To our customers,

Old Company Name in Catalogs and Other Documents

On April $1^{\text {st }}, 2010$, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April ${ }^{\text {st }}, 2010$
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)
Send any inquiries to http://www.renesas.com/inquiry.

Notice

1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
"Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

M61531FP

6ch Electronic Volume with 10 Input Selectors
REJ03F0050-0110Z
Rev.1.1
Jun.01.2004

Features

Functions	Features
Electric volume	6 channel independent electric volume with high voltage transistor (0 to -99 dB/1 dB step, $-\infty \mathrm{dB}$)
Input selector	L/R channel 10 input selector
Multi channel input	All channel 2 input selector
Tone Control	(1) Bass: -16 to +16 dB (2 dB step), Treble: -10 to +10 dB (2 dB step) (2) Tone block position is selectable (3) Tone input ATT ($0 /-6 /-12 /-18 \mathrm{~dB}$)
Loudness	Built-in loudness circuit of center tap type in L/Rch
REC output	4 Lines REC output (Both L and R channels)
Input ATT	Input ATT (for ADC: 0/-6/-12/-18 dB)
Input gain control	Input gain control ($0 /+6 /+12 /+18 \mathrm{~dB}$)
Output gain control	Output gain control ($0 /+6 /+12 /+18 \mathrm{~dB}$)
Balance out	Built-in balance out (for ADC)
Bus control	3 wire control, 3 to 5V I/F support

Application

- Receiver, AV Amp, Mini Stereo etc.

Recommended Operating Condition

- Supply voltage range: AVCC = 7.0 V (Typ.), AVEE =-7.0 V (Typ.), DVDD $=2.7$ to 5.5 V

System Block Diagram

Block Diagram and Pin Configuration (Top View)

Pin Description

Pin No.

3, 1, 79, 77, 75, 73, 71, 69	INR2, 3, 4, 5, 6, 7, 8, 9	Input pin of R channel (Input Selector)
2, 80, 78, 76, 74, 72, 70, 68	INL2, 3, 4, 5, 6, 7, 8, 9	Input pin of L channel (Input Selector)
4	INL1/EXT INL	Input pin of L channel (Input Selector)/External Input pin(Lch)
5	INR1/EXT INR	Input pin of L channel (Input Selector)/External Input pin(Rch)
$6,13,16,19,32,57,64$	GND	Analog Ground
7, 24	CIN1/CIN2	Input pin of C channel (2 Input Selector)
8, 25	SWIN1/SWIN2	Input pin of SW channel (2 Input Selector)
9, 22	SRIN1/SRIN2	Input pin of SR channel (2 Input Selector)
10, 23	SLIN1/SLIN2	Input pin of SL channel (2 Input Selector)
11, 20	LIN1/LIN2	Input pin of L channel (2 Input Selector)
12, 21	RIN1/RIN2	Input pin of R channel (2 Input Selector)
14,17	BALANCE L/+, R/+	Output pin of L/R channel Balance Output(+)
15, 18	LOUD L/BALANCE L/-, LOUD R/BALANCE R/-	Frequency characteristic setting pin of Loudness /Output pin of L/R channel Balance Output(-)
26	DGND	Ground of internal logic circuit
27, 28, 29	CLOCK, DATA, LATCH	Input pin of control clock /data/ trigger
30	DVDD	Power supply to internal logic circuit
31	AVCC	Positive power supply to internal analog circuit
33	SWSELOUT	Output pin of SW channel volume input selector
34	SWVIN	Input pin of SW channel volume
35	SWOUT	Output pin of SW channel
36	COUT	Output pin of C channel
37	CVIN	Input pin of C channel volume
38	CSELOUT	Output pin of C channel volume input selector
39	SLSELOUT	Output pin of SL channel volume input selector
40	SLVIN	Input pin of SL channel volume
41	SLOUT	Output pin of SL channel
42	SROUT	Output pin of SR channel
43	SRVIN	Input pin of SR channel volume
44	SRSELOUT	Output pin of SR channel volume input selector
45	RSELOUT	Output pin of R channel volume input selector
46	RVIN	Input pin of R channel volume
47	ROUT	Output pin of R channel
51, 52, 50, 49	BASS L1, L2/BASS R1, R2	Frequency characteristic setting pin of tone control (BASS)
53, 48	TRE L/TRE R	Frequency characteristic setting pin of tone control (TREBLE)
54	LOUT	Output pin of L channel
55	LVIN	Input pin of L channel volume
56	LSELOUT	Output pin of L channel volume input selector
58, 60, 62/59, 61, 63	$\begin{aligned} & \text { REC L1, L2, L3 } \\ & \text { /REC R1, R2, R3 } \end{aligned}$	Output pin of REC (Lch and Rch)
65	INL10/REC L4	Input pin of L channel (Input Selector)/Output pin of REC (Lch)
66	INR10/REC R4	Input pin of R channel (Input Selector)/Output pin of REC (Rch)
67	AVEE	Negative power supply to internal analog circuit

