

2N4401

MMBT4401

NPN General Pupose Amplifier

This device is designed for use as a medium power amplifier and switch requiring collector currents up to 500 mA.

Absolute Maximum Ratings*

TA = 25°C unless otherwise noted

Symbol	Parameter	Value	Units
V _{CEO}	Collector-Emitter Voltage	40	V
V _{CBO}	Collector-Base Voltage	60	V
V _{EBO}	Emitter-Base Voltage	6.0	V
I _C	Collector Current - Continuous	600	mA
T _J , T _{stg}	Operating and Storage Junction Temperature Range	-55 to +150	°C

^{*}These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

Thermal Characteristics TA = 25°C unless otherwise noted

Symbol	Characteristic	Max		Units
		2N4401	*MMBT4401	
P_{D}	Total Device Dissipation	625	350	mW
	Derate above 25°C	5.0	2.8	mW/°C
$R_{\theta JC}$	Thermal Resistance, Junction to Case	83.3		°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	200	357	°C/W

^{*}Device mounted on FR-4 PCB 1.6" X 1.6" X 0.06."

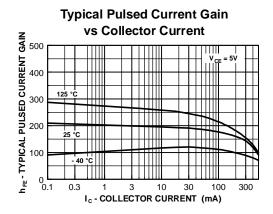
These ratings are based on a maximum junction temperature of 150 degrees C.
 These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

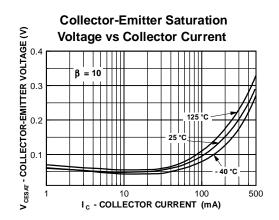
NPN General Purpose Amplifier (continued)

