National Semiconductor is now part of Texas Instruments.

Search http://www.ti.com/ for the latest technical information and details on our current products and services.

LM94021/LM94021Q

Multi-Gain Analog Temperature Sensor

General Description

The LM94021 is a precision analog output CMOS integrated-circuit temperature sensor that operates at a supply voltage as low as 1.5V. While operating over the wide temperature range of -50°C to +150°C, the LM94021 delivers an output voltage that is inversely proportional to measured temperature. The LM94021's low supply current makes it ideal for battery-powered systems as well as general temperature sensing applications.

Two logic inputs, Gain Select 1 (GS1) and Gain Select 0 (GS0), select the gain of the temperature-to-voltage output transfer function. Four slopes are selectable: $-5.5~\rm mV/^{\circ}C$, $-8.2~\rm mV/^{\circ}C$, $-10.9~\rm mV/^{\circ}C$, and $-13.6~\rm mV/^{\circ}C$. In the lowest gain configuration (GS1 and GS0 both tied low), the LM94021 can operate with a 1.5V supply while measuring temperature over the full $-50^{\circ}C$ to $+150^{\circ}C$ operating range. Tying both inputs high causes the transfer function to have the largest gain of $-13.6~\rm mV/^{\circ}C$ for maximum temperature sensitivity. The gain-select inputs can be tied directly to V_{DD} or Ground without any pull-up or pull-down resistors, reducing component count and board area. These inputs can also be driven by logic signals allowing the system to optimize the gain during operation or system diagnostics.

Applications

- Cell phones
- Wireless transceivers
- Battery management
- Automotive

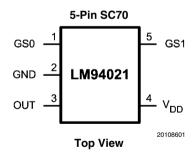
- Disk drives
- Games
- Appliances

Features

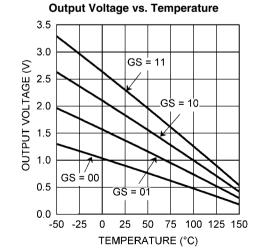
- LM94021Q is AEC-Q100 Grade 0 qualified and is manufactured on an Automotive grade Flow
- Low 1.5V operation
- Four selectable gains
- Very accurate over wide temperature range of -50°C to +150°C
- Low quiescent current
- Output is short-circuit protected
- Extremely small SC70 package
- Footprint compatible with the industry-standard LM20 temperature sensor
- UL Recognized Component

Key Specifications

Supply Current		9 μA (typ)
Temperature Accuracy	20°C to 40°C	±1.5°C
,	−50°C to 70°C	±1.8°C
	−50°C to 90°C	±2.1°C
	-50°C to 150°C	±2.7°C

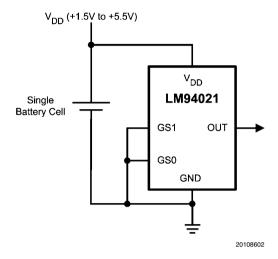

Operating Temperature

Supply Voltage


–50°C to 150°C

1.5V to 5.5V

Connection Diagram


Typical Transfer Characteristic

20108624

Typical Application

Full-Range Celsius Temperature Sensor (-50°C to +150°C) operating from a Single Battery Cell

Ordering Information

Package	Part Number	Package Marking	Temperature Accuracy	Transport Media	NSC Drawing	
5-Pin SC70	LM94021BIMG	21B ±1.5°C to ±2.7°C	010	1k Units Tape and Reel	MAA05A	
5-FIII 3070	LM94021BIMGX		±1.5 C t0 ±2.7 C	3k Units Tape and Reel	IVIAAUSA	
E Dia 0070	LM94021QBIMG	21Q	.1.500 to .0.700	1k Units Tape and Reel	MA A O E A	
5-Pin SC70	LM94021QBIMGX	21Q	±1.5°C to ±2.7°C	3k Units Tape and Reel	MAA05A	

Pin Descriptions

Label	Pin Number	Туре	Equivalent Circuit	Function
GS1	5	Logic Input	V _{DD}	Gain Select 1 - One of two inputs for selecting the slope of the output response
GS0	1	Logic Input	ESD CLAMP	Gain Select 0 - One of two inputs for selecting the slope of the output response
OUT	3	Analog Output	No DE	Outputs a voltage which is inversely proportional to temperature
V _{DD}	4	Power		Positive Supply Voltage
GND	2	Ground		Power Supply Ground

250V

Absolute Maximum Ratings (Note 1)

Supply Voltage -0.3V to +6.0V Voltage at Output Pin -0.3V to $(V_{DD} + 0.5V)$ Output Current ± 7 mA Voltage at GS0 and GS1 Input Pins Input Current at any pin (Note 2) 5 mA Storage Temperature (T_{JMAX}) $+150^{\circ}$ C

ESD Susceptibility (*Note 3*)

Human Body Model 2500V

Machine Model

Soldering process must comply with National's Reflow Temperature Profile specifications. Refer to www.national.com/packaging. (Note 4)

Operating Ratings (*Note 1*)

Specified Temperature Range $T_{MIN} \le T_A \le T_{MAX}$ LM94021 $-50^{\circ}\text{C} \le T_A \le +150^{\circ}\text{C}$ Supply Voltage Range (V_{DD}) +1.5 V to +5.5 VThermal Resistance (θ_{JA}) (*Note 5*) 5-Pin SC70 415°C/W

Accuracy Characteristics

These limits do not include DC load regulation. These stated accuracy limits are with reference to the values in the LM94021 Transfer Table.