Absolute Maximum Ratings

	Symbol	Ratings	Unit	Test Condition
Power supply	Supply voltage	± 8.0	V	
		6.0		mW
Powec-AVEE				
Thermal derating	Pd	1250	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$	$\mathrm{DVDD}-\mathrm{GND}$
Operating temperature	$\mathrm{K} \theta$	12.5	${ }^{\circ} \mathrm{C}$	$\mathrm{Ta}>25^{\circ} \mathrm{C}$
Storage temperature	Tstg	-20 to +55	${ }^{\circ} \mathrm{C}$	

Recommended Operating Conditions

		$\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right.$, unless otherwise noted)				
Item	Symbol	Min.	Typ.	Max.	Unit	Test Condition
Analog supply voltage (Positive)	AVCC	4.5	7.0	7.5	V	
Analog supply voltage (Negative)	AVEE	-7.5	-7.0	-4.5	V	
Digital supply voltage	DVDD	2.7	3.3	5.5	V	
Logic "H" level input voltage	VIH	DVDD $\times 0.7$	-	DVDD	V	DGND reference
Logic "L" level input voltage	VIL	DGND	-	DVDD $\times 0.2$	V	DGND reference

Note: AVEE \leq DGND $<$ DVDD \leq AVCC

Relationship between Data and Clock

Clock and Data Timings

Timing Definition of Digital Block

	Symbol	Min.	Typ.	Max.	Unit
Clock cycle time	t_{cr}	4	-	-	$\mu \mathrm{s}$
Clock pulse width ("H" level)	$\mathrm{t}_{\mathrm{wHC}}$	1.6	-	-	$\mu \mathrm{s}$
Clock pulse width ("L" level)	$\mathrm{t}_{\text {wLC }}$	1.6	-	-	$\mu \mathrm{s}$
Rising time of clock, data and latch	t_{r}	-	-	0.4	$\mu \mathrm{~s}$
Falling time of clock,data and latch	t_{f}	-	-	0.4	$\mu \mathrm{~s}$
Data setup time	t_{SD}	0.8	-	-	$\mu \mathrm{s}$
Data hold time	t_{HD}	0.8	-	-	$\mu \mathrm{s}$
Latch setup time	tsL	1	-	-	$\mu \mathrm{s}$
Latch pulse width	$\mathrm{t}_{\mathrm{wHL}}$	1.6	-	-	$\mu \mathrm{s}$
Clock setup time	t_{Sc}	4	-	-	$\mu \mathrm{s}$

Data Control Specification

Initialize all data of the 4 formats when digital power supply (DVDD) turn on.
Prohibit using except specified data code as follows.

Setting Code

(1) Input Selector Setting			D0a	D1a
All off	0	0	0	D2a
IN1	0	0	0	0
IN2	0	0	1	0
IN3	0	0	1	1
IN4	0	1	0	0
IN5	0	1	0	1
IN6	0	1	1	0
IN7	0	1	1	1
IN8	1	0	0	0
IN9	1	0	0	1
IN10	1	0	1	0

(2) Input ATT

Setting	D4a	D5a
0 dB	0	0
-6 dB	0	1
-12 dB	1	0
-18 dB	1	1

(3) REC Output

REC Output	REC1	REC2	REC3	REC4
Setting	D6a	D7a	D8a	D9a
Off	0	0	0	0
On	1	1	1	1

(4) Multi Input Selector (Except for L / R)
(5) L/R VOL Input
(6) Input Gain Control

Setting	D10a	Setting	D11a	D19a	Setting	D12a	D13a
Multi IN1	0	Bypass	0	*	0 dB	0	0
Multi IN2	1	Multi IN1	1	0	$+6 \mathrm{~dB}$	0	1
		Multi IN2	1	1	+12 dB	1	0
					+18 dB	1	1

(7) Output Gain Control

Setting	D14a	D15a
0 dB	0	0
+6 dB	0	1
+12 dB	1	0
+18 dB	1	1

(10)Multi Input Mute
(Except for L / R)

Setting	D18a
Mute off Depend on (4) Multi Input	0
Mute on	1

(8) IN10/REC4 Selector

Setting	D16a
IN10	0
REC4	1

(9) All Ch Output Mute

Setting	D17a
Mute off	0
Mute on	1

Note: (//////) It's initial setting when power is turned on.