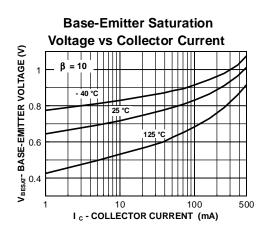
30

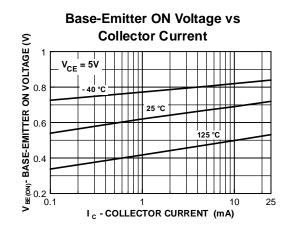
ns

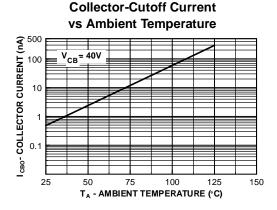
Symbol	Parameter	Test Conditions	Min	Max	Units
0== 01.14	DA OTERIOTION				
	RACTERISTICS		1	1	1
$V_{(BR)CEO}$	Collector-Emitter Breakdown Voltage*	$I_C = 1.0 \text{ mA}, I_B = 0$	40		V
$V_{(BR)CBO}$	Collector-Base Breakdown Voltage	$I_C = 0.1 \text{ mA}, I_E = 0$	60		V
$V_{(BR)EBO}$	Emitter-Base Breakdown Voltage	$I_E = 0.1 \text{ mA}, I_C = 0$	6.0		V
I _{BL}	Base Cutoff Current	$V_{CE} = 35 \text{ V}, V_{EB} = 0.4 \text{ V}$		0.1	μА
I _{CEX}	Collector Cutoff Current	$V_{CE} = 35 \text{ V}, V_{EB} = 0.4 \text{ V}$		0.1	μΑ
ON CHAF	RACTERISTICS*				
h _{FE}	DC Current Gain	$I_C = 0.1 \text{ mA}, V_{CE} = 1.0 \text{ V}$	20		
''FE	Do Garrent Gain	$I_C = 1.0 \text{ mA}, V_{CE} = 1.0 \text{ V}$	40		
		$I_C = 10 \text{ mA}, V_{CE} = 1.0 \text{ V}$	80		
		$I_C = 150 \text{ mA}, V_{CE} = 1.0 \text{ V}$	100	300	
		$I_C = 500 \text{ mA}, V_{CE} = 2.0 \text{ V}$	40		
$V_{CE(sat)}$	Collector-Emitter Saturation Voltage	$I_C = 150 \text{ mA}, I_B = 15 \text{ mA}$		0.4	V
\/	Base-Emitter Saturation Voltage	$I_C = 500 \text{ mA}, I_B = 50 \text{ mA}$ $I_C = 150 \text{ mA}, I_B = 15 \text{ mA}$	0.75	0.75 0.95	V
$V_{BE(sat)}$	base-Emitter Saturation voltage	, 5	0.73		V
		$I_C = 500 \text{ mA}, I_B = 50 \text{ mA}$		1.2	V
	IGNAL CHARACTERISTICS Current Gain - Bandwidth Product	$I_{C} = 20 \text{ mA}, V_{CE} = 10 \text{ V},$	250	1.2	MHz
f _T	Current Gain - Bandwidth Product	$I_C = 20 \text{ mA}, V_{CE} = 10 \text{ V},$ f = 100 MHz	250		MHz
f_{T}		$I_{C} = 20 \text{ mA}, V_{CE} = 10 \text{ V},$ f = 100 MHz $V_{CB} = 5.0 \text{ V}, I_{E} = 0,$	250	6.5	
f _T	Current Gain - Bandwidth Product	$\begin{split} I_{C} &= 20 \text{ mA, } V_{CE} = 10 \text{ V,} \\ f &= 100 \text{ MHz} \\ V_{CB} &= 5.0 \text{ V, } I_{E} = 0, \\ f &= 140 \text{ kHz} \\ V_{BE} &= 0.5 \text{ V, } I_{C} = 0, \end{split}$	250		MHz
f _T C _{cb} C _{eb}	Current Gain - Bandwidth Product Collector-Base Capacitance	$\begin{split} I_{C} &= 20 \text{ mA, } V_{CE} = 10 \text{ V,} \\ f &= 100 \text{ MHz} \\ V_{CB} &= 5.0 \text{ V, } I_{E} = 0, \\ f &= 140 \text{ kHz} \\ V_{BE} &= 0.5 \text{ V, } I_{C} = 0, \\ f &= 140 \text{ kHz} \\ I_{C} &= 1.0 \text{ mA, } V_{CE} = 10 \text{ V,} \end{split}$	250	6.5	MHz pF
	Current Gain - Bandwidth Product Collector-Base Capacitance Emitter-Base Capacitance	$\begin{split} I_C &= 20 \text{ mA}, \ V_{CE} = 10 \text{ V}, \\ f &= 100 \text{ MHz} \\ V_{CB} &= 5.0 \text{ V}, \ I_E = 0, \\ f &= 140 \text{ kHz} \\ V_{BE} &= 0.5 \text{ V}, \ I_C = 0, \\ f &= 140 \text{ kHz} \\ I_C &= 1.0 \text{ mA}, \ V_{CE} = 10 \text{ V}, \\ f &= 1.0 \text{ kHz} \\ I_C &= 1.0 \text{ mA}, \ V_{CE} = 10 \text{ V}, \end{split}$		6.5	MHz pF pF kΩ
