4-Mbit (256K x 16) Static RAM

Features

- Pin equivalent to CY7C1041BV33
- Temperature Ranges
— Commercial: $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
- Industrial: $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
- Automotive: $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
- High speed
$-t_{A A}=10 \mathrm{~ns}$
- Low active power
- 324 mW (max.)
- 2.0 V data retention
- Automatic power-down when deselected
- TTL-compatible inputs and outputs
- Easy memory expansion with $\overline{\mathrm{CE}}$ and $\overline{\mathrm{OE}}$ features

Functional Description ${ }^{[1]}$

The CY7C1041CV33 is a high-performance CMOS Static RAM organized as 262,144 words by 16 bits.
Writing to the device is accomplished by taking Chip Enable ($\overline{\mathrm{CE}}$) and Write Enable ($\overline{\mathrm{WE}}$) inputs LOW. If Byte LOW Enable (BLE) is LOW, then data from I/O pins $\left(1 / \mathrm{O}_{0}-1 / \mathrm{O}_{7}\right)$, is written into the location specified on the address pins $\left(\mathrm{A}_{0}-\mathrm{A}_{17}\right)$. If Byte HIGH Enable (BHE) is LOW, then data from I/O pins $\left(1 / \mathrm{O}_{8}-\mathrm{l} / \mathrm{O}_{15}\right)$ is written into the location specified on the address pins $\left(\mathrm{A}_{0}-\mathrm{A}_{17}\right)$.
Reading from the device is accomplished by taking Chip Enable ($\overline{\mathrm{CE}}$) and Output Enable ($\overline{\mathrm{OE})}$ LOW while forcing the Write Enable (WE) HIGH. If Byte LOW Enable (BLE) is LOW, then data from the memory location specified by the address pins will appear on $\mathrm{I} / \mathrm{O}_{0}-\mathrm{I} / \mathrm{O}_{7}$. If Byte HIGH Enable ($\overline{\mathrm{BHE}}$) is LOW, then data from memory will appear on $\mathrm{I} / \mathrm{O}_{8}$ to $\mathrm{I} / \mathrm{O}_{15}$. See the truth table at the back of this data sheet for a complete description of Read and Write modes.
The input/output pins $\left(1 / O_{0}-1 / O_{15}\right)$ are placed in a high-impedance state when the device is deselected ($\overline{\mathrm{CE}}$ HIGH), the outputs are disabled ($\overline{\mathrm{OE}} \mathrm{HIGH}$), the $\overline{\mathrm{BHE}}$ and $\overline{\mathrm{BLE}}$ are disabled (BHE, BLE HIGH), or during a Write operation (CE LOW, and WE LOW).

The CY7C1041CV33 is available in a standard 44-pin 400 -mil-wide body width SOJ and 44-pin TSOP II package with center power and ground (revolutionary) pinout, as well as a 48-ball fine-pitch ball grid array (FBGA) package.

Notes:

1. For guidelines on SRAM system design, please refer to the "System Design Guidelines" Cypress application note, available on the internet at www.cypress.com.

CYPRESS
Selection Guide

		$\mathbf{- 1 0}$	$\mathbf{- 1 2}$	$\mathbf{- 1 5}$	$\mathbf{- 2 0}$	Unit
Maximum Access Time	10	12	15	20	ns	
Maximum Operating Current	Commercial	90	85	80	75	mA
	Industrial	100	95	90	85	mA
	Automotive	-	-	-	90	mA
Maximum CMOS Standby Current	Commercial/ Industrial	10	10	10	10	mA
	Automotive	-	-	-	15	mA

Pin Configurations

Pin Definitions

Pin Name	44-SOJ, 44-TSOP Pin Number	48-ball FBGA Pin Number	I/O Type	Description

Note:
2. NC pins are not connected on the die.

CY7C1041CV33

Static Discharge Voltage.............>2001V
(per MIL-STD-883, Method 3015)
Latch-up Current.
$>200 \mathrm{~mA}$
Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	
Industrial	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	
Automotive	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	

DC Electrical Characteristics Over the Operating Range

Parameter	Description	Test Conditions		-10		-12		-15		-20		Unit
				Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$		2.4		2.4		2.4		2.4		V
V_{OL}	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min} ., \mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$			0.4		0.4		0.4		0.4	V
V_{IH}	Input HIGH Voltage			2.0	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{CC}} \\ & +0.3 \end{aligned}$	2.0	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{cc}} \\ & +0.3 \end{aligned}$	2.0	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}} \\ & +0.3 \end{aligned}$	2.0	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \\ & +0.3 \end{aligned}$	V
$\mathrm{V}_{\mathrm{IL}}{ }^{[3]}$	Input LOW Voltage			-0.3	0.8	-0.3	0.8	-0.3	0.8	-0.3	0.8	V
1 IX	Input Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$	Com'//Ind'I	-1	+1	-1	+1	-1	+1	-1	+1	$\mu \mathrm{A}$
			Automotive							-20	+20	$\mu \mathrm{A}$
Ioz	Output Leakage Current	$\begin{aligned} & \text { GND } \leq \mathrm{V}_{\mathrm{OUT}} \leq \\ & \mathrm{V}_{\mathrm{CC}}, \\ & \text { Output Disabled } \end{aligned}$	Com'//Ind'l	-1	+1	-1	+1	-1	+1	-1	+1	$\mu \mathrm{A}$
			Automotive							-20	+20	$\mu \mathrm{A}$
${ }^{\text {c Cc }}$	V_{Cc} Operating Supply Current	$\begin{aligned} & V_{C C}=M a x .^{\prime}, \\ & f=f_{M A X}=1 / t_{R C} \end{aligned}$	Com'l		90		85		80		75	mA
			Ind'l		100		95		90		85	mA
			Automotive								90	mA
${ }^{\text {SB1 }}$	Automatic CE Power-down Current -TTL Inputs	$\begin{aligned} & \frac{M a x}{} \mathrm{~V} \mathrm{~V}_{\mathrm{CC}} \\ & \mathrm{~V}_{\text {IN }} \geq \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\text {IN }} \leq \mathrm{V}_{\mathrm{IL}}, f=f_{\mathrm{MAX}} \end{aligned}$	Com'I/Ind'I		40		40		40		40	mA
			Automotive								45	mA
${ }^{\text {SB2 }}$	Automatic CE Power-down Current -CMOS Inputs	$\begin{aligned} & \frac{M a x .}{} V_{C C}, \\ & C E \\ & V_{C C} \geq V_{C C}-0.3 V, \\ & \text { or } V_{I N} \leq 0.3 V, f=0 \end{aligned}$	Com'//Ind'I		10		10		10		10	mA
			Automotive								15	mA

Capacitance ${ }^{[4]}$

Parameter	Description	Test Conditions	Max.	Unit
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$	8	pF
$\mathrm{C}_{\mathrm{OUT}}$		8	pF	

Thermal Resistance ${ }^{[4]}$

Parameter	Description	Test Conditions	44-pin TSOP-II	48-FBGA	44-SOJ	Unit
$\Theta_{\text {JA }}$	Thermal Resistance (Junction to Ambient)	Test conditions follow standard test methods and procedures for measuring thermal impedance, per EIA / JESD51.	42.96	38.15	25.99	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Θ_{JC}	Thermal Resistance (Junction to Case)		10.75	9.15	18.8	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Notes:

3. $\mathrm{V}_{\mathrm{IL}}(\min)=.-2.0 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{IH}}(\max)=\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$ for pulse durations of less than 20 ns .
4. Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms ${ }^{[5]}$

(a)

Rise Time: 1 V/ns
(c)

(b)

High-Z Characteristics

(d)

AC Switching Characteristics ${ }^{[6]}$ Over the Operating Range

Parameter	Description	-10		-12		-15		-20		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
Read Cycle										
$\mathrm{t}_{\text {power }}{ }^{[7]}$	V_{Cc} (typical) to the first access	1		1		1		1		$\mu \mathrm{S}$
t_{RC}	Read Cycle Time	10		12		15		20		ns
t_{AA}	Address to Data Valid		10		12		15		20	ns
$\mathrm{t}_{\text {OHA }}$	Data Hold from Address Change	3		3		3		3		ns
$\mathrm{t}_{\text {ACE }}$	$\overline{\mathrm{CE}}$ LOW to Data Valid		10		12		15		20	ns
$\mathrm{t}_{\text {doe }}$	$\overline{\mathrm{OE}}$ LOW to Data Valid		5		6		7		8	ns
tlzoe	OE LOW to Low-Z	0		0		0		0		ns
$\mathrm{t}_{\text {Hzoe }}$	$\overline{\mathrm{OE}}$ HIGH to High-Z ${ }^{[8,9]}$		5		6		7		8	ns
tızCE	$\overline{\mathrm{CE}}$ LOW to Low-Z ${ }^{[9]}$	3		3		3		3		ns
$\mathrm{t}_{\text {HZCE }}$	$\overline{\mathrm{CE}}$ HIGH to High-Z ${ }^{[8, ~ 9]}$		5		6		7		8	ns
t_{PU}	$\overline{\mathrm{CE}}$ LOW to Power-Up	0		0		0		0		ns
$\mathrm{t}_{\text {PD }}$	$\overline{\text { CE HIGH to Power-Down }}$		10		12		15		20	ns
$\mathrm{t}_{\text {DBE }}$	Byte Enable to Data Valid		5		6		7		8	ns
t LZBE	Byte Enable to Low-Z	0		0		0		0		ns
$\mathrm{t}_{\text {HZBE }}$	Byte Disable to High-Z		6		6		7		8	ns
Write Cycle ${ }^{[10,11]}$										
t_{wc}	Write Cycle Time	10		12		15		20		ns
$\mathrm{t}_{\text {SCE }}$	$\overline{\text { CE }}$ LOW to Write End	7		8		10		10		ns
$\mathrm{t}_{\text {AW }}$	Address Set-Up to Write End	7		8		10		10		ns

Shaded areas contain advance information.

Notes:

5. AC characteristics (except High-Z) for 10-ns parts are tested using the load conditions shown in Figure (a). All other speeds are tested using the Thevenin load shown in Figure (b). High-Z characteristics are tested for all speeds using the test load shown in Figure (d).
6. Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V .
7. $t_{\text {POWER }}$ gives the minimum amount of time that the power supply should be at typical V_{CC} values until the first memory access can be performed.
8. $t_{\text {HZOE }}, t_{\text {HZCE }}$, and $t_{\text {HZWE }}$ are specified with a load capacitance of 5 pF as in part (d) of AC Test Loads. Transition is measured $\pm 500 \mathrm{mV}$ from steady-state voltage.
9. At any given temperature and voltage condition, $t_{\text {HZCE }}$ is less than $t_{\text {IZCE }}, t_{\text {HZOE }}$ is less than $t_{\text {IZOE }}$, and $t_{\text {HZWE }}$ is less than $t_{\text {LZWE }}$ for any given device.
10. The internal Write time of the memory is defined by the overlap of CE LOW, and WE LOW. CE and WE must be LOW to initiate a Write, and the transition of either of these signals can terminate the Write. The input data set-up and hold timing should be referenced to the leading edge of the signal that terminates the Write.
11. The minimum Write cycle time for Write Cycle No. 3 ($\overline{\mathrm{WE}}$ controlled, $\overline{\mathrm{OE}} \mathrm{LOW}$) is the sum of $\mathrm{t}_{\text {HZWE }}$ and t_{SD}

CY7C1041CV33
AC Switching Characteristics ${ }^{[6]}$ Over the Operating Range (continued)

Parameter	Description	-10		-12		-15		-20		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
t_{HA}	Address Hold from Write End	0		0		0		0		ns
$\mathrm{t}_{\text {SA }}$	Address Set-Up to Write Start	0		0		0		0		ns
$t_{\text {PWE }}$	WE Pulse Width	7		8		10		10		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up to Write End	5		6		7		8		ns
$\mathrm{t}_{\text {HD }}$	Data Hold from Write End	0		0		0		0		ns
t LzWe	$\overline{\text { WE }}$ HIGH to Low-Z ${ }^{[9]}$	3		3		3		3		ns
$\mathrm{t}_{\text {HzWE }}$	$\overline{\mathrm{WE}}$ LOW to High-Z ${ }^{[8,9]}$		5		6		7		8	ns
$\mathrm{t}_{\text {BW }}$	Byte Enable to End of Write	7		8		10		10		ns

Switching Waveforms

Read Cycle No. ${ }^{[12,13]}$

Read Cycle No. 2 ($\overline{\mathrm{OE}}$ Controlled) ${ }^{[13,14]}$

Notes:
12. Device is continuously selected. $\overline{\mathrm{OE}}, \overline{\mathrm{CE}}, \overline{\mathrm{BHE}}$ and/or $\overline{\mathrm{BHE}}=\mathrm{V}_{\mathrm{IL}}$.
13. WE is HIGH for Read cycle.
14. Address valid prior to or coincident with $\overline{\mathrm{CE}}$ transition LOW

Switching Waveforms (continued)
Write Cycle No. 1 ($\overline{\text { CE }}$ Controlled) ${ }^{[15,16]}$

Write Cycle No. 2 ($\overline{\mathrm{BLE}}$ or $\overline{\mathrm{BHE}}$ Controlled)

Notes:
15. Data I / O is high-impedance if $\overline{\mathrm{OE}}$ or $\overline{\mathrm{BHE}}$ and/or $\overline{\mathrm{BLE}}=\mathrm{V}_{\mathrm{IH}}$.
16. If CE goes HIGH simultaneously with WE going HIGH, the output remains in a high-impedance state.

CY7C1041CV33

Switching Waveforms (continued)

Write Cycle No. 2 ($\overline{\mathrm{WE}}$ Controlled, $\overline{\mathrm{OE}}$ LOW)

Truth Table

CE	OE	WE	BLE	$\overline{\text { BHE }}$	$1 / \mathrm{O}_{0}-1 / \mathrm{O}_{7}$	$1 / \mathrm{O}_{8}-1 / \mathrm{O}_{15}$	Mode	Power
H	X	X	X	X	High-Z	High-Z	Power-down	Standby ($\mathrm{ISB}^{\text {) }}$
L	L	H	L	L	Data Out	Data Out	Read All Bits	Active ($\mathrm{I}_{\text {c }}$)
L	L	H	L	H	Data Out	High-Z	Read Lower Bits Only	Active (1cc)
L	L	H	H	L	High-Z	Data Out	Read Upper Bits Only	Active ($\mathrm{ICC}^{\text {) }}$
L	X	L	L	L	Data In	Data In	Write All Bits	Active (1cc)
L	x	L	L	H	Data In	High-Z	Write Lower Bits Only	Active ($\mathrm{ICC}^{\text {) }}$
L	X	L	H	L	High-Z	Data In	Write Upper Bits Only	Active ($\mathrm{ICC}^{\text {) }}$
L	H	H	X	X	High-Z	High-Z	Selected, Outputs Disabled	Active ($\mathrm{ICC}^{\text {) }}$

Ordering Information

Speed (ns)	Ordering Code	Package Diagram	Package Type	Operating Range
10	CY7C1041CV33-10BAC	51-85106	48-ball Fine Pitch BGA	Commercial
	CY7C1041CV33-10BAXC	51-85106	48-ball Fine Pitch BGA (Pb-Free)	
	CY7C1041CV33-10VC	51-85082	44-lead (400-mil) Molded SOJ	
	CY7C1041CV33-10VXC	51-85082	44-lead (400-mil) Molded SOJ (Pb-Free)	
	CY7C1041CV33-10ZC	51-85087	44-pin TSOP II Z44	
	CY7C1041CV33-10ZXC	51-85087	44-pin TSOP II Z44 (Pb-Free)	
	CY7C1041CV33-10BAI	51-85106	48-ball Fine Pitch BGA	Industrial
	CY7C1041CV33-10BAXI	51-85106	48-ball Fine Pitch BGA (Pb-Free)	
	CY7C1041CV33-10ZI	51-85087	44-pin TSOP II Z44	
	CY7C1041CV33-10ZXI	51-85087	44-pin TSOP II Z44 (Pb-Free)	
12	CY7C1041CV33-12VC	51-85082	44-lead (400-mil) Molded SOJ	Commercial
	CY7C1041CV33-12VXC	51-85082	44-lead (400-mil) Molded SOJ (Pb-Free)	
	CY7C1041CV33-12ZC	51-85087	44-pin TSOP II Z44	
	CY7C1041CV33-12ZXC	51-85087	44-pin TSOP II Z44 (Pb-Free)	
	CY7C1041CV33-12BAXI	51-85106	48-ball Fine Pitch BGA (Pb-Free)	Industrial
	CY7C1041CV33-12VXI	51-85082	44-lead (400-mil) Molded SOJ (Pb-Free)	
	CY7C1041CV33-12ZI	51-85087	44-pin TSOP II Z44	
	CY7C1041CV33-12ZXI	51-85087	44-pin TSOP II Z44 (Pb-Free)	
15	CY7C1041CV33-15VC	51-85082	44-lead (400-mil) Molded SOJ	Commercial
	CY7C1041CV33-15VXC	51-85082	44-lead (400-mil) Molded SOJ (Pb-Free)	
	CY7C1041CV33-15ZC	51-85087	44-pin TSOP II Z44	
	CY7C1041CV33-15ZXC	51-85087	44-pin TSOP II Z44 (Pb-Free)	
	CY7C1041CV33-15VI	51-85082	44-lead (400-mil) Molded SOJ	Industrial
	CY7C1041CV33-15VXI	51-85082	44-lead (400-mil) Molded SOJ (Pb-Free)	
	CY7C1041CV33-15ZI	51-85087	44-pin TSOP II Z44	
	CY7C1041CV33-15ZXI	51-85087	44-pin TSOP II Z44 (Pb-Free)	
20	CY7C1041CV33-20VXC	51-85082	44-lead (400-mil) Molded SOJ (Pb-Free)	Commercial
	CY7C1041CV33-20ZC	51-85087	44-pin TSOP II Z44	
	CY7C1041CV33-20ZXC	51-85087	44-pin TSOP II Z44 (Pb-Free)	
	CY7C1041CV33-20ZI	51-85087	44-pin TSOP II Z44	Industrial
	CY7C1041CV33-20ZXI	51-85087	44-pin TSOP II Z44 (Pb-Free)	
	CY7C1041CV33-20BAE	51-85106	48-ball Fine Pitch BGA	Automotive
	CY7C1041CV33-20BAXE	51-85106	48-ball Fine Pitch BGA (Pb-Free)	
	CY7C1041CV33-20VE	51-85082	44-lead (400-mil) Molded SOJ	
	CY7C1041CV33-20VXE	51-85082	44-lead (400-mil) Molded SOJ (Pb-Free)	
	CY7C1041CV33-20ZE	51-85087	44-pin TSOP II Z44	
	CY7C1041CV33-20ZXE	51-85087	44-pin TSOP II Z44 (Pb-Free)	
	CY7C1041CV33-20ZSXE	51-85087	44-pin TSOP II Z44 (Pb-Free)	

Please contact your local Cypress sales representative for availability of these parts

Package Diagrams

48-Ball ($7.00 \mathrm{~mm} \times 8.5 \mathrm{~mm} \times 1.2 \mathrm{~mm}$) FBGA (51-85106)

CY7C1041CV33

Package Diagrams (continued)
44-lead (400-mil) Molded SOJ (51-85082)

44-pin TSOP II (51-85087)
DIMENSIDN IN MM (INCH)
$\frac{\text { max }}{\text { MIN. }}$

IDP VIEW

51-85087-*A

All products and company names mentioned in this document may be the trademarks of their respective holders.

Document History Page

Document Title: CY7C1041CV33 4-Mbit (256K x 16) Static RAM Document Number: 38-05134				
REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change
**	109513	$12 / 13 / 01$	HGK	New Data Sheet
*A	112440	$12 / 20 / 01$	BSS	Updated 51-85106 from revision *A to *C
*B	112859	$03 / 25 / 02$	DFP	Added CY7C1042CV33 in BGA package Removed 1042 BGA option pin ACC Final Data Sheet
*C	116477	$09 / 16 / 02$	CEA	Add applications foot note to data sheet
*D	119797	$10 / 21 / 02$	DFP	Added 20-ns speed bin
*E	262949	See ECN	RKF	1) Added Lead (Pb)-Free parts in the Ordering info (Page \#9) 2) Added Automotive Specs to Datasheet
*F	361795	See ECN	SYT	Added Pb-Free offerings in the Ordering Information *G 435387 See ECN NXRChanged address of Cypress Semiconductor Corporation on Page\# 1 from "3901 North First Street" to "198 Champion Court" Removed -8 Speed bin from Product offering. Corrected typo in description for BHE/BLE in pin definitions table on Page\# 3 corrected ther Pin name from OE2 to OE. Included the Maximum Ratings for Static Discharge Voltage and Latch up Current. Changed the description of I IX current from Input Load Current to
Input Leakage Current				
Updated the Ordering Information table and replaced the Package Name				
column with Package Diagram.				