Setting Code (cont.)

(11)Tone Control (Bass/Treble)						
	Bass	DOd	D1d	D2d	D3d	D4d
ATT Setting	Treble	-	D5d	D6d	D7d	D8d
$+16 \mathrm{~dB}^{*}$		1	0	0	0	0
+14 dB*		0	1	1	1	1
+12 dB*		0	1	1	1	0
+10 dB		0	1	1	0	1
$+8 \mathrm{~dB}$		0	1	1	0	0
$+6 \mathrm{~dB}$		0	1	0	1	1
+4 dB		0	1	0	1	0
+2 dB		0	1	0	0	1
0		0	0	0	0	0
-2 dB		0	0	0	0	1
-4 dB		0	0	0	1	0
-6 dB		0	0	0	1	1
$-8 \mathrm{~dB}$		0	0	1	0	0
$-10 \mathrm{~dB}$		0	0	1	0	1
-12 dB*		0	0	1	1	0
-14 dB*		0	0	1	1	1
-16 dB*		0	1	0	0	0

(14)Tone Block Position

Setting	D12d
Before VOL	0
After VOL	1

(15)Loudness

Setting	D13d
Off	0
On	1

(16)Loud/Balance
Setting D14d

Balance output	0
Loudness	1

(17)L/R Bypass

Setting	D15d
Selector	0
External IN	1

Note: (//////) It's initial setting when power is turned on.

* Only bypass setting
(18)6 channel Volume

	Lch	D0b	D1b	D2b	D3b	D4b	D5b	D6b
	SLch	D0c	D1c	D2c	D3c	D4c	D5c	D6c
	Rch	D7b	D8b	D9b	D10b	D11b	D12b	D13b
	SRch	D7c	D8c	D9c	D10c	D11c	D12c	D13c
	Cch	D14b	D15b	D16b	D17b	D18b	D19b	D20b
ATT	SWch	D14c	D15c	D16c	D17c	D18c	D19c	D20c
0 dB	0	0	0	0	0	0	0	
-1 dB	0	0	0	0	0	0	1	
-2 dB	0	0	0	0	0	1	0	
-3 dB	0	0	0	0	0	1	1	
-4 dB	0	0	0	0	1	0	0	
-5 dB	0	0	0	0	1	0	1	
-6 dB	0	0	0	0	1	1	0	
-7 dB	0	0	0	0	1	1	1	
-8 dB	0	0	0	1	0	0	0	
-9 dB	0	0	0	1	0	0	1	
-10 dB	0	0	0	1	0	1	0	
-11 dB	0	0	0	1	0	1	1	
-12 dB	0	0	0	1	1	0	0	
-13 dB	0	0	0	1	1	0	1	
-14 dB	0	0	0	1	1	1	0	
-15 dB	0	0	0	1	1	1	1	
		0						

	Lch	D0b	D1b	D2b	D3b	D4b	D5b	D6b
	SLch	D0c	D1c	D2c	D3c	D4c	D5c	D6c
	Rch	D7b	D8b	D9b	D10b	D11b	D12b	D13b
	SRch	D7c	D8c	D9c	D10c	D11c	D12c	D13c
	Cch	D14b	D15b	D16b	D17b	D18b	D19b	D20b
	SWch	D14c	D15c	D16c	D17c	D18c	D19c	D20c
-16 dB	0	0	1	0	0	0	0	
-17 dB	0	0	1	0	0	0	1	
-18 dB	0	0	1	0	0	1	0	
-19 dB	0	0	1	0	0	1	1	
-20 dB	0	0	1	0	1	0	0	
-21 dB	0	0	1	0	1	0	1	
-22 dB	0	0	1	0	1	1	0	
-23 dB	0	0	1	0	1	1	1	
-24 dB	0	0	1	1	0	0	0	
-25 dB	0	0	1	1	0	0	1	
-26 dB	0	0	1	1	0	1	0	
-27 dB	0	0	1	1	0	1	1	
-28 dB	0	0	1	1	1	0	0	
-29 dB	0	0	1	1	1	0	1	
-30 dB	0	0	1	1	1	1	0	
-31 dB	0	0	1	1	1	1	1	

Setting Code (cont.)

