

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All recreations are done with the approval of the OCM.

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceed the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-35835
 - Class Q Military
 - Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)
- Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OEM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

Quad 2-Input Multiplexer

The LSTTL/MSI SN74LS157 is a high speed Quad 2-Input Multiplexer. Four bits of data from two sources can be selected using the common Select and Enable inputs. The four buffered outputs present the selected data in the true (non-inverted) form. The LS157 can also be used to generate any four of the 16 different functions of two variables. The LS157 is fabricated with the Schottky barrier diode process for high speed and is completely compatible with all ON Semiconductor TTL families.

- Schottky Process for High Speed
- Multifunction Capability
- Non-Inverting Outputs
- Input Clamp Diodes Limit High Speed Termination Effects
- Special Circuitry Ensures Glitch Free Multiplexing
- ESD > 3500 Volts

GUARANTEED OPERATING RANGES

						_	
Symbol	Parameter	Min	Тур	Max	Unit		
V _{CC}	Supply Voltage	4.75	5.0	5.25	V	S)
T _A	Operating Ambient Temperature Range	0	25	70	°C	9	G
I _{OH}	Output Current - High			-0.4	mA	0	ŀ
I _{OL}	Output Current - Low			8.0	mA		Q
	PLEA	SE C	PAF			_	
						SI	N7
							_

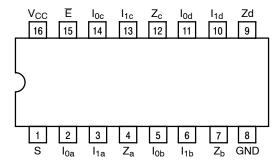
ON Semiconductor™

http://onsemi.com

LOW POWER SCHOTTKY

PLASTIC N SUFFIX CASE 648

SOIC D SUFFIX CASE 751B



SOEIAJ M SUFFIX CASE 966

ORDERING INFORMATION

Device	Package	Shipping
SN74LS157N	16 Pin DIP	2000 Units/Box
SN74LS157D	SOIC-16	38 Units/Rail
SN74LS157DR2	SOIC-16	2500/Tape & Reel
SN74LS157M	SOEIAJ-16	See Note 1
SN74LS157MEL	SOEIAJ-16	See Note 1

 For ordering information on the EIAJ version of the SOIC package, please contact your local ON Semiconductor representative.

NOTE: The Flatpak version has the same pinouts (Connection Diagram) as

the Dual In-Line Package.

		LOADING	(Note a)
PIN NAMES		HIGH	LOW
S \overline{E} $I_{0a} - I_{0d}$ $I_{1a} - I_{1d}$ $Z_a - Z_d$	Common Select Input Enable (Active LOW) Input Data Inputs from Source 0 Data Inputs from Source 1 Multiplexer Outputs	1.0 U.L. 1.0 U.L. 0.5 U.L. 0.5 U.L. 10 U.L.	0.5 U.L. 0.5 U.L. 0.25 U.L. 0.25 U.L. 5 U.L.

NOTES: a) 1 TTL Unit Load (U.L.) = 40 μ A HIGH/1.6 mA LOW.

Figure 1. Connection Diagram DIP (TOP VIEW)

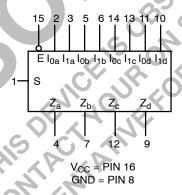


Figure 2. Logic Symbol

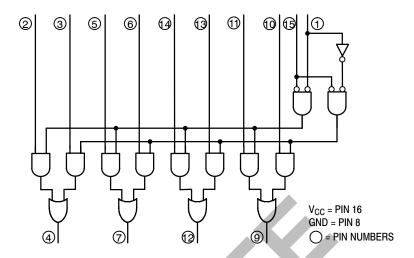


Figure 3. Logic Diagram

FUNCTIONAL DESCRIPTION

The LS157 is a Quad 2-Input Multiplexer fabricated with the Schottky barrier diode process for high speed. It selects four bits of data from two sources under the control of a common Select Input (S). The Enable Input (E) is active LOW. When \overline{E} is HIGH, all of the outputs (Z) are forced LOW regardless of all other inputs.

The LS157 is the logic implementation of a 4-pole, 2-position switch where the position of the switch is determined by the logic levels supplied to the Select Input. The logic equations for the outputs are:

$$\begin{split} Z_{a} &= \overline{E} \cdot (I_{1a} \cdot S + I_{0a} \cdot \overline{\$}) \\ Z_{c} &= \overline{E} \cdot (I_{1c} \cdot \overline{\$} + I_{0c} \cdot \overline{\$}) \\ \end{split} \qquad \begin{aligned} Z_{b} &= \overline{E} \cdot (\overline{I}_{1b} \cdot \overline{\$} + I_{0b} \cdot \overline{\$}) \\ Z_{d} &= \overline{E} \cdot (\overline{I}_{1d} \cdot \overline{\$} + I_{0d} \cdot \overline{\$}) \end{aligned}$$

$$Z_{c} = \overline{E} \cdot (I_{1c} \cdot [\$ + I_{0c} \cdot [\overline{\$}])$$
 $Z_{d} = \overline{E} \cdot [I_{1d} \cdot [\$ + I_{0d} \cdot [\overline{\$}]])$

