National Semiconductor is now part of

 Texas Instruments.
Search http://www.ti.com/ for the latest technical

 information and details on our current products and services.
ADC0844/ADC0848

8-Bit μ P Compatible A/D Converters with Multiplexer Options

General Description

The ADC0844 and ADC0848 are CMOS 8-bit successive approximation A / D converters with versatile analog input multiplexers. The 4 -channel or 8 -channel multiplexers can be software configured for single-ended, differential or pseudodifferential modes of operation.
The differential mode provides low frequency input common mode rejection and allows offsetting the analog range of the converter. In addition, the A/D's reference can be adjusted enabling the conversion of reduced analog ranges with 8-bit resolution.
The A/Ds are designed to operate from the control bus of a wide variety of microprocessors. TRI-STATE output latches that directly drive the data bus permit the A/Ds to be configured as memory locations or I/O devices to the microprocessor with no interface logic necessary.

Features

- Easy interface to all microprocessors
- Operates ratiometrically or with $5 \mathrm{~V}_{\mathrm{DC}}$ voltage reference
- No zero or full-scale adjust required
- 4-channel or 8-channel multiplexer with address logic
- Internal clock
- 0 V to 5 V input range with single 5 V power supply
- 0.3 standard width 20-pin or 24-pin DIP
- 28 Pin Molded Chip Carrier Package

Key Specifications

- Resolution	8 Bits
- Total Unadjusted Error	$\pm 1 / 2 \mathrm{LSB}$ and $\pm 1 \mathrm{LSB}$
- Single Supply	$5 \mathrm{~V} \mathrm{VC}^{2}$
- Low Power	15 mW
- Conversion Time	$40 \mu \mathrm{~s}$

Block Diagram

[^0]
Connection Diagrams

Molded Chip Carrier Package

501629
Top View
See Ordering Information
Dual-In-Line Package

Top View

501630

Dual-In-Line Package

501602

Top View

Ordering Information

Temperature Range	Total Unadjusted Error		MUX Channels	Package Outline
	± 112 LSB	± 1 LSB		
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$		ADC0844CCN	4	$\begin{gathered} \text { N20A } \\ \text { Molded Dip } \end{gathered}$
	ADC0848BCN	ADC0848CCN	8	$\begin{gathered} \text { N24D } \\ \text { Molded Dip } \end{gathered}$
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	ADC0844BCJ*	ADC0844CCJ*	4	J20A Cerdip
	ADC0848BCV	ADC0848CCV	8	V28A Molded Chip Carrier
	ADC0848BCVX	ADC0848CCVX	8	V28A Molded Chip Carrier in Tape and Reel

[^1]| Absolute Maximum Ratings (Notes 1,2$)$ | |
| :--- | ---: |
| If Military/Aerospace specified devices are required, | |
| please contact the National Semiconductor Sales Office/ | |
| Distributors for availability and specifications. | |
| Supply Voltage (V_{CC}) | 6.5 V |
| Voltage | |
| Logic Control Inputs | -0.3 V to +15 V |
| At Other Inputs and Outputs | -0.3 V to $\mathrm{V}_{\mathrm{CC}}{ }^{+}+0.3 \mathrm{~V}$ |
| Input Current at Any Pin (Note 3) | 5 mA |
| Package Input Current (Note 3) | 20 mA |
| Storage Temperature | $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ |
| Package Dissipation at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ | 875 mW |
| ESD Susceptibility (Note 4) | 800 V |
| Lead Temperature | |
| (Soldering, 10 seconds) | $260^{\circ} \mathrm{C}$ |

Electrical Characteristics

The following specifications apply for $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}_{\mathrm{DC}}$ unless otherwise specified.Boldface limits apply from $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$; all other limits $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$.