(18)6 channel Volume (cont.)

	Lch	D0b	D1b	D2b	D3b	D4b	D5b	D6b
	SLch	D0c	D1c	D2c	D3c	D4c	D5c	D6c
	Rch	D7b	D8b	D9b	D10b	D11b	D12b	D13b
	SRch	D7c	D8c	D9c	D10c	D11c	D12c	D13c
	Cch	D14b	D15b	D16b	D17b	D18b	D19b	D20b
ATT	SWch	D14c	D15c	D16c	D17c	D18c	D19c	D20c
-32 dB		0	1	0	0	0	0	0
$-33 \mathrm{~dB}$		0	1	0	0	0	0	1
-34 dB		0	1	0	0	0	1	0
-35 dB		0	1	0	0	0	1	1
-36 dB		0	1	0	0	1	0	0
-37 dB		0	1	0	0	1	0	1
-38 dB		0	1	0	0	1	1	0
-39 dB		0	1	0	0	1	1	1
-40 dB		0	1	0	1	0	0	0
$-41 \mathrm{~dB}$		0	1	0	1	0	0	1
-42 dB		0	1	0	1	0	1	0
-43 dB		0	1	0	1	0	1	1
-44 dB		0	1	0	1	1	0	0
-45 dB		0	1	0	1	1	0	1
-46 dB		0	1	0	1	1	1	0
-47 dB		0	1	0	1	1	1	1
-48 dB		0	1	1	0	0	0	0
-49 dB		0	1	1	0	0	0	1
-50 dB		0	1	1	0	0	1	0
-51 dB		0	1	1	0	0	1	1
-52 dB		0	1	1	0	1	0	0
-53 dB		0	1	1	0	1	0	1
-54 dB		0	1	1	0	1	1	0
-55dB		0	1	1	0	1	1	1
-56 dB		0	1	1	1	0	0	0
-57 dB		0	1	1	1	0	0	1
-58 dB		0	1	1	1	0	1	0
-59 dB		0	1	1	1	0	1	1
-60 dB		0	1	1	1	1	0	0
-61 dB		0	1	1	1	1	0	1
-62 dB		0	1	1	1	1	1	0
-63 dB		0	1	1	1	1	1	1
-64 dB		1	0	0	0	0	0	0
-65 dB		1	0	0	0	0	0	1
-66 dB		1	0	0	0	0	1	0

Note: (IIIII) It's initial setting when power is turned on.

	Lch	DOb	D1b	D2b	D3b	D4b	D5b	D6b
	SLch	DOc	D1c	D2c	D3c	D4c	D5c	D6c
	Rch	D7b	D8b	D9b	D10b	D11b	D12b	D13b
	SRch	D7c	D8c	D9c	D10c	D11c	D12c	D13c
	Cch	D14b	D15b	D16b	D17b	D18b	D19b	D20b
ATT	SWch	D14c	D15c	D16c	D17c	D18c	D19c	D20c
-67 dB		1	0	0	0	0	1	1
-68 dB		1	0	0	0	1	0	0
-69 dB		1	0	0	0	1	0	1
-70 dB		1	0	0	0	1	1	0
-71 dB		1	0	0	0	1	1	1
-72 dB		1	0	0	1	0	0	0
-73 dB		1	0	0	1	0	0	1
-74 dB		1	0	0	1	0	1	0
-75 dB		1	0	0	1	0	1	1
-76 dB		1	0	0	1	1	0	0
-77 dB		1	0	0	1	1	0	1
$-78 \mathrm{~dB}$		1	0	0	1	1	1	0
-79 dB		1	0	0	1	1	1	1
-80 dB		1	0	1	0	0	0	0
-81 dB		1	0	1	0	0	0	1
-82 dB		1	0	1	0	0	1	0
-83 dB		1	0	1	0	0	1	1
-84 dB		1	0	1	0	1	0	0
-85 dB		1	0	1	0	1	0	1
-86dB		1	0	1	0	1	1	0
-87 dB		1	0	1	0	1	1	1
-88 dB		1	0	1	1	0	0	0
-89 dB		1	0	1	1	0	0	1
-90 dB		1	0	1	1	0	1	0
-91 dB		1	0	1	1	0	1	1
-92 dB		1	0	1	1	1	0	0
-93 dB		1	0	1	1	1	0	1
-94 dB		1	0	1	1	1	1	0
-95dB		1	0	1	1	1	1	1
-96 dB		1	1	0	0	0	0	0
-97dB		1	1	0	0	0	0	1
-98 dB		1	1	0	0	0	1	0
-99 dB		1	1	0	0	0	1	1
$-\infty \mathrm{dB}$		1	1	1	1	0	0	0

Electrical Characteristics

Unless otherwise noted, $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{AVCC}=7 \mathrm{~V}, \mathrm{AVEE}=-7 \mathrm{~V}, \mathrm{DVDD}=3.3 \mathrm{~V}, \mathrm{f}=1 \mathrm{kHz}$, Volume $=0 \mathrm{~dB}$, Input Selector $=\mathrm{IN} 1$, Input ATT $=0 \mathrm{~dB}$, Input Gain Control $=0 \mathrm{~dB}$, Output Gain Control $=0 \mathrm{~dB}, \mathrm{~L} / \mathrm{R}$ Volume Input $=$ Bypass, Multi Input Selector $=$ Multi IN1, Tone $=0 \mathrm{~dB}$, Tone Input ATT $=0 \mathrm{~dB}$, Bypass/Tone $=$ Bypass, Tone Position $=$ Before Vol, Loudness $=$ OFF, Loud/Balance $=$ Balance, L/R Bypass $=$ Selector
(1) Power supply characteristics

Item	Symbol	Min.	Typ.	Max.	Unit	Test Condition
Analog positive power circuit current	Alcc	-	50	70	mA	With AVCC $=7 \mathrm{~V}$ and AVEE $=-7 \mathrm{~V}$, Pin31 pin current, when no signal is provided
Analog negative power circuit current	Alee	-70	-50	-	mA	With AVCC $=7 \mathrm{~V}$ and AVEE $=-7 \mathrm{~V}$, Pin67 pin current, when no signal is provided
Digital power circuit current	DIdd	-	3	6	mA	With DVDD $=3.3 \mathrm{~V}$, Pin30 pin current, when no signal is provided

(2) Input/Output characteristics (Over all)

| Item | Symbol | Min. | Typ. | Max. | Unit | Test Condition |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

(3) 6 channel Volume characteristics

Item	Symbol	Min.	Typ.	Max.	Unit	Test Condition
Maximum attenuation	ATTmax	-	-100	-95	dB	$(35,36,41,42,47,54)$ pin output, Vi $=2 \mathrm{Vrms}$, JIS-A, VOL $=-\infty$
Volume gain gang error of mutual channels	Dvol	-0.5	0	+0.5	dB	$(35,36,41,42,47,54)$ pin output, Volume $=0 \mathrm{~dB}$ setting

(4) Tone control characteristics

Unless otherwise noted, Bypass/Tone = Tone, (1, 2) PIN Input, $(56,45)$ PIN Output

Item	Symbol	Min.	Typ.	Max.	Unit	Test Condition
Tone control voltage gain (Boost/Bass)	$\mathrm{G}(\mathrm{BASS}) \mathrm{B}$	+14	+16	+18	dB	$\mathrm{f}=100 \mathrm{~Hz}$, Bass +16 dB setting
Tone control voltage gain (Cut/Bass)	$\mathrm{G}(\mathrm{BASS}) \mathrm{C}$	-18	-16	-14	dB	$\mathrm{f}=100 \mathrm{~Hz}$, Bass -16 dB setting
Tone control voltage gain (Boost/Treble)	$\mathrm{G}(\mathrm{TRE}) \mathrm{B}$	+8	+10	+12	dB	$\mathrm{f}=10 \mathrm{kHz}$, Treble +10 dB setting
Tone control voltage gain (Cut/Treble)	$\mathrm{G}(T R E) \mathrm{C}$	-12	-10	-8	dB	$\mathrm{f}=10 \mathrm{kHz}$, Treble -10 dB setting
Balance of mutual channels	BALT	-2	0	+2	dB	Bass setting $+16,-16 \mathrm{~dB}$, Treble setting $+10,-10 \mathrm{~dB}$

Internal Block Diagram

Application Block Diagram

(1)Bass
<Boost>

[Desig nedParameter]
$\mathrm{R} 1=4.7 \mathrm{k} \Omega, \mathrm{C} 1=0.22 \mu \mathrm{~F}, \mathrm{C} 2=0.047 \mu \mathrm{~F}$
$(H z)$

Gain		
Sett ing	Designed Parameter	
	R3 $3 \mathrm{k} \Omega$	$\mathrm{R} 2(\mathrm{k} \Omega)$
+16 dB	3.5	48.7
+14 dB	5.8	46.3
+12 dB	8.8	43.3
+10 dB	12.6	39.5
+8 dB	17.3	34.8
+6 dB	23.3	28.8
+4 dB	30.8	21.3
+2 dB	40.2	11.9

(dB)
<Cut>

[Designed Parameter]		
$\mathrm{R} 1=4.7 \mathrm{k} \Omega, \mathrm{Cl}=0.24 \mathrm{~F}, \mathrm{C} 2=0$.		
Gain	Desi gned	Parameter
Setting	$\mathrm{R} 3(\mathrm{k} \Omega$)	$\mathrm{R} 2(\mathrm{k} \Omega)$
-16dB	3.5	48.7
-14dB	5.8	46.3
-12dB	8.8	43.3
-10dB	126	39.5
-8dB	17.3	34.8
-6dB	23.3	28.8
-4dB	30.8	21.3
-2dB	40.2	11.9

(2)Treble

<Boost>

[Desig ned Paramete r]
RC $=2200 \mathrm{pF}$

Gain Setting	Desi gned Parameter	
	$\mathrm{R} 4(\mathrm{k} \Omega)$	$\mathrm{R} 5(\mathrm{k} \Omega)$
+10 dB	7.6	24.7
+8 dB	11.0	21.3
+6 dB	14.9	17.4
+4 dB	19.6	12.7
+2 dB	25.3	7.0

<Cut>
IN

[Desig ned Parameter]

Gain Setting	Desi gned Parameter	
	R4(k Ω)	R 5 (k Ω)
- 100B	7.6	24.7
-8dB	11.0	21.3
-6dB	14.9	17.4
-4dB	19.6	12.7
-2dB	25.3	7.0

$\mathrm{Gv}=20 \log \left(\frac{\sqrt{(\mathrm{R} 4+\mathrm{R} 5)^{2}+\mathrm{RC}^{2}}}{\sqrt{\mathrm{R}^{2}+\mathrm{RC}^{2}}}\right)_{(\mathrm{dB})}$

Balance Output/Loudness

Can be chose "Balance output" for external A/D converter or "Loudness" function by MCU command.
"Balance output" and "Loudness" function can not be used at the same time.
(1) Balance output

The M61531FP has Balance output (L/R channel) for external A/D converter.
Loud/Balance $=$ Balance Output setting

(2) Loudness

The M61531FP has center tap type Loudness circuit in L/Rch volume block.
Loud/Balance $=$ Loudness setting

Application Example

Package Dimensions

RenesasTechnology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

Keep safety first in your circuit designs!

1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage.
Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data
diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
publication of these materials, and are subject to change by Renesas Technology Corp. without notice algorithms represents information on products at the time of herefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information before purchasing a product listed herein.
The information described here may contain technical inaccuracies or typographical errors.
Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors
Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor
2. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.
3. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
4. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials.
5. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.
Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.
6. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.

RENESAS SALES OFFICES

Renesas Technology America, Inc.
450 Holger Way, San Jose, CA 95134-1368, U.S.A
Tel: <1> (408) 382-7500 Fax: <1> (408) 382-7501
Renesas Technology Europe Limited.
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, United Kingdom
Tel: <44> (1628) 585 100, Fax: <44> (1628) 585900
Renesas Technology Europe GmbH
Dornacher Str. 3, D-85622 Feldkirchen, Germany
Tel: <49> (89) 380700 , Fax: <49> (89) 9293011

Renesas Technology Hong Kong Ltd.

7/F., North Tower, World Finance Centre, Harbour City, Canton Road, Hong Kong
Tel: <852> 2265-6688, Fax: <852> 2375-6836
Renesas Technology Taiwan Co., Ltd.
FL 10, \#99, Fu-Hsing N. Rd., Taipei, Taiwan
Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999
Renesas Technology (Shanghai) Co., Ltd.
26/F., Ruijin Building, No. 205 Maoming Road (S), Shanghai 200020, China
Tel: <86> (21) 6472-1001, Fax: <86> (21) 6415-2952

Renesas Technology Singapore Pte. Ltd

1, Harbour Front Avenue, \#06-10, Keppel Bay Tower, Singapore 098632
Tel: <65> 6213-0200, Fax: <65> 6278-8001