Parameter		Conditions	Limits (Note 7)	Units (Limit)
		$T_A = +20^{\circ}\text{C to } +40^{\circ}\text{C}; V_{DD} = 1.5\text{V to } 5.5\text{V}$	±1.5	°C (max)
		$T_A = +0^{\circ}\text{C to } +70^{\circ}\text{C}; V_{DD} = 1.5\text{V to } 5.5\text{V}$	±1.8	°C (max)
	GS1 = 0	$T_A = +0^{\circ}\text{C to } +90^{\circ}\text{C}; V_{DD} = 1.5\text{V to } 5.5\text{V}$	±2.1	°C (max)
	GS0 = 0	$T_A = +0^{\circ}\text{C to } +120^{\circ}\text{C}; V_{DD} = 1.5\text{V to } 5.5\text{V}$	±2.4	°C (max)
		$T_A = +0^{\circ}\text{C to } +150^{\circ}\text{C}; V_{DD} = 1.5\text{V to } 5.5\text{V}$	±2.7	°C (max)
		$T_A = -50^{\circ}\text{C to } +0^{\circ}\text{C}; V_{DD} = 1.6\text{V to } 5.5\text{V}$	±1.8	°C (max)
		$T_A = +20^{\circ}\text{C to } +40^{\circ}\text{C}; V_{DD} = 1.8\text{V to } 5.5\text{V}$	±1.5	°C (max)
		$T_A = +0^{\circ}\text{C to } +70^{\circ}\text{C}; V_{DD} = 1.9\text{V to } 5.5\text{V}$	±1.8	°C (max)
	GS1 = 0 $T_A = +0^{\circ}\text{C to } +90^{\circ}\text{C}; V_{DD} = 1.9\text{V to } 5.5\text{V}$ GS0 = 1 $T_A = +0^{\circ}\text{C to } +120^{\circ}\text{C}; V_{DD} = 1.9\text{V to } 5.5\text{V}$	$T_A = +0^{\circ}\text{C to } +90^{\circ}\text{C}; V_{DD} = 1.9\text{V to } 5.5\text{V}$	±2.1	°C (max)
		$T_A = +0^{\circ}\text{C to } +120^{\circ}\text{C}; V_{DD} = 1.9\text{V to } 5.5\text{V}$	±2.4	°C (max)
		$T_A = +0^{\circ}\text{C to } +150^{\circ}\text{C}; V_{DD} = 1.9\text{V to } 5.5\text{V}$	±2.7	°C (max)
Temperature Error	e Error	$T_A = -50^{\circ}\text{C to } +0^{\circ}\text{C}; V_{DD} = 2.3\text{V to } 5.5\text{V}$	±1.8	°C (max)
(Note 8)	GS1 = 1 GS0 = 0	$T_A = +20^{\circ}\text{C to } +40^{\circ}\text{C}; V_{DD} = 2.2\text{V to } 5.5\text{V}$	±1.5	°C (max)
		$T_A = +0^{\circ}\text{C to } +70^{\circ}\text{C}; V_{DD} = 2.4\text{V to } 5.5\text{V}$	±1.8	°C (max)
		$T_A = +0^{\circ}\text{C to } +90^{\circ}\text{C}; V_{DD} = 2.4\text{V to } 5.5\text{V}$	±2.1	°C (max)
		$T_A = +0^{\circ}\text{C to } +120^{\circ}\text{C}; V_{DD} = 2.4\text{V to } 5.5\text{V}$	±2.4	°C (max)
		$T_A = +0^{\circ}\text{C to } +150^{\circ}\text{C}; V_{DD} = 2.4\text{V to } 5.5\text{V}$	±2.7	°C (max)
		$T_A = -50^{\circ}\text{C to } +0^{\circ}\text{C}; V_{DD} = 3.0\text{V to } 5.5\text{V}$	±1.8	.5 °C (max) .8 °C (max) .1 °C (max) .1.1 °C (max) .2.7 °C (max) .3.8 °C (max) .4.9 °C (max) .5 °C (max) .5 °C (max) .6.4 °C (max) .7 °C (max) .8 °C (max) .8 °C (max) .9 °C (max)
		$T_A = +20^{\circ}\text{C to } +40^{\circ}\text{C}; V_{DD} = 2.7\text{V to } 5.5\text{V}$	±1.5	°C (max)
		$T_A = +0^{\circ}\text{C to } +70^{\circ}\text{C}; V_{DD} = 3.0\text{V to } 5.5\text{V}$	±1.8	°C (max)
	GS1 = 1	$T_A = +0^{\circ}\text{C to } +90^{\circ}\text{C}; V_{DD} = 3.0\text{V to } 5.5\text{V}$	±2.1	°C (max)
	GS0 = 1	$T_A = +0^{\circ}\text{C to } +120^{\circ}\text{C}; V_{DD} = 3.0\text{V to } 5.5\text{V}$	±2.4	°C (max)
		$T_A = 0^{\circ}\text{C to } +150^{\circ}\text{C}; V_{DD} = 3.0\text{V to } 5.5\text{V}$	±2.7	°C (max)
		$T_A = -50^{\circ}\text{C to } +0^{\circ}\text{C}; V_{DD} = 3.6\text{V to } 5.5\text{V}$	±1.8	°C (max)

Electrical Characteristics

Unless otherwise noted, these specifications apply for $+V_{DD} = +1.5V$ to +5.5V. Boldface limits apply for $T_A = T_J = T_{MIN}$ to T_{MAX} ; all other limits $T_A = T_J = 25$ °C.