Parameter	Conditions	ADC0844BCJ (Note 12) ADC0844CCJ (Note 12)			ADC0844CCN ADC0848BCN, ADC0848CCN ADC0848BCV, ADC0848CCV			Limit Units
		$\begin{aligned} & \text { Typ } \\ & \text { (Note 5) } \end{aligned}$	Tested Limit (Note 6)	Design Limit (Note 7)	$\begin{aligned} & \text { Typ } \\ & \text { (Note 5) } \end{aligned}$	Tested Limit (Note 6)	Design Limit (Note 7)	
CONVERTER AND MULTIPLEXER CHARACTERISTICS								
Maximum Total Unadjusted Error ADC0844BCN, ADC0848BCN, BCV ADC0844CCN, ADC0848CCN, CCV ADC0844CCJ (Note 12)	$\begin{aligned} & \mathrm{V}_{\mathrm{REF}}=5.00 \mathrm{~V}_{\mathrm{DC}} \\ & \text { (Note 8) } \end{aligned}$		± 1			$\begin{aligned} & \pm 1 / 2 \\ & \pm 1 \end{aligned}$	$\begin{aligned} & \pm 1 / 2 \\ & \pm 1 \end{aligned}$	$\begin{array}{\|l} \hline \text { LSB } \\ \text { LSB } \\ \text { LSB } \\ \hline \end{array}$
Minimum Reference Input Resistance		2.4	1.1		2.4	1.2	1.1	k ת
Maximum Reference Input Resistance		2.4	5.9		2.4	5.4	5.9	$\mathrm{k} \Omega$
Maximum Common-Mode Input Voltage	(Note 9)		$\mathrm{V}_{\mathrm{cc}}+0.05$			$\mathrm{V}_{\mathrm{CC}}+0.05$	$\mathrm{V}_{\mathrm{cc}}+0.05$	V
Minimum Common-Mode Input Voltage	(Note 9)		$\begin{gathered} \text { GND } \\ -0.05 \end{gathered}$			$\begin{gathered} \text { GND } \\ -0.05 \end{gathered}$	$\begin{gathered} \text { GND } \\ -0.05 \end{gathered}$	V
DC Common-Mode Error	Differential Mode	$\pm 1 / 16$	$\pm 1 / 4$		$\pm 1 / 16$	$\pm 1 / 4$	$\pm 1 / 4$	LSB
Power Supply Sensitivity	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$	$\pm 1 / 16$	$\pm 1 / 8$		$\pm 1 / 16$	$\pm 1 / 8$	$\pm 1 / 8$	LSB
Off Channel Leakage Current	(Note 10) On Channel=5V, Off Channel=0V		-1			-0.1	-1	$\mu \mathrm{A}$
	On Channel=0V, Off Channel=5V		1			0.1	1	$\mu \mathrm{A}$
DIGITAL AND DC CHARACTERISTICS								
$\mathrm{V}_{\text {IN(1) }}$, Logical "1" Input Voltage (Min)	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$		2.0			2.0	2.0	V
$\mathrm{V}_{\text {IN(0) }}$, Logical "0" Input Voltage (Max)	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$		0.8			0.8	0.8	V
$\mathrm{I}_{\text {IN(1) }}$, Logical "1" Input Current (Max)	$\mathrm{V}_{\mathrm{IN}}=5.0 \mathrm{~V}$	0.005	1		0.005		1	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IN(0) }}$, Logical "0" Input Current (Max)	$\mathrm{V}_{1 \mathrm{~N}}=0 \mathrm{~V}$	-0.005	-1		-0.005		-1	$\mu \mathrm{A}$
$\mathrm{V}_{\text {OUT(1) }}$, Logical "1" Output Voltage (Min)	$\begin{gathered} \hline \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \\ \mathrm{I}_{\mathrm{OUT}}=-360 \mu \mathrm{~A} \\ \mathrm{I}_{\mathrm{OUT}}=-10 \mu \mathrm{~A} \\ \hline \end{gathered}$		$\begin{aligned} & 2.4 \\ & 4.5 \end{aligned}$			$\begin{aligned} & 2.8 \\ & 4.6 \end{aligned}$	$\begin{aligned} & 2.4 \\ & 4.5 \end{aligned}$	$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$