f _T C _{cb} C _{eb} h _{ie}	Current Gain - Bandwidth Product Collector-Base Capacitance Emitter-Base Capacitance Input Impedance	$\begin{split} I_C &= 20 \text{ mA}, \ V_{CE} = 10 \ V, \\ f &= 100 \ MHz \\ V_{CB} &= 5.0 \ V, \ I_E = 0, \\ f &= 140 \ kHz \\ V_{BE} &= 0.5 \ V, \ I_C = 0, \\ f &= 140 \ kHz \\ I_C &= 1.0 \ mA, \ V_{CE} = 10 \ V, \\ f &= 1.0 \ kHz \\ I_C &= 1.0 \ mA, \ V_{CE} = 10 \ V, \\ f &= 1.0 \ kHz \\ I_C &= 1.0 \ mA, \ V_{CE} = 10 \ V, \end{split}$	1.0	6.5 30 15	MHz pF pF kΩ
f _T C _{cb} C _{eb} h _{ie} h _{re}	Current Gain - Bandwidth Product Collector-Base Capacitance Emitter-Base Capacitance Input Impedance Voltage Feedback Ratio	$\begin{split} I_C &= 20 \text{ mA}, \ V_{CE} = 10 \ \text{V}, \\ f &= 100 \ \text{MHz} \\ V_{CB} &= 5.0 \ \text{V}, \ I_E = 0, \\ f &= 140 \ \text{kHz} \\ V_{BE} &= 0.5 \ \text{V}, \ I_C = 0, \\ f &= 140 \ \text{kHz} \\ I_C &= 1.0 \ \text{mA}, \ V_{CE} = 10 \ \text{V}, \\ f &= 1.0 \ \text{kHz} \\ I_C &= 1.0 \ \text{mA}, \ V_{CE} = 10 \ \text{V}, \\ f &= 1.0 \ \text{kHz} \end{split}$	1.0	6.5 30 15 8.0	MHz pF pF kΩ x 10 ⁻⁴
f _T C _{cb} C _{eb} h _{ie} h _{re} h _{fe}	Current Gain - Bandwidth Product Collector-Base Capacitance Emitter-Base Capacitance Input Impedance Voltage Feedback Ratio Small-Signal Current Gain Output Admittance	$\begin{split} I_C &= 20 \text{ mA}, \ V_{CE} = 10 \ V, \\ f &= 100 \ \text{MHz} \\ V_{CB} &= 5.0 \ \text{V}, \ I_E = 0, \\ f &= 140 \ \text{kHz} \\ V_{BE} &= 0.5 \ \text{V}, \ I_C = 0, \\ f &= 140 \ \text{kHz} \\ I_C &= 1.0 \ \text{mA}, \ V_{CE} = 10 \ \text{V}, \\ f &= 1.0 \ \text{kHz} \\ I_C &= 1.0 \ \text{mA}, \ V_{CE} = 10 \ \text{V}, \\ f &= 1.0 \ \text{kHz} \\ I_C &= 1.0 \ \text{mA}, \ V_{CE} = 10 \ \text{V}, \\ f &= 1.0 \ \text{kHz} \\ I_C &= 1.0 \ \text{mA}, \ V_{CE} = 10 \ \text{V}, \\ f &= 1.0 \ \text{kHz} \\ I_C &= 1.0 \ \text{mA}, \ V_{CE} = 10 \ \text{V}, \\ f &= 1.0 \ \text{kHz} \\ I_C &= 1.0 \ \text{mA}, \ V_{CE} = 10 \ \text{V}, \\ f &= 1.0 \ \text{mA}, \ V_{CE} = 10 \ \text{V}, \\ I_C &= 1.0 \ \text{MA}, \ V_{CE} = 10 \ \text{V}, \\ I_C &= 1.0 \ \text{MA}, \ V_{CE} = 10 \ \text{V}, \\ I_C &= 1.0 \ \text{MA}, \ V_{CE} = 10 \ \text{V}, \\ I_C &= 1.0 \ \text{MA}, \ V_{CE} = 10 \ \text{V}, \\ I_C &= 1.0 \ \text{MA}, \ V_{CE} = 10 \ \text{V}, \\ I_C &= 1.0 \ \text{MA}, \ V_{CE} = 10 \ \text{V}, \\ I_C &= 1.0 \ \text{MA}, \ V_{CE} = 10 \ \text{V}, \\ I_C &= 1.0 \ \text{MA}, \ V_{CE} = 10 \ \text{V}, \\ I_C &= 1.0 \ \text{MA}, \ V_{CE} = 10 \ \text{V}, \\ I_C &= 1.0 \ \text{MA}, \ V_{CE} = 10 \ \text{V}, \\ I_C &= 1.0 \ \text{MA}, \ V_{CE} = 10 \ \text{V}, \\ I_C &= 1.0 \ \text{MA}, \ V_{CE} = 10 \ \text{V}, \\ I_C &= 1.0 \ \text{MA}, \ V_{CE} = 10 \ \text{V}, \\ I_C &= 1.0 \ $	1.0 0.1 40	6.5 30 15 8.0 500	MHz pF pF
f _T C _{cb} C _{eb} h _{ie} h _{re} h _{fe} SWITCHI	Current Gain - Bandwidth Product Collector-Base Capacitance Emitter-Base Capacitance Input Impedance Voltage Feedback Ratio Small-Signal Current Gain	$\begin{split} I_C &= 20 \text{ mA}, \ V_{CE} = 10 \ V, \\ f &= 100 \ \text{MHz} \\ V_{CB} &= 5.0 \ \text{V}, \ I_E = 0, \\ f &= 140 \ \text{kHz} \\ V_{BE} &= 0.5 \ \text{V}, \ I_C = 0, \\ f &= 140 \ \text{kHz} \\ I_C &= 1.0 \ \text{mA}, \ V_{CE} = 10 \ \text{V}, \\ f &= 1.0 \ \text{kHz} \\ I_C &= 1.0 \ \text{mA}, \ V_{CE} = 10 \ \text{V}, \\ f &= 1.0 \ \text{kHz} \\ I_C &= 1.0 \ \text{mA}, \ V_{CE} = 10 \ \text{V}, \\ f &= 1.0 \ \text{kHz} \\ I_C &= 1.0 \ \text{mA}, \ V_{CE} = 10 \ \text{V}, \\ f &= 1.0 \ \text{kHz} \\ I_C &= 1.0 \ \text{mA}, \ V_{CE} = 10 \ \text{V}, \\ f &= 1.0 \ \text{kHz} \\ I_C &= 1.0 \ \text{mA}, \ V_{CE} = 10 \ \text{V}, \\ f &= 1.0 \ \text{mA}, \ V_{CE} = 10 \ \text{V}, \\ I_C &= 1.0 \ \text{MA}, \ V_{CE} = 10 \ \text{V}, \\ I_C &= 1.0 \ \text{MA}, \ V_{CE} = 10 \ \text{V}, \\ I_C &= 1.0 \ \text{MA}, \ V_{CE} = 10 \ \text{V}, \\ I_C &= 1.0 \ \text{MA}, \ V_{CE} = 10 \ \text{V}, \\ I_C &= 1.0 \ \text{MA}, \ V_{CE} = 10 \ \text{V}, \\ I_C &= 1.0 \ \text{MA}, \ V_{CE} = 10 \ \text{V}, \\ I_C &= 1.0 \ \text{MA}, \ V_{CE} = 10 \ \text{V}, \\ I_C &= 1.0 \ \text{MA}, \ V_{CE} = 10 \ \text{V}, \\ I_C &= 1.0 \ \text{MA}, \ V_{CE} = 10 \ \text{V}, \\ I_C &= 1.0 \ \text{MA}, \ V_{CE} = 10 \ \text{V}, \\ I_C &= 1.0 \ \text{MA}, \ V_{CE} = 10 \ \text{V}, \\ I_C &= 1.0 \ \text{MA}, \ V_{CE} = 10 \ \text{V}, \\ I_C &= 1.0 \ \text{MA}, \ V_{CE} = 10 \ \text{V}, \\ I_C &= 1.0 \ $	1.0 0.1 40	6.5 30 15 8.0 500	MHz pF pF kΩ x 10 ⁻⁴
f _T Ccb Ceb h _{ie} h _{re} h _{fe}	Current Gain - Bandwidth Product Collector-Base Capacitance Emitter-Base Capacitance Input Impedance Voltage Feedback Ratio Small-Signal Current Gain Output Admittance	$\begin{split} I_C &= 20 \text{ mA}, \ V_{CE} = 10 \ V, \\ f &= 100 \ \text{MHz} \\ V_{CB} &= 5.0 \ V, \ I_E = 0, \\ f &= 140 \ \text{kHz} \\ V_{BE} &= 0.5 \ V, \ I_C = 0, \\ f &= 140 \ \text{kHz} \\ I_C &= 1.0 \ \text{mA}, \ V_{CE} = 10 \ V, \\ f &= 1.0 \ \text{kHz} \\ I_C &= 1.0 \ \text{mA}, \ V_{CE} = 10 \ V, \\ f &= 1.0 \ \text{kHz} \\ I_C &= 1.0 \ \text{mA}, \ V_{CE} = 10 \ V, \\ f &= 1.0 \ \text{kHz} \\ I_C &= 1.0 \ \text{mA}, \ V_{CE} = 10 \ V, \\ f &= 1.0 \ \text{kHz} \\ I_C &= 1.0 \ \text{mA}, \ V_{CE} = 10 \ V, \\ f &= 1.0 \ \text{kHz} \\ \end{split}$	1.0 0.1 40	6.5 30 15 8.0 500 30	MHz pF pF kΩ x 10 ⁻⁴

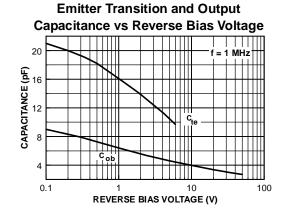

 $I_{B1} = I_{B2} = 15 \text{ mA}$

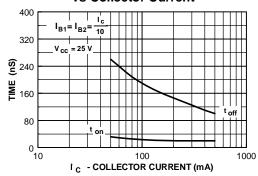

Fall Time

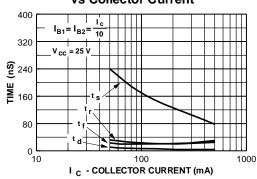

 $^{^\}bigstar\text{Pulse Test: Pulse Width}\,{\le}\,300\,\mu\text{s},$ Duty Cycle ${\le}\,2.0\%$


(continued)


Typical Characteristics



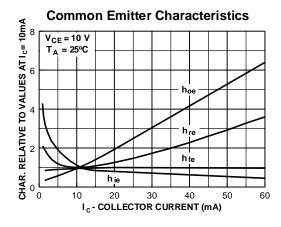


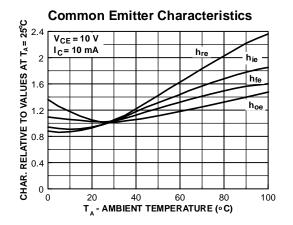

(continued)

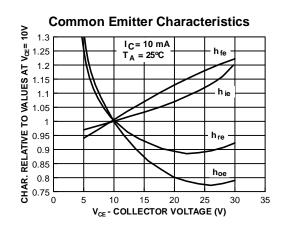
Typical Characteristics (continued)


Turn On and Turn Off Times vs Collector Current

Switching Times vs Collector Current




Power Dissipation vs Ambient Temperature



(continued)

Typical Common Emitter Characteristics (f = 1.0kHz)

(continued)

Test Circuits

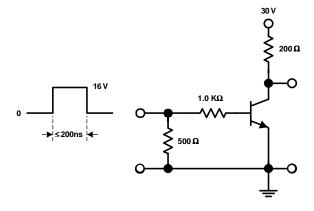


FIGURE 1: Saturated Turn-On Switching Timer

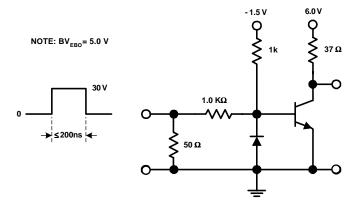


FIGURE 2: Saturated Turn-Off Switching Time

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

 $ACEx^{TM}$ FASTr™ PowerTrench® SyncFET™ Bottomless™ QFET™ TinyLogic™ GlobalOptoisolator™ QSTM UHC™ CoolFET™ GTO™ **VCX**TM $CROSSVOLT^{TM}$ QT Optoelectronics™ HiSeC™

DOME™ ISOPLANAR™ Quiet Series™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification		Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

Search:

Go

DATASHEETS, SAMPLES, BUY TECHNICAL INFORMATION APPLICATIONS DESIGN CENTER SUPPORT COMPANY INVESTORS MY F.