Symbol	Parameter	Conditions	Typical (Note 6)	Limits (Note 7)	Units (Limit)
	Sensor Gain	GS1 = 0, GS0 = 0 GS1 = 0, GS1 = 1 GS1 = 1, GS0 = 0 GS1 = 1, GS0 = 1	-5.5 -8.2 -10.9 -13.6		mV/°C mV/°C mV/°C mV/°C
	Load Regulation (Note 10)	Source $\leq 2.0 \mu\text{A} (Note 11)$ Sink $\leq 100 \mu\text{A}$ Sink = $50 \mu\text{A}$	0.4	-1 1.6	mV (max) mV (max) mV
	Line Regulation (Note 14)	(V _{DD} - V _{OUT}) ≥ 200 mV	200		μV/V
I _S	Supply Current	$T_A = +30^{\circ}\text{C to } +150^{\circ}\text{C}$ $T_A = -50^{\circ}\text{C to } +150^{\circ}\text{C}$	9	12 13	μΑ (max) μΑ (max)
C _L	Output Load Capacitance		1100		pF (max)
	Power-on Time (Note 12)	$C_L = 0 pF$ $C_L = 1100 pF$	0.7 0.8	1.6 2.4	ms (max) ms (max)
V _{IH}	GS1 and GS0 Input Logic "1" Threshold Voltage			V _{DD} - 0.5V	V (min)
V _{IL}	GS1 and GS0 Input Logic "0" Threshold Voltage			0.5	V (max)
I _{IH}	Logic "1" Input Current (Note 13)		0.001	1	μA (max)
I _{IL}	Logic "0" Input Current (Note 13)		0.001	1	μA (max)

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.

Note 2: When the input voltage (V₁) at any pin exceeds power supplies (V₁ < GND or V₁ > V+), the current at that pin should be limited to 5 mA.

Note 3: The human body model is a 100 pF capacitor discharged through a 1.5 k Ω resistor into each pin. The machine model is a 200 pF capacitor discharged directly into each pin.

Note 4: Reflow temperature profiles are different for lead-free and non-lead-free packages.

Note 5: The junction to ambient thermal resistance (θ_{JA}) is specified without a heat sink in still air.

Note 6: Typicals are at $T_J = T_A = 25^{\circ}C$ and represent most likely parametric norm.

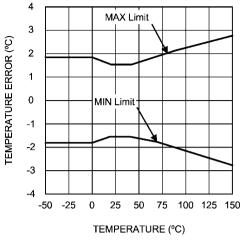
Note 7: Limits are guaranteed to National's AOQL (Average Outgoing Quality Level).

Note 8: Accuracy is defined as the error between the measured and reference output voltages, tabulated in the Transfer Table at the specified conditions of supply gain setting, voltage, and temperature (expressed in °C). Accuracy limits include line regulation within the specified conditions. Accuracy limits do not include load regulation; they assume no DC load.

Note 9: Changes in output due to self heating can be computed by multiplying the internal dissipation by the thermal resistance.

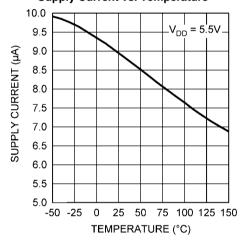
Note 10: Source currents are flowing out of the LM94021. Sink currents are flowing into the LM94021.

Note 11: Assumes $(V_{DD} - V_{OUT}) \ge 200 \text{ mV}$.

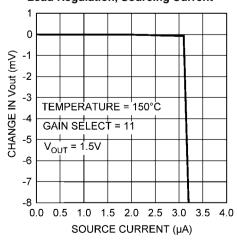

Note 12: Guaranteed by design.

Note 13: The input current is leakage only and is highest at high temperature. It is typically only 0.001 μ A. The 1 μ A limit is solely based on a testing limitation and does not reflect the actual performance of the part.

Note 14: Line regulation is calculated by subtracting the output voltage at the highest supply voltage from the output voltage at the lowest supply voltage. The typical line regulation specification does not include the output voltage shift discussed in Section 5.0.

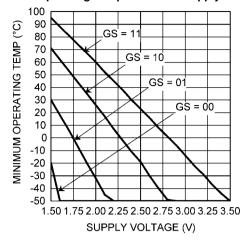

Typical Performance Characteristics

Temperature Error vs. Temperature

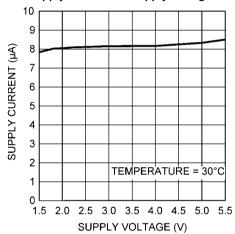

20108607

Supply Current vs. Temperature

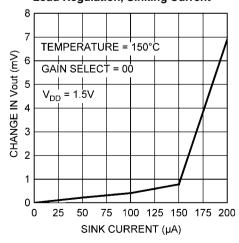
2010860


Load Regulation, Sourcing Current

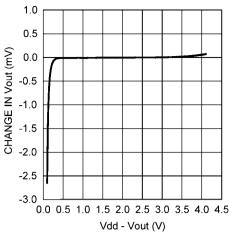
20108640


5

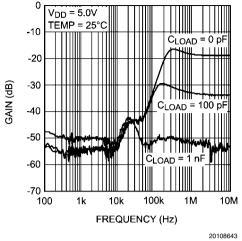
Minimum Operating Temperature vs. Supply Voltage