Parameter	Conditions	ADC0844BCJ（Note 12） ADC0844CCJ（Note 12）			ADC0844CCN ADC0848BCN，ADC0848CCN ADC0848BCV，ADC0848CCV			Limit Units
		$\begin{aligned} & \text { Typ } \\ & \text { (Note 5) } \end{aligned}$	Tested Limit （Note 6）	Design Limit （Note 7）	$\begin{gathered} \text { Typ } \\ \text { (Note 5) } \end{gathered}$	Tested Limit （Note 6）	Design Limit （Note 7）	
$\mathrm{V}_{\text {OUT（0）}}$ ，Logical＂0＂Output Voltage（Max）	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{OUT}}=1.6 \mathrm{~mA} \\ & \hline \end{aligned}$		0.4			0.34	0.4	V V
$\mathrm{I}_{\text {OUT }}$ ，TRI－STATE Output Current（Max）	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0 \mathrm{~V} \\ & \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V} \end{aligned}$	$\begin{gathered} \hline-0.01 \\ 0.01 \end{gathered}$	$\begin{gathered} -3 \\ 3 \end{gathered}$		$\begin{gathered} \hline-0.01 \\ 0.01 \end{gathered}$	$\begin{gathered} \hline-0.3 \\ 0.3 \end{gathered}$	$\begin{gathered} -3 \\ 3 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
$\mathrm{I}_{\text {SOURCE }}$ ，Output Source Current（Min）	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$	－14	－6．5		－14	－7．5	－6．5	mA
$\mathrm{I}_{\text {SINK }}$ ，Output Sink Current（Min）	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$	16	8.0		16	9.0	8.0	mA
I_{CC} ，Supply Current（Max）	$\overline{\mathrm{CS}}=1, \mathrm{~V}_{\text {REF }}$ Open	1	2.5		1	2.3	2.5	mA

AC Electrical Characteristics

The following specifications apply for $\mathrm{V}_{C C}=5 \mathrm{~V}_{\mathrm{DC}}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=10 \mathrm{~ns}$ unless otherwise specified．Boldface limits apply from $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ ；all other limits $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ ．

| Parameter | Conditions | $\begin{array}{c}\text { Typ } \\ (\text { Note } 5)\end{array}$ | $\begin{array}{c}\text { Tested } \\ \text { Limit } \\ (\text { Note } 6)\end{array}$ | $\begin{array}{c}\text { Design } \\ \text { Limit } \\ (\text { Note } 7)\end{array}$ | Units |
| :--- | :--- | :---: | :---: | :---: | :---: |$]$

Note 1：Absolute Maximum Ratings indicate limits beyond which damage to the device may occur．DC and AC electrical specifications do not apply when operating the device beyond its specified operating conditions．

Note 2：All voltages are measured with respect to the ground pins．
Note 3：When the input voltage（ V_{IN} ）at any pin exceeds the power supply rails（ $\mathrm{V}_{\mathrm{IN}}<\mathrm{V}^{-o r} \mathrm{~V}_{\mathrm{IN}}>\mathrm{V}^{+}$）the absolute value of the current at that pin should be limited to 5 mA or less．The 20 mA package input current limits the number of pins that can exceed the power supply boundaries with a 5 mA current limit to four．

Note 4：Human body model， 100 pF discharged through a $1.5 \mathrm{k} \Omega$ resistor
Note 5：Typical figures are at $25^{\circ} \mathrm{C}$ and represent most likely parametric norm．
Note 6：Tested limits are guaranteed to National＇s AOQL（Average Outgoing Quality Level）．
Note 7：Design limits are guaranteed by not 100% tested．These limits are not used to calculate outgoing quality levels．
Note 8：Total unadjusted error includes offset，full－scale，linearity，and multiplexer error．
Note 9：For $\mathrm{V}_{\mathrm{IN}}(-) \geq \mathrm{V}_{\mathrm{IN}}(+)$ the digital output code will be 00000000 ．Two on－chip diodes are tied to each analog input，which will forward－conduct for analog input voltages one diode drop below ground or one diode drop greater than V_{cc} supply．Be careful during testing at low V_{Cc} levels（4．5V），as high level analog inputs $(5 \mathrm{~V})$ can cause this input diode to conduct，especially at elevated temperatures，and cause errors for analog inputs near full－scale．The spec allows 50 mV forward bias of either diode．This means that as long as the analog V_{IN} does not exceed the supply voltage by more than 50 mV ，the output code will be correct． To achieve an absolute $0 \mathrm{~V}_{\mathrm{DC}}$ to $5 \mathrm{~V}_{\mathrm{DC}}$ input voltage range will therefore require a minimum supply voltage of $4.950 \mathrm{~V}_{\mathrm{DC}}$ over temperature variations，initial tolerance and loading
Note 10：Off channel leakage current is measured after the channel selection．
Note 11：The temperature coefficient is $0.3 \% /{ }^{\circ} \mathrm{C}$
Note 12：This product／package combination is obsolete．Shown for reference only．

Typical Performance Characteristics

501633
Conversion Time vs． $\mathbf{V}_{\text {SUPPLY }}$

Linearity Error vs． $\mathbf{V}_{\text {REF }}$

501634

Conversion Time vs． Temperature

Unadjusted Offset Error vs.