A common use of the LS157 is the moving of data from two groups of registers to four common output busses. The particular register from which the data comes is determined by the state of the Select Input. A less obvious use is as a function generator. The LS157 can generate any four of the 16 different functions of two variables with one variable common. This is useful for implementing highly irregular

TRUTH TABLE

ENABLE	SELECT INPUT	INPUTS		OUTPUT	
Ē	S	I ₀	I ₁	Z	
Н	Х	Х	Х	L	
L	Н	Х	L	L	
L	Н	Х	Н	Н	
L	L	L	Χ	L	
L	L	Н	Χ	Н	

H = HIGH Voltage Level

L = LOW Voltage Level

X = Don't Care

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

		Limits					
Symbol	Parameter	Min	Тур	Max	Unit	Tes	t Conditions
V _{IH}	Input HIGH Voltage	2.0			٧	Guaranteed Input HIGH Voltage for All Inputs	
V _{IL}	Input LOW Voltage			0.8	٧	Guaranteed Inpu All Inputs	t LOW Voltage for
V_{IK}	Input Clamp Diode Voltage		-0.65	-1.5	V	V _{CC} = MIN, I _{IN} =	–18 mA
V _{OH}	Output HIGH Voltage	2.7	3.5		V	V_{CC} = MIN, I_{OH} = MAX, V_{IN} = V_{IH} or V_{IL} per Truth Table	
	O to HOWAYallana		0.25	0.4	V	I _{OL} = 4.0 mA	V _{CC} = V _{CC} MIN,
V _{OL}	Output LOW Voltage		0.35	0.5	V	I _{OL} = 8.0 mA	V _{IN} = V _{IL} or V _{IH} per Truth Table
l _{IH}	Input HIGH Current I ₀ , I ₁ E, S			20 40	μА	$V_{CC} = MAX$, $V_{IN} = 2.7 V$	
	I ₀ , I ₁ E, S			0.1 0.2	mA	V _{CC} = MAX, V _{IN} = 7.0 V	
I _{IL}	Input LOW Current I ₀ , I ₁ E, S			-0.4 -0.8	mA	$V_{CC} = MAX$, $V_{IN} = 0.4 V$	
I _{OS}	Short Circuit Current (Note 2)	-20		-100	mA	V _{CC} = MAX	
Icc	Power Supply Current			16	mA	V _{CC} = MAX	

^{2.} Not more than one output should be shorted at a time, nor for more than 1 second.

AC CHARACTERISTICS (T_A = 25°C)

		Limits		1			
Symbol	Parameter	Min	Тур	Max	Unit	1	est Conditions
t _{PLH} t _{PHL}	Propagation Delay Data to Output		9.0 9.0	14 14	ns	Figure 2	
t _{PLH} t _{PHL}	Propagation Delay Enable to Output		13 14	20 21	ns	Figure 1	$V_{CC} = 5.0 \text{ V}$ $C_L = 15 \text{ pF}$
t _{PLH} t _{PHL}	Propagation Delay Select to Output	9	15 18	23 27	ns	Figure 2	

AC WAVEFORMS

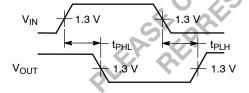


Figure 1.

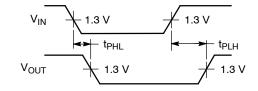
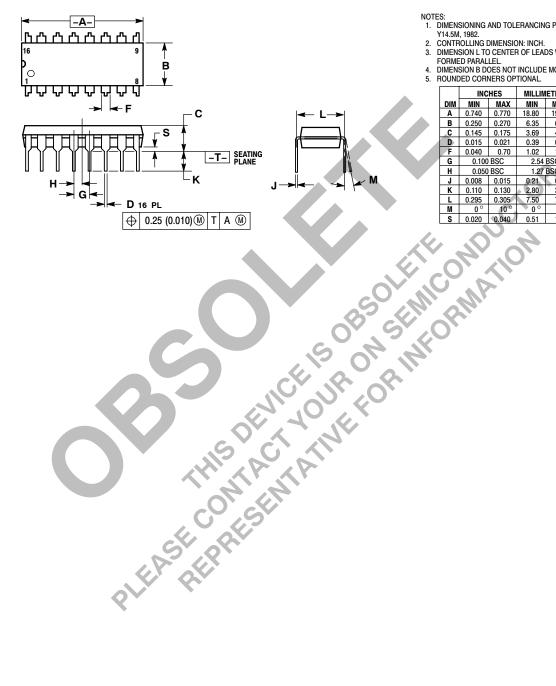
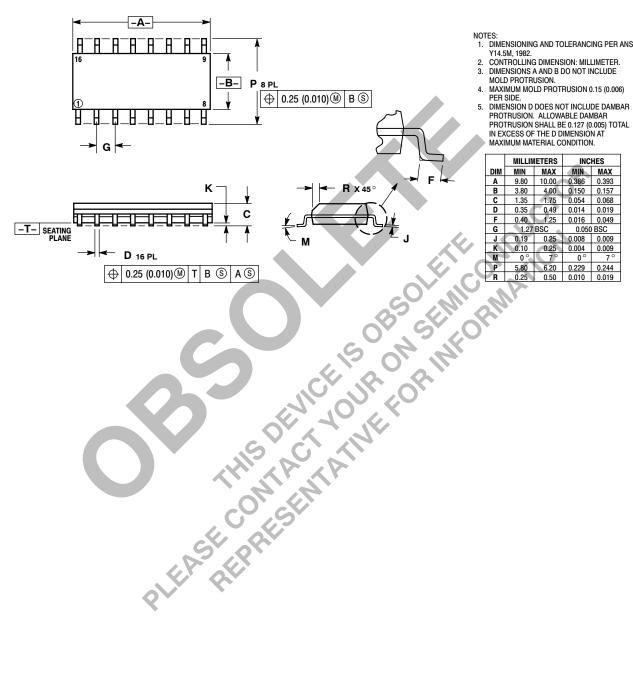