Application notes

Qualification Support

Home >> Find products >>

2N4401

NPN General Purpose Amplifier

Contents

- General description
- Product status/pricing/packaging
- Order Samples
- Models

General description

This device is designed for use as a medium power amplifier and switch requiring collector currents up to 500 mA.

back to top

BUY

Datasheet Download this datasheet

e-mail this datasheet

This page Print version

Related Links

Request samples

How to order products

Product Change Notices (PCNs)

Support

Sales support

Quality and reliability

Design center

Product status/pricing/packaging

BUY

Product	Product status	Pb-free Status	Pricing*	Package type	Leads	Packing method	Package Marking Convention**
2N4401BU	Full Production	Full Production	\$0.026	<u>TO-92</u>	3	BULK	<u>Line 1:</u> 2N <u>Line 2:</u> 4401 <u>Line 3:</u> -&3
2N4401NLBU	Full Production	Full Production	\$0.026	<u>TO-92</u>	3	BULK	Line 1: 2N Line 2: 4401 Line 3: -&3
2N4401TA	Full Production	Full Production	\$0.026	<u>TO-92</u>	3	AMMO	Line 1: 2N Line 2: 4401 Line 3: -&3
2N4401TAR	Full Production		\$0.026	<u>TO-92</u>	3	AMMO	Line 1: 2N Line 2: 4401 Line 3: -&3

		Full Production					
2N4401TA_NL	Full Production	Full Production	N/A	TO-92	3	АММО	Line 1: 2N Line 2: 4401 Line 3: -&3
2N4401TF	Full Production	Full Production	\$0.026	TO-92	3	TAPE REEL	Line 1: 2N Line 2: 4401 Line 3: -&3
2N4401TFR	Full Production	Full Production	\$0.026	TO-92	3	TAPE REEL	Line 1: 2N Line 2: 4401 Line 3: -&3
2N4401_D81Z	Full Production	Full Production	N/A	TO-92	3	TAPE REEL	Line 1: \$Y (Fairchild logo) & Z (Asm. Plant Code) & 3 (3-Digit Date Code) Line 2: 2N Line 3: 4401
2N4401_J05Z	Full Production	Full Production	N/A	TO-92	3	BULK	Line 1: \$Y (Fairchild logo) & Z (Asm. Plant Code) & 3 (3-Digit Date Code) Line 2: 2N Line 3: 4401
2N4401_J18Z	Full Production	Full Production	N/A	TO-92	3	BULK	Line 1: \$Y (Fairchild logo) & Z (Asm. Plant Code) & 3 (3-Digit Date Code) Line 2: 2N Line 3: 4401
2N4401_J60Z	Full Production	Full Production	N/A	TO-92	3	BULK	Line 1: \$Y (Fairchild logo) & Z (Asm. Plant Code) & 3 (3-Digit Date Code) Line 2: 2N Line 3: 4401
2N4401_J61Z	Full Production	Full Production	N/A	TO-92	3	BULK	Line 1: \$Y (Fairchild logo) & Z (Asm. Plant Code) & 3 (3-Digit Date Code) Line 2: 2N Line 3: 4401

Indicates product with Pb-free second-level interconnect. For more information click here.

Package marking information for product 2N4401 is available. Click here for more information.

^{*} Fairchild 1,000 piece Budgetary Pricing

** A sample button will appear if the part is available through Fairchild's on-line samples program. If there is no sample button, please contact a Fairchild distributor to obtain samples

back to top

Models

Package & leads	Condition	Software version	Revision date					
PSPICE								
TO-92-3 <u>Electrical</u> 25°C N/A N/A								

back to top

Application notes

AN-9006: IGBT Application Note for Camera Strobe (145 K) Jul 27, 2007

back to top

Qualification Support

Click on a product for detailed qualification data

Product
<u>2N4401BU</u>
<u>2N4401NLBU</u>
2N4401TA
2N4401TAR
2N4401TA_NL
2N4401TF
2N4401TFR
2N4401_D81Z
2N4401_J05Z
2N4401_J18Z
2N4401_J60Z
2N4401_J61Z

back to top

Products Design Center Support Company News Investors My Fairchild Contact Us Site Index Privacy Policy Site Terms & Condition	ons Standard Terms & Conditions