$\mathrm{V}_{\text {REF }}$ Voltage

501637

TRI-STATE Test Circuits and Waveforms

$\mathrm{t}_{\mathrm{r}}=20 \mathrm{~ns}$

Leakage Current Test Circuit

＊NOT INCLUDED ON ADCO844

Timing Diagrams

Note 13：Read strobe must occur at least 600 ns after the assertion of interrupt to guarantee reset of $\overline{\mathrm{NTR}}$ ．
Note 14：MA stands for MUX address．
Using the Previously Selected Channel Configuration and Starting a Conversion

Functional Description

The ADC0844 and ADC0848 contain a 4-channel and 8channel analog input multiplexer (MUX) respectively. Each MUX can be configured into one of three modes of operation differential, pseudo-differential, and single ended. These modes are discussed in the Applications Information Section. The specific mode is selected by loading the MUX address latch with the proper address (see Table 1 and Table 2). Inputs to the MUX address latch (MAO-MA4) are common with data bus lines (DB0-DB4) and are enabled when the RD line is high. A conversion is initiated via the $\overline{\mathrm{CS}}$ and $\overline{W R}$ lines. If the data from a previous conversion is not read, the INTR line will be low. The falling edge of $\overline{W R}$ will reset the $\overline{\text { INTR }}$ line high and ready the A/D for a conversion cycle. The rising edge of $\overline{\mathrm{WR}}$, with $\overline{\mathrm{RD}}$ high, strobes the data on the MAO/DB0-MA4/ DB4 inputs into the MUX address latch to select a new input configuration and start a conversion. If the $\overline{\mathrm{RD}}$ line is held low during the entire low period of $\overline{W R}$ the previous MUX configuration is retained, and the data of the previous conversion is the output on lines DB0-DB7. After the conversion cycle (t_{c} $\leq 40 \mu \mathrm{~s})$, which is set by the internal clock frequency, the digital data is transferred to the output latch and the INTR is asserted low. Taking $\overline{\mathrm{CS}}$ and $\overline{\mathrm{RD}}$ low resets $\overline{\mathrm{NTR}}$ output high and outputs the conversion result on the data lines (DBODB7).

Applications Information

1.0 MULTIPLEXER CONFIGURATION

The design of these converters utilizes a sampled-data comparator structure which allows a differential analog input to be converted by a successive approximation routine.

The actual voltage converted is always the difference between an assigned " + " input terminal and a " - " input terminal. The polarity of each input terminal of the pair being converted indicates which line the converter expects to be the most positive. If the assigned " + " input is less than the " - " input the converter responds with an all zeros output code.
A unique input multiplexing scheme has been utilized to provide multiple analog channels. The input channels can be software configured into three modes: differential, single ended, or pseudo-differential. Figure 1 shows the three modes using the 4 -channel MUX ADC0844. The eight inputs of the ADC0848 can also be configured in any of the three modes. In the differential mode, the ADC0844 channel inputs are grouped in pairs, CH 1 with CH 2 and CH 3 with CH 4 . The polarity assignment of each channel in the pair is interchangeable. The single-ended mode has $\mathrm{CH} 1-\mathrm{CH} 4$ assigned as the positive input with the negative input being the analog ground (AGND) of the device. Finally, in the pseudo-differential mode $\mathrm{CH} 1-\mathrm{CH} 3$ are positive inputs referenced to CH 4 which is now a pseudo-ground. This pseudo-ground input can be set to any potential within the input common-mode range of the converter. The analog signal conditioning required in transducerbased data acquisition systems is significantly simplified with this type of input flexibility. One converter package can now handle ground referenced inputs and true differential inputs as well as signals with some arbitrary reference voltage.
The analog input voltages for each channel can range from 50 mV below ground to 50 mV above V_{CC} (typically 5 V) without degrading conversion accuracy.