Figure 2.

PACKAGE DIMENSIONS

N SUFFIX PLASTIC PACKAGE CASE 648-08 **ISSUE R**


- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI
- Y14.5M, 1982. CONTROLLING DIMENSION: INCH.
- DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL.
- 4. DIMENSION B DOES NOT INCLUDE MOLD FLASH.5. ROUNDED CORNERS OPTIONAL.

		INC	HES	MILLIMETERS		
	DIM	MIN	MAX	MIN	MAX	
	Α	0.740	0.770	18.80	19.55	
	В	0.250	0.270	6.35	6.85	
	Ç	0.145	0.175	3.69	4.44	
4	Á	0.015	0.021	0.39	0.53	
ı	F	0.040	0.70	1.02	1.77	
1	G	0.100	BSC	2.54	BSC	
	Н	0.050	BSC	1.27 BSC		
	7	0.008	0.015	0.21	0.38	
	K	0.110	0.130	2.80	3.30	
	L	0.295	0.305	7.50	7.74	
	M	0°	10°	0 °	10 °	
	S	0.020	0.040	0.51	1.01	

PACKAGE DIMENSIONS

D SUFFIX

PLASTIC SOIC PACKAGE CASE 751B-05 **ISSUE J**

NOTES:

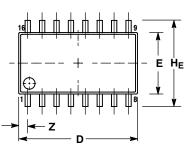
- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

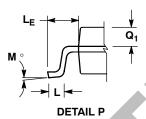
- Y14.5M, 1982.

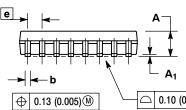
 CONTROLLING DIMENSION: MILLIMETER.

 DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION.

 MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.


 DIMENSION D DOES NOT INCLUDE DAMBAR
- DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.


	MILLIN	IETERS	INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	9.80	10.00	0.386	0.393	
В	3.80	4.00	0.150	0.157	
С	1.35	1.75	0.054	0.068	
D	0.35	0.49	0.014	0.019	
F	0.40	1.25	0.016	0.049	
G	1.27	BSC	0.050	BSC	
J∢	0.19	0.25	0.008	0.009	
K	0.10	0.25	0.004	0.009	
M	0°	7°	0°	7°	
P	5.80	6.20	0.229	0.244	
P	0.05	0.50	0.010	0.010	


PACKAGE DIMENSIONS

M SUFFIX

SOEIAJ PACKAGE CASE 966-01 **ISSUE O**

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 114-30M, 1902.
 CONTROLLING DIMENSION: MILLIMETER.
 DIMENSIONS D AND E DO NOT INCLUDE MOLD
 FLASH OR PROTRUSIONS AND ARE MEASURED
 AT THE PARTING LINE. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.15 (0.006) PER SIDE
- TERMINAL NUMBERS ARE SHOWN FOR
- REFERENCE ONLY.
 THE LEAD WIDTH DIMENSION (b) DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE LEAD WIDTH
 DIMENSION AT MAXIMUM MATERIAL CONDITION. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. MINIMUM SPACE BETWEEN PROTRUSIONS AND ADJACENT LEAD TO BE 0.46 (0.018).

	MILLIN	IETERS	INC	HES
DIM	MIN	MAX	MIN	MAX
Α	Ĭ	2.05	4	0.081
Α ₁	0.05	0.20	0.002	0.008
b	0.35	0.50	0.014	0.020
C_	0.18	0.27	0.007	0.011
D	9.90	10.50	0.390	0.413
E	5.10	5.45	0.201	0.215
e	1.27	BSC	0.050 BSC	
ΉE	7.40	8.20	0.291	0.323
L	0.50	0.85	0.020	0.033
16	1.10	1.50	0.043	0.059
M	0 °	10°	0 °	10°
Q ₁	0.70	0.90	0.028	0.035
Z		0.78		0.031

ON Semiconductor and un are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada

Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative