SRAM	Static Random Access Memory			
TSOP	Thin Small Outline Package			
WE	Write Enable			

Document Conventions

Units of Measure

Symbol	Unit of Measure		
°C	degree Celsius		
μA	microampere		
mA	milliampere		
ns	nanosecond		
pF	picofarad		
V	volt		
W	watt		

Document History Page

Document Title: CY62148EV30LL Automotive, 4-Mbit (512 K × 8) Static RAM Document Number: 001-73042				
Revision	ECN	Orig. of Change	Submission Date	Description of Change
**	3406557	TAVA	10/03/2012	New data sheet
*A	4321736	MEMJ	03/26/2014	Updated Ordering Information: No change in part numbers. Replaced "51-85081" with "51-85095" in Package Diagram column. Updated to new template.
*В	4573200	MEMJ	11/18/2014	Updated Functional Description: Added "For a complete list of related documentation, click here." at the end.
*C	4790712	NILE	06/08/2015	Updated Package Diagrams: spec 51-85095 – Changed revision from *B to *D. Updated to new template.
*D	4983120	NILE	10/26/2015	Updated Thermal Resistance: Replaced "two-layer" with "four-layer" in "Test Conditions" column. Changed value of θ_{JA} parameter corresponding to "TSOP II Package" from 75.13 °C/W to 79.03 °C/W. Changed value of θ_{JC} parameter corresponding to "TSOP II Package" from 8.95 °C/W to 17.44 °C/W. Completing Sunset Review.
*E	6013872	AESATP12	01/04/2018	Updated logo and copyright.

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

Arm [®] Cortex [®] Microcontrollers	cypress.com/arm
Automotive	cypress.com/automotive
Clocks & Buffers	cypress.com/clocks
Interface	cypress.com/interface
Internet of Things	cypress.com/iot
Memory	cypress.com/memory
Microcontrollers	cypress.com/mcu
PSoC	cypress.com/psoc
Power Management ICs	cypress.com/pmic
Touch Sensing	cypress.com/touch
USB Controllers	cypress.com/usb
Wireless Connectivity	cypress.com/wireless

PSoC[®] Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6 MCU

Cypress Developer Community Community | Projects | Video | Blogs | Training | Components

Technical Support cypress.com/support

© Cypress Semiconductor Corporation, 2012-2018. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not therwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. No computing device can be absolutely secure. Therefore, despite security measures implemented in Cypress hardware or software products, Cypress does not assume any liability arising out of any security breach, such as unauthorized access to or use of a Cypress product. In addition, the products described in these materials may contain design defects or errors known as errata which may cause the product to deviate from published specifications. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or system could cause personal injury, death, or properly damage ("Unintended Uses"). A critical component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to any Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.