TABLE 1. ADC0844 MUX ADDRESSING

MUX Address				$\overline{\mathrm{CS}}$	$\overline{\mathrm{WR}}$	$\overline{\mathrm{RD}}$	Channel\#					MUX Mode
MA3	MA2	MA1	MAO				CH1	CH2	CH3	CH4	AGND	
X	L	L	L	L		H	+	-				
x	L	L	H	L	NP	H	-	+				
x	L	H	L	L		H			+	-		Differential
x	L	H	H	L		H			-	+		
L	H	L	L	L		H	+				-	
L	H	L	H	L	NP	H		+			-	
L	H	H	L	L		H			+		-	Single-Ended
L	H	H	H	L		H				+	-	
H	H	L	L	L		H	+			-		
H	H	L	H	L	NP	H		+		-		Pseudo-
H	H	H	L	L		H			+	-		
X	X	X	X	L	NP	L	Previous Channel Configuration					

$\mathrm{X}=$ don't care, $\mathrm{NP}=$ negative pulse

FIGURE 1．Analog Input Multiplexer Options

2．0 REFERENCE CONSIDERATIONS

The voltage applied to the reference input of these converters defines the voltage span of the analog input（the difference between $\mathrm{V}_{\operatorname{IN}(\mathrm{MAX})}$ and $\mathrm{V}_{\operatorname{IN}(\mathrm{MIN})}$ ）over which the 256 possible output codes apply．The devices can be used in either ratio－ metric applications or in systems requiring absolute accuracy． The reference pin must be connected to a voltage source ca－ pable of driving the minimum reference input resistance of 1.1 $\mathrm{k} \Omega$ ．This pin is the top of a resistor divider string used for the successive approximation conversion．
In a ratiometric system（Figure 2a），the analog input voltage is proportional to the voltage used for the A／D reference．This voltage is typically the system power supply，so the $\mathrm{V}_{\text {REF }}$ pin can be tied to V_{CC} ．This technique relaxes the stability re－ quirements of the system reference as the analog input and A / D reference move together maintaining the same output
code for a given input condition．For absolute accuracy（Fig－ ure $2 b$ ），where the analog input varies between very specific voltage limits，the reference pin can be biased with a time and temperature stable voltage source．The LM385 and LM336 reference diodes are good low current devices to use with these converters．
The maximum value of the reference is limited to the V_{CC} supply voltage．The minimum value，however，can be quite small（see Typical Performance Characteristics）to allow di－ rect conversions of transducer outputs providing less than a 5 V output span．Particular care must be taken with regard to noise pickup，circuit layout and system error voltage sources when operating with a reduced span due to the increased sensitivity of the converter（ 1 LSB equals $\mathrm{V}_{\text {REF }} / 256$ ）．

3.0 THE ANALOG INPUTS

3.1 Analog Differential Voltage Inputs and CommonMode Rejection

The differential input of these converters actually reduces the effects of common-mode input noise, a signal common to both selected " + " and " - " inputs for a conversion (60 Hz is most typical). The time interval between sampling the " + " input and then the "-" inputs is $1 / 2$ of a clock period. The change in the common-mode voltage during this short time interval can cause conversion errors. For a sinusoidal common-mode signal this error is:

$$
V_{E R R O R}(M A X)=V_{\text {peak }}\left(2 \pi f_{C M}\right) \times 0.5 \times\left(\frac{\mathrm{t}_{\mathrm{C}}}{8}\right)
$$

501638
where f_{CM} is the frequency of the common-mode signal, $\mathrm{V}_{\text {peak }}$ is its peak voltage value and t_{C} is the conversion time.
For a 60 Hz common-mode signal to generate a $1 / 4 \mathrm{LSB}$ error ($\approx 5 \mathrm{mV}$) with the converter running at $40 \mu \mathrm{~S}$, its peak value would have to be 5.43 V . This large a common-mode signal is much greater than that generally found in a well designed data acquisition system.

TABLE 2. ADC0848 MUX Addressing

MUX Address					$\overline{\text { CS }}$	$\overline{\text { WR }}$	$\overline{\mathrm{RD}}$	Channel									MUX Mode
MA4	MA3	MA2	MA1	MAO				CH1	CH2	CH3	CH4	CH5	CH6	CH7	CH8	AGND	
X	L	L	L	L	L		H	+	-								
X	L	L	L	H	L		H	-	+								
X	L	L	H	L	L		H			+	-						
X	L	L	H	H	L	NP	H			-	+						
X	L	H	L	L	L		H					+	-				Differential
X	L	H	L	H	L		H					-	+				
X	L	H	H	L	L		H							+	-		
X	L	H	H	H	L		H							-	+		
L	H	L	L	L	L		H	+								-	
L	H	L	L	H	L		H		+							-	
L	H	L	H	L	L		H			+						-	
L	H	L	H	H	L	NP	H				+					-	
L	H	H	L	L	L		H					+				-	Single-Ended
L	H	H	L	H	L		H						+			-	
L	H	H	H	L	L		H							+		-	
L	H	H	H	H	L		H								+	-	
H	H	L	L	L	L		H	+							-		
H	H	L	L	H	L		H		+						-		
H	H	L	H	L	L		H			+					-		
H	H	L	H	H	L	NP	H				+				-		Pseudo-
H	H	H	L	L	L		H					+			-		
H	H	H	L	H	L		H						+		-		
H	H	H	H	L	L		H							+	-		
X	X	X	X	X	L		L			Prev	ous Ch	annel	Configu	uration			

$\mathrm{X}=$ don't care, NP = negative pulse

3.2 Input Current

Due to the sampling nature of the analog inputs, short duration spikes of current enter the " + " input and exit the " - " input at the clock edges during the actual conversion. These currents decay rapidly and do not cause errors as the internal comparator is strobed at the end of a clock period. Bypass capacitors at the inputs will average these currents and cause an effective DC current to flow through the output resistance of the analog signal source. Bypass capacitors should not be used if the source resistance is greater than $1 \mathrm{k} \Omega$.

3.3 Input Source Resistance

The limitation of the input source resistance due to the DC leakage currents of the input multiplexer is important. A worstcase leakage current of $\pm 1 \mu \mathrm{~A}$ over temperature will create a 1 mV input error with a $1 \mathrm{k} \Omega$ source resistance. An op amp

RC active low pass filter can provide both impedance buffering and noise filtering should a high impedance signal source be required.

4.0 OPTIONAL ADJUSTMENTS

4.1 Zero Error

The zero of the A/D does not require adjustment. If the minimum analog input voltage value, $\mathrm{V}_{\mathrm{IN}(\mathrm{MIN})}$, is not ground, a zero offset can be done. The converter can be made to output 0000 0000 digital code for this minimum input voltage by biasing any $\mathrm{V}_{\mathrm{IN}}(-)$ input at this $\mathrm{V}_{\operatorname{IN}(\mathrm{MIN})}$ value. This is useful for either differential or pseudo-differential modes of input channel configuration
The zero error of the A/D converter relates to the location of the first riser of the transfer function and can be measured by
grounding the V －input and applying a small magnitude pos－ itive voltage to the $\mathrm{V}+$ input．Zero error is the difference between actual DC input voltage which is necessary to just cause an output digital code transition from 00000000 to 00000001 and the ideal $1 / 2$ LSB value（ $1 / 22$ LSB $=9.8 \mathrm{mV}$ for $\left.\mathrm{V}_{\mathrm{REF}}=5.000 \mathrm{~V}_{\mathrm{DC}}\right)$ ．

4．2 Full－Scale

The full－scale adjustment can be made by applying a differ－ ential input voltage which is $11 / 2$ LSB down from the desired analog full－scale voltage range and then adjusting the mag－ nitude of the $\mathrm{V}_{\text {REF }}$ input for a digital output code changing from 11111110 to 11111111.

4．3 Adjusting for an Arbitrary Analog Input Voltage Range

If the analog zero voltage of the A / D is shifted away from ground（for example，to accommodate an analog input signal which does not go to ground），this new zero reference should be properly adjusted first．A $\mathrm{V}_{\mathbb{I N}}(+)$ voltage which equals this desired zero reference plus $1 / 2$ LSB（where the LSB is calcu－ lated for the desired analog span， $1 \mathrm{LSB}=$ analog span／256） is applied to selected＂+ ＂input and the zero reference voltage at the corresponding＂－＂input should then be adjusted to just obtain the $00_{\text {HEX }}$ to $01_{\text {HEX }}$ code transition．

b）Absolute with a Reduced Span
501617

FIGURE 2．Referencing Examples

The full－scale adjustment should be made［with the proper $\mathrm{V}_{\text {IN }}(-)$ voltage applied］by forcing a voltage to the $\mathrm{V}_{\text {IN }}(+)$ input which is given by：

$$
\mathrm{V}_{\mathrm{IN}}(+) \text { fs adj }=\mathrm{V}_{\mathrm{MAX}}-1.5\left[\frac{\left(\mathrm{~V}_{\mathrm{MAX}}-\mathrm{V}_{\mathrm{MIN}}\right)}{256}\right]
$$

where $\mathrm{V}_{\text {MAX }}=$ the high end of the analog input range and $\mathrm{V}_{\text {MIN }}=$ the low end（the offset zero）of the analog range．（Both are ground referenced．）
The $\mathrm{V}_{\text {REF }}$（or V_{CC} ）voltage is then adjusted to provide a code change from $\mathrm{FE}_{\text {HEX }}$ to $\mathrm{FF}_{\text {HEX }}$ ．This completes the adjustment procedure．

For an example see the Zero－Shift and Span Adjust circuit below．

Span Adjust（ $0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq 3 \mathrm{~V}$ ）

High Accuracy Comparators

* $\mathrm{V}_{\mathrm{IN}}(-)=0.15 \mathrm{~V}_{\mathrm{CC}}$
15% of $V_{C C} \leq V_{X D R} \leq 85 \%$ of $V_{C C}$

A Stand Alone Circuit

501625
Note: DUT pin numbers in parentheses are for ADC0844, others are for ADC0848.
Start a Conversion without Updating the Channel Configuration

501626
$\overline{\mathrm{CS}} \cdot \overline{\mathrm{WR}}$ will update the channel configuration and start a conversion.
$\overline{\mathrm{CS}} \cdot \overline{\mathrm{RD}}$ will read the conversion data and start a new conversion without updating the channel configuration. Waiting for the end of this conversion is not necessary. $A \overline{C S} \cdot \overline{W R}$ can immediately follow the $\overline{C S} \cdot \overline{R D}$.

SAMPLE PROGRAM FOR ADC0844-INS8039 INTERFACE CONVERTING TWO RATIOMETRIC, DIFFERENTIAL SIGNALS

0000	0410	BEGIN:	ORG	OH	
			JMP	BEGIN	;START PROGRAM AT ADDR 10
			ORG	10H	;MAIN PROGRAM
0010	B9 FF		MOV	R1,\#0FFH	;LOAD R1 WITH A UNUSED ADDR
					;LOCATION
0012	B8 20		MOV	R0,\#20H	;A/D DATA ADDRESS
0014	89 FF		ORL	P1,\#0FFH	;SET PORT 1 OUTPUTS HIGH
0016	2300		MOV	A,00H	;LOAD THE ACC WITH A/D MUX DATA
					;CH1 AND CH2 DIFFERENTIAL
0018	1450		CALL	CONV	;CALL THE CONVERSION SUBROUTINE
001A	2302		MOV	A,\#02H	;LOAD THE ACC WITH A/D MUX DATA
					;CH3 AND CH4 DIFFERENTIAL
001C	18		INC	R0	;INCREMENT THE A/D DATA ADDRESS
001D	1450		CALL	CONV	;CALL THE CONVERSION SUBROUTINE
			;CONTINUE MAIN PROGRAM		
			;CONVE	S SUBROUT	
			;ENTRY	-A/D MUX D	
			;EXIT: A	CONVERTED	
			ORG	50H	
0050	99 FE	CONV:	ANL	P1,\#0FEH	;CHIP SELECT THE A/D
0052	91		MOVX	@R1,A	;LOAD A/D MUX \& START CONVERSION
0053	09	LOOP:	IN	A,P1	;INPUT INTR STATE
0054	3253		JB1	LOOP	;IF INTR = 1 GOTO LOOP
0056	81		MOVX	A, @R1	;IF INTR $=0$ INPUT A/D DATA
0057	8901		ORL	P1,\&01H	;CLEAR THE A/D CHIP SELECT
0059	A0		MOV	@R0,A	;STORE THE A/D DATA
005A	83		RET		;RETURN TO MAIN PROGRAM

Note 15：This routine sequentially programs the MUX data latch in the signal－ended mode．For $\mathrm{CH} 1-\mathrm{CH} 8$ a conversion is started，then a $50 \mu \mathrm{~s}$ wait for the A / D to complete a conversion and the data is stored at address ADDTA for CH 1, ADDTA +1 for CH 2 ，etc．

Physical Dimensions inches (millimeters) unless otherwise noted

Molded Dual－In－Line Package（N） NS Package Number N24D

Notes

Notes

For more National Semiconductor product information and proven design tools, visit the following Web sites at:

Products		Design Support	
Amplifiers	www.national.com/amplifiers	WEBENCH® Tools	www.national.com/webench
Audio	www.national.com/audio	App Notes	www.national.com/appnotes
Clock and Timing	www.national.com/timing	Reference Designs	www.national.com/refdesigns
Data Converters	www.national.com/adc	Samples	www.national.com/samples
Interface	www.national.com/interface	Eval Boards	www.national.com/evalboards
LVDS	www.national.com/lvds	Packaging	www.national.com/packaging
Power Management	www.national.com/power	Green Compliance	www.national.com/quality/green
Switching Regulators	www.national.com/switchers	Distributors	www.national.com/contacts
LDOs	www.national.com/ldo	Quality and Reliability	www.national.com/quality
LED Lighting	www.national.com/led	Feedback/Support	www.national.com/feedback
Voltage Reference	www.national.com/vref	Design Made Easy	www.national.com/easy
PowerWise® Solutions	www.national.com/powerwise	Solutions	www.national.com/solutions
Serial Digital Interface (SDI)	www.national.com/sdi	Mi/Aero	www.national.com/milaero
Temperature Sensors	www.national.com/tempsensors	Solar Magic®	www.national.com/solarmagic
Wireless (PLL/VCO)	www.national.com/wireless	Analog University®	www.national.com/AU

THE CONTENTS OF THIS DOCUMENT ARE PROVIDED IN CONNECTION WITH NATIONAL SEMICONDUCTOR CORPORATION ("NATIONAL") PRODUCTS. NATIONAL MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS PUBLICATION AND RESERVES THE RIGHT TO MAKE CHANGES TO SPECIFICATIONS AND PRODUCT DESCRIPTIONS AT ANY TIME WITHOUT NOTICE. NO LICENSE, WHETHER EXPRESS, IMPLIED, ARISING BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT.
TESTING AND OTHER QUALITY CONTROLS ARE USED TO THE EXTENT NATIONAL DEEMS NECESSARY TO SUPPORT NATIONAL'S PRODUCT WARRANTY. EXCEPT WHERE MANDATED BY GOVERNMENT REQUIREMENTS, TESTING OF ALL PARAMETERS OF EACH PRODUCT IS NOT NECESSARILY PERFORMED. NATIONAL ASSUMES NO LIABILITY FOR APPLICATIONS ASSISTANCE OR BUYER PRODUCT DESIGN. BUYERS ARE RESPONSIBLE FOR THEIR PRODUCTS AND APPLICATIONS USING NATIONAL COMPONENTS. PRIOR TO USING OR DISTRIBUTING ANY PRODUCTS THAT INCLUDE NATIONAL COMPONENTS, BUYERS SHOULD PROVIDE ADEQUATE DESIGN, TESTING AND OPERATING SAFEGUARDS.
EXCEPT AS PROVIDED IN NATIONAL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NATIONAL ASSUMES NO LIABILITY WHATSOEVER, AND NATIONAL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO THE SALE AND/OR USE OF NATIONAL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:
Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.

National Semiconductor and the National Semiconductor logo are registered trademarks of National Semiconductor Corporation. All other brand or product names may be trademarks or registered trademarks of their respective holders.
Copyright® 2008 National Semiconductor Corporation
For the most current product information visit us at www.national.com

	National Semiconductor	National Semiconductor Europe	National Semiconductor Asia	National Semiconductor Japan
	Americas Technical	Technical Support Center	Pacific Technical Support Center	Technical Support Center
	Support Center	Email: europe.support@nsc.com	Email: ap.support@nsc.com	Email: jpn.feedback@nsc.com
	Email: support@nsc.com	German Tel: +49 (0) 1805010771		
	Tel: 1-800-272-9959	English Tel: +44 (0) 8708504288		

[^2]
[^0]: * ADC0848 shown in DIP Package CH5-CH8 not included on the ADC0844

[^1]: * Product/package combination obsolete; shown for reference only

[^2]: www.national.com