20108606

Supply Current vs. Supply Voltage


20108605

Load Regulation, Sinking Current

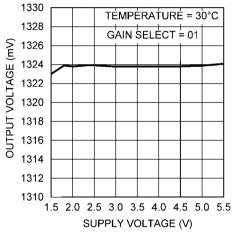

20108641

Change in V_{OUT} vs. Overhead Voltage

20108642

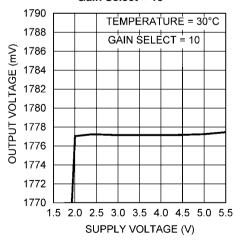
Line Degulation, Output Voltage ve Supply Voltage

Supply Noise Gain vs. Frequency

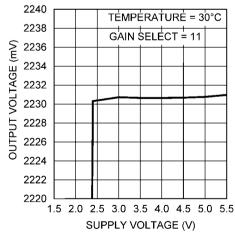

880 878 878 879 874 870 870 870 870 870 870 868 866 864 862 860 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 SUPPLY VOLTAGE (V)

Line Regulation: Output Voltage vs. Supply Voltage

Gain Select = 00


20108634

Line Regulation: Output Voltage vs. Supply Voltage Gain Select = 01


20108635

Line Regulation: Output Voltage vs. Supply Voltage Gain Select = 10

20108636

Line Regulation: Output Voltage vs. Supply Voltage Gain Select = 11

20108637

Application Information

1.0 LM94021 TRANSFER FUNCTION

The LM94021 has four selectable gains, each of which can be selected by the GS1 and GS0 input pins. The output voltage for each gain, across the complete operating temperature range is shown in the LM94021 Transfer Table, below. This table is the reference from which the LM94021 accuracy specifications (listed in the Electrical Characteristics section) are determined. This table can be used, for example, in a host processor look-up table. A file containing this data is available for download at www.national.com/appinfo/tempsensors.

LM94021 Transfer Table

The output voltages in this table apply for $V_{DD} = 5V$.

Temperat			oly for V _{DD} =	
ure	GS = 00 (mV)	GS = 01 (mV)	GS = 10 (mV)	GS = 11 (mV)
(°C)	(,	(•)	(*)	(
-50	1299	1955	2616	3277
-49	1294	1949	2607	3266
-48	1289	1942	2598	3254
-47	1284	1935	2589	3243
-46	1278	1928	2580	3232
-45	1273	1921	2571	3221
-44	1268	1915	2562	3210
-43	1263	1908	2553	3199
-42	1257	1900	2543	3186
-41	1252	1892	2533	3173
-40	1247	1885	2522	3160
-39	1242	1877	2512	3147
-38	1236	1869	2501	3134
-37	1231	1861	2491	3121
-36	1226	1853	2481	3108
-35	1221	1845	2470	3095
-34	1215	1838	2460	3082
-33	1210	1830	2449	3069
-32	1205	1822	2439	3056
-31	1200	1814	2429	3043
-30	1194	1806	2418	3030
-29	1189	1798	2408	3017
-28	1184	1790	2397	3004
-27	1178	1783	2387	2991
-26	1173	1775	2376	2978
-25	1168	1767	2366	2965
-24	1162	1759	2355	2952
-23	1157	1751	2345	2938
-22	1152	1743	2334	2925
-21	1146	1735	2324	2912
-20	1141	1727	2313	2899
-19	1136	1719	2302	2886
-18	1130	1711	2292	2873
-17	1125	1703	2281	2859
-16	1120	1695	2271	2846
-15	1114	1687	2260	2833

Temperat ure (°C)	GS = 00 (mV)	GS = 01 (mV)	GS = 10 (mV)	GS = 11 (mV)
-14	1109	1679	2250	2820
-13	1104	1671	2239	2807
-12	1098	1663	2228	2793
-11	1093	1656	2218	2780
-10	1088	1648	2207	2767
-9	1082	1639	2197	2754
-8	1077	1631	2186	2740
- 7	1072	1623	2175	2727
-6	1066	1615	2164	2714
- 5	1061	1607	2154	2700
-4	1055	1599	2143	2687
-3	1050	1591	2132	2674
-2	1044	1583	2122	2660
_1	1039	1575	2111	2647
0	1034	1567	2100	2633
1	1028	1559	2089	2620
2	1023	1551	2079	2607
3	1017	1543	2068	2593
4	1012	1535	2057	2580
5	1007	1527	2047	2567
6	1001	1519	2036	2553
7	996	1511	2025	2540
8	990	1502	2014	2527
9	985	1494	2004	2513
10	980	1486	1993	2500
11	974	1478	1982	2486
12	969	1470	1971	2473
13	963	1462	1961	2459
14	958	1454	1950	2446
15	952	1446	1939	2433
16	947	1438	1928	2419
17	941	1430	1918	2406
18	936	1421	1907	2392
19	931	1413	1896	2379
20	925	1405	1885	2365
21	920	1397	1874	2352
22	914	1389	1864	2338
23	909	1381	1853	2325
24	903	1373	1842	2311
25	898	1365	1831	2298
26	892	1356	1820	2285
27	887	1348	1810	2271
28	882	1340	1799	2258
29	876	1332	1788	2244
30	871	1324	1777	2231
31	865	1316	1766	2217
32	860	1308	1756	2204
33	854	1299	1745	2190
الالا	004	1233	1745	2180

34 849 1291 1734 2176 35 843 1283 1723 2163 36 838 1275 1712 2149 37 832 1267 1701 2136 38 827 1258 1690 2122 39 821 1250 1679 2108 40 816 1242 1668 2095 41 810 1234 1657 2081 42 804 1225 1646 2067 43 799 1217 1635 2054 44 793 1209 1624 2040 45 788 1201 1613 2026 46 782 1192 1602 2012 47 777 1184 1591 1999 48 771 1176 1569 1971 50 760 1159 1558 1958 51	
36 838 1275 1712 2149 37 832 1267 1701 2136 38 827 1258 1690 2122 39 821 1250 1679 2108 40 816 1242 1668 2095 41 810 1234 1657 2081 42 804 1225 1646 2067 43 799 1217 1635 2054 44 793 1209 1624 2040 45 788 1201 1613 2026 46 782 1192 1602 2012 47 777 1184 1591 1999 48 771 1176 1580 1985 49 766 1167 1569 1971 50 760 1159 1558 1958 51 754 1151 1547 1944 52	
37 832 1267 1701 2136 38 827 1258 1690 2122 39 821 1250 1679 2108 40 816 1242 1668 2095 41 810 1234 1657 2081 42 804 1225 1646 2067 43 799 1217 1635 2054 44 793 1209 1624 2040 45 788 1201 1613 2026 46 782 1192 1602 2012 47 777 1184 1591 1999 48 771 1176 1580 1985 49 766 1167 1569 1971 50 760 1159 1558 1958 51 754 1151 1547 1944 52 749 1143 1536 1930 53	
38 827 1258 1690 2122 39 821 1250 1679 2108 40 816 1242 1668 2095 41 810 1234 1657 2081 42 804 1225 1646 2067 43 799 1217 1635 2054 44 793 1209 1624 2040 45 788 1201 1613 2026 46 782 1192 1602 2012 47 777 1184 1591 1999 48 771 1176 1580 1985 49 766 1167 1569 1971 50 760 1159 1558 1958 51 754 1151 1547 1944 52 749 1143 1536 1930 53 743 1134 1525 1916 54	
39 821 1250 1679 2108 40 816 1242 1668 2095 41 810 1234 1657 2081 42 804 1225 1646 2067 43 799 1217 1635 2054 44 793 1209 1624 2040 45 788 1201 1613 2026 46 782 1192 1602 2012 47 777 1184 1591 1999 48 771 1176 1580 1985 49 766 1167 1569 1971 50 760 1159 1558 1958 51 754 1151 1547 1944 52 749 1143 1536 1930 53 743 1134 1525 1916 54 738 1126 1514 1902	
40 816 1242 1668 2095 41 810 1234 1657 2081 42 804 1225 1646 2067 43 799 1217 1635 2054 44 793 1209 1624 2040 45 788 1201 1613 2026 46 782 1192 1602 2012 47 777 1184 1591 1999 48 771 1176 1580 1985 49 766 1167 1569 1971 50 760 1159 1558 1958 51 754 1151 1547 1944 52 749 1143 1536 1930 53 743 1134 1525 1916 54 738 1126 1514 1902	
41 810 1234 1657 2081 42 804 1225 1646 2067 43 799 1217 1635 2054 44 793 1209 1624 2040 45 788 1201 1613 2026 46 782 1192 1602 2012 47 777 1184 1591 1999 48 771 1176 1580 1985 49 766 1167 1569 1971 50 760 1159 1558 1958 51 754 1151 1547 1944 52 749 1143 1536 1930 53 743 1134 1525 1916 54 738 1126 1514 1902	
42 804 1225 1646 2067 43 799 1217 1635 2054 44 793 1209 1624 2040 45 788 1201 1613 2026 46 782 1192 1602 2012 47 777 1184 1591 1999 48 771 1176 1580 1985 49 766 1167 1569 1971 50 760 1159 1558 1958 51 754 1151 1547 1944 52 749 1143 1536 1930 53 743 1134 1525 1916 54 738 1126 1514 1902	
43 799 1217 1635 2054 44 793 1209 1624 2040 45 788 1201 1613 2026 46 782 1192 1602 2012 47 777 1184 1591 1999 48 771 1176 1580 1985 49 766 1167 1569 1971 50 760 1159 1558 1958 51 754 1151 1547 1944 52 749 1143 1536 1930 53 743 1134 1525 1916 54 738 1126 1514 1902	
44 793 1209 1624 2040 45 788 1201 1613 2026 46 782 1192 1602 2012 47 777 1184 1591 1999 48 771 1176 1580 1985 49 766 1167 1569 1971 50 760 1159 1558 1958 51 754 1151 1547 1944 52 749 1143 1536 1930 53 743 1134 1525 1916 54 738 1126 1514 1902	
45 788 1201 1613 2026 46 782 1192 1602 2012 47 777 1184 1591 1999 48 771 1176 1580 1985 49 766 1167 1569 1971 50 760 1159 1558 1958 51 754 1151 1547 1944 52 749 1143 1536 1930 53 743 1134 1525 1916 54 738 1126 1514 1902	
46 782 1192 1602 2012 47 777 1184 1591 1999 48 771 1176 1580 1985 49 766 1167 1569 1971 50 760 1159 1558 1958 51 754 1151 1547 1944 52 749 1143 1536 1930 53 743 1134 1525 1916 54 738 1126 1514 1902	
47 777 1184 1591 1999 48 771 1176 1580 1985 49 766 1167 1569 1971 50 760 1159 1558 1958 51 754 1151 1547 1944 52 749 1143 1536 1930 53 743 1134 1525 1916 54 738 1126 1514 1902	
48 771 1176 1580 1985 49 766 1167 1569 1971 50 760 1159 1558 1958 51 754 1151 1547 1944 52 749 1143 1536 1930 53 743 1134 1525 1916 54 738 1126 1514 1902	
49 766 1167 1569 1971 50 760 1159 1558 1958 51 754 1151 1547 1944 52 749 1143 1536 1930 53 743 1134 1525 1916 54 738 1126 1514 1902	
50 760 1159 1558 1958 51 754 1151 1547 1944 52 749 1143 1536 1930 53 743 1134 1525 1916 54 738 1126 1514 1902	
51 754 1151 1547 1944 52 749 1143 1536 1930 53 743 1134 1525 1916 54 738 1126 1514 1902	
52 749 1143 1536 1930 53 743 1134 1525 1916 54 738 1126 1514 1902	
53 743 1134 1525 1916 54 738 1126 1514 1902	
54 738 1126 1514 1902	
55 732 1118 1503 1888	
56 726 1109 1492 1875	
57 721 1101 1481 1861	
58 715 1093 1470 1847	
59 710 1084 1459 1833	
60 704 1076 1448 1819	
61 698 1067 1436 1805	
62 693 1059 1425 1791	
63 687 1051 1414 1777	
64 681 1042 1403 1763	
65 676 1034 1391 1749	
66 670 1025 1380 1735	
67 664 1017 1369 1721	
68 659 1008 1358 1707	
69 653 1000 1346 1693	
70 647 991 1335 1679	
71 642 983 1324 1665	
72 636 974 1313 1651	
73 630 966 1301 1637	
74 625 957 1290 1623	
75 619 949 1279 1609	
76 613 941 1268 1595	
77 608 932 1257 1581	
78 602 924 1245 1567	
79 596 915 1234 1553	
80 591 907 1223 1539	
81 585 898 1212 1525	

Temperat ure (°C)	GS = 00 (mV)	GS = 01 (mV)	GS = 10 (mV)	GS = 11 (mV)
82	579	890	1201	1511
83	574	881	1189	1497
84	568	873	1178	1483
85	562	865	1167	1469
86	557	856	1155	1455
87	551	848	1144	1441
88	545	839	1133	1427
89	539	831	1122	1413
90	534	822	1110	1399
91	528	814	1099	1385
92	522	805	1088	1371
93	517	797	1076	1356
94	511	788	1065	1342
95	505	779	1054	1328
96	499	771	1042	1314
97	494	762	1031	1300
98	488	754	1020	1286
99	482	745	1008	1272
100	476	737	997	1257
101	471	728	986	1243
102	465	720	974	1229
103	459	711	963	1215
104	453	702	951	1201
105	448	694	940	1186
106	442	685	929	1172
107	436	677	917	1158
108	430	668	906	1144
109	425	660	895	1130
110	419	651	883	1115
111	413	642	872	1101
112	407	634	860	1087
113	401	625	849	1073
114	396	617	837	1058
115	390	608	826	1044
116	384	599	814	1030
117	378	591	803	1015
118	372	582	791	1001
119	367	573	780	987
120	361	565	769	973
121	355	556	757	958
122	349	547	745	944
123	343	539	734	929
124	337	530	722	915
125	332	521	711	901
126	326	513	699	886
127	320	504	688	872
128	314	495	676	858
129	308	487	665	843

Temperat ure (°C)	GS = 00 (mV)	GS = 01 (mV)	GS = 10 (mV)	GS = 11 (mV)
130	302	478	653	829
131	296	469	642	814
132	291	460	630	800
133	285	452	618	786
134	279	443	607	771
135	273	434	595	757
136	267	425	584	742
137	261	416	572	728
138	255	408	560	713
139	249	399	549	699
140	243	390	537	684
141	237	381	525	670
142	231	372	514	655
143	225	363	502	640
144	219	354	490	626
145	213	346	479	611
146	207	337	467	597
147	201	328	455	582
148	195	319	443	568
149	189	310	432	553
150	183	301	420	538

Although the LM94021 is very linear, its response does have a slight downward parabolic shape. This shape is very accurately reflected in the LM94021 Transfer Table. For a linear approximation, a line can easily be calculated over the desired temperature range from the Table using the two-point equation:

$$V - V_1 = \left(\frac{V_2 - V_1}{T_2 - T_1}\right) \times (T - T_1)$$

Where V is in mV, T is in °C, T_1 and V_1 are the coordinates of the lowest temperature, T_2 and V_2 are the coordinates of the highest temperature.

For example, if we want to determine the equation of a line with the Gain Setting at GS1 = 0 and GS0 = 0, over a temperature range of 20°C to 50°C, we would proceed as follows:

V - 925 mV =
$$\left(\frac{760 \text{ mV} - 925 \text{ mV}}{50^{\circ}\text{C} - 20^{\circ}\text{C}}\right) \times (\text{T} - 20^{\circ}\text{C})$$

$$V - 925 \text{ mV} = (-5.50 \text{ mV} / {}^{\circ}\text{C}) \times (\text{T} - 20{}^{\circ}\text{C})$$

$$V = (-5.50 \text{ mV} / {}^{\circ}\text{C}) \times T + 1035 \text{ mV}$$

Using this method of linear approximation, the transfer function can be approximated for one or more temperature ranges of interest.

2.0 MOUNTING AND THERMAL CONDUCTIVITY

The LM94021 can be applied easily in the same way as other integrated-circuit temperature sensors. It can be glued or cemented to a surface.

To ensure good thermal conductivity, the backside of the LM94021 die is directly attached to the GND pin (Pin 2). The temperatures of the lands and traces to the other leads of the LM94021 will also affect the temperature reading.

Alternatively, the LM94021 can be mounted inside a sealed-end metal tube, and can then be dipped into a bath or screwed into a threaded hole in a tank. As with any IC, the LM94021 and accompanying wiring and circuits must be kept insulated and dry, to avoid leakage and corrosion. This is especially true if the circuit may operate at cold temperatures where condensation can occur. If moisture creates a short circuit from the output to ground or $V_{\rm DD}$, the output from the LM94021 will not be correct. Printed-circuit coatings are often used to ensure that moisture cannot corrode the leads or circuit traces.

The thermal resistance junction to ambient (θ_{JA}) is the parameter used to calculate the rise of a device junction temperature due to its power dissipation. The equation used to calculate the rise in the LM94021's die temperature is

$$T_{J} = T_{A} + \theta_{JA} \left[(V_{DD}I_{Q}) + (V_{DD} - V_{Q}) I_{L} \right]$$

where T_A is the ambient temperature, I_Q is the quiescent current, I_L is the load current on the output, and V_Q is the output voltage. For example, in an application where $T_A=30^{\circ}\text{C}$, $V_{DD}=5$ V, $I_{DD}=9$ μA , Gain Select = 11, $V_{QUT}=2.231$ mV, and $I_L=2$ μA , the junction temperature would be 30.021°C, showing a self-heating error of only 0.021°C. Since the LM94021's junction temperature is the actual temperature being measured, care should be taken to minimize the load current that the LM94021 is required to drive. *Figure 1* shows the thermal resistance of the LM94021.

Device Number	NS Package Number	Thermal Resistance (θ _{JA})
LM94021BIMG	MAA05A	415°C/W

FIGURE 1. LM94021 Thermal Resistance

3.0 NOISE CONSIDERATIONS

The LM94021 has excellent noise rejection (the ratio of the AC signal on V_{OUT} to the AC signal on V_{DD}). During bench tests, sine wave rejection of –54 dB or better was observed over 200 Hz to 10 kHz; Also, –28 dB or better was observed from 10 kHz to 1 MHz. A load capacitor on the output can help filter noise; for example, a 1 nF load capacitor resulted in –51 dB or better from 200 Hz to 1 MHz.

There is no specific requirement for the use of a bypass capacitor close to the LM94021 because it does not draw transient currents. For operation in very noisy environments, some bypass capacitance may be required. The capacitance does not need to be in close proximity to the LM94021. The LM94021 has been bench tested successfully with a bypass capacitor as far as 6 inches away. In fact, it can be powered by a properly-bypassed logic gate.

4.0 CAPACITIVE LOADS

The LM94021 handles capacitive loading well. In an extremely noisy environment, or when driving a switched sampling input on an ADC, it may be necessary to add some filtering to minimize noise coupling. Without any precautions, the LM94021 can drive a capacitive load less than or equal to 1100 pF as shown in *Figure 2*. For capacitive loads greater than 1100 pF, a series resistor may be required on the output, as shown in *Figure 3*.

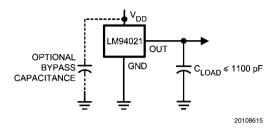
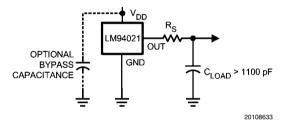



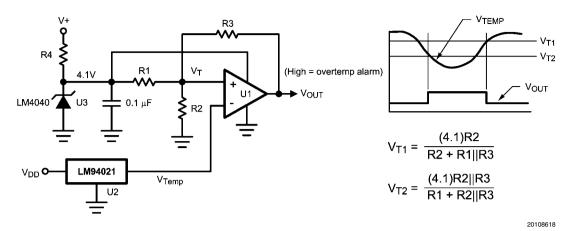
FIGURE 2. LM94021 No Decoupling Required for Capacitive Loads Less than 1100 pF

C _{LOAD}	R _S
1.1 nF to 99 nF	3 kΩ
100 nF to 999 nF	1.5 kΩ
1 μF	800 Ω

FIGURE 3. LM94021 with Series Resistor for Capacitive Loading greater than 1100 pF

5.0 OUTPUT VOLTAGE SHIFT

The LM94021 is very linear over temperature and supply voltage range. Due to the intrinsic behavior of an NMOS/PMOS rail-to-rail buffer, a slight shift in the output can occur when the supply voltage is ramped over the operating range of the device. The location of the shift is determined by the relative levels of V_{DD} and $V_{OUT}.$ The shift typically occurs when $V_{DD^-}\,V_{OUT}=1.0V.$


This slight shift (a few millivolts) takes place over a wide change (approximately 200 mV) in V_{DD} or $V_{\text{OUT}}.$ Since the shift takes place over a wide temperature change of 5°C to 20°C, V_{OUT} is always monotonic. The accuracy specifications in the Electrical Characteristics table already include this possible shift.

6.0 SELECTABLE GAIN FOR OPTIMIZATION AND IN SITU TESTING

The Gain Select digital inputs can be tied to the rails or can be driven from digital outputs such as microcontroller GPIO pins. In low-supply voltage applications, the ability to reduce the gain to $-5.5 \, \text{mV/°C}$ allows the LM94021 to operate over the full $-50\,^{\circ}\text{C}$ to $150\,^{\circ}\text{C}$ range. When a larger supply voltage is present, the gain can be increased as high as $-13.6 \, \text{mV/°C}$. The larger gain is optimal for reducing the effects of noise (for example, noise coupling on the output line or quantization noise induced by an analog-to-digital converter which may be sampling the LM94021 output).

Another application advantage of the digitally selectable gain is the ability to perform dynamic testing of the LM94021 while it is running in a system. By toggling the logic levels of the gain select pins and monitoring the resultant change in the output voltage level, the host system can verify the functionality of the LM94021.

7.0 APPLICATION CIRCUITS

FIGURE 4. Celsius Thermostat

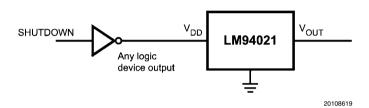
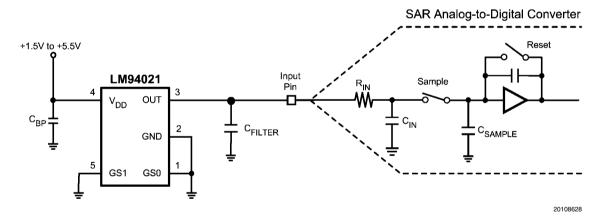
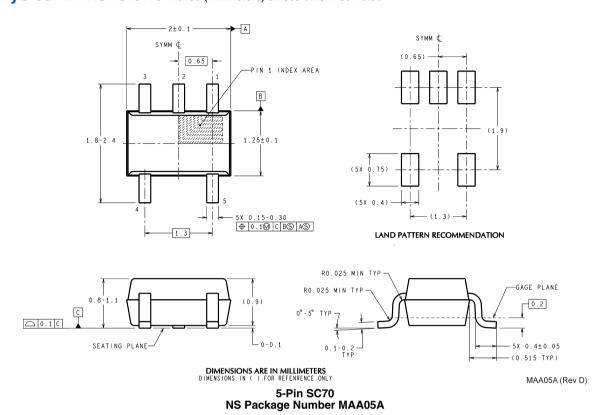



FIGURE 5. Conserving Power Dissipation with Shutdown



Most CMOS ADCs found in microcontrollers and ASICs have a sampled data comparator input structure. When the ADC charges the sampling cap, it requires instantaneous charge from the output of the analog source such as the LM94021 temperature sensor and many op amps. This requirement is easily accommodated by the addition of a capacitor (C_{FILTER}). The size of C_{FILTER} depends on the size of the sampling capacitor and the sampling frequency. Since not all ADCs have identical input stages, the charge requirements will vary. This general ADC application is shown as an example only.

FIGURE 6. Suggested Connection to a Sampling Analog-to-Digital Converter Input Stage

11

Physical Dimensions inches (millimeters) unless otherwise noted

13 www.national.com

LM94021/LM94021Q

Notes

For more National Semiconductor product information and proven design tools, visit the following Web sites at: www.national.com

Products		Design Support	
Amplifiers	www.national.com/amplifiers	WEBENCH® Tools	www.national.com/webench
Audio	www.national.com/audio	App Notes	www.national.com/appnotes
Clock and Timing	www.national.com/timing	Reference Designs	www.national.com/refdesigns
Data Converters	www.national.com/adc	Samples	www.national.com/samples
Interface	www.national.com/interface	Eval Boards	www.national.com/evalboards
LVDS	www.national.com/lvds	Packaging	www.national.com/packaging
Power Management	www.national.com/power	Green Compliance	www.national.com/quality/green
Switching Regulators	www.national.com/switchers	Distributors	www.national.com/contacts
LDOs	www.national.com/ldo	Quality and Reliability	www.national.com/quality
LED Lighting	www.national.com/led	Feedback/Support	www.national.com/feedback
Voltage References	www.national.com/vref	Design Made Easy	www.national.com/easy
PowerWise® Solutions	www.national.com/powerwise	Applications & Markets	www.national.com/solutions
Serial Digital Interface (SDI)	www.national.com/sdi	Mil/Aero	www.national.com/milaero
Temperature Sensors	www.national.com/tempsensors	SolarMagic™	www.national.com/solarmagic
PLL/VCO	www.national.com/wireless	PowerWise® Design University	www.national.com/training

THE CONTENTS OF THIS DOCUMENT ARE PROVIDED IN CONNECTION WITH NATIONAL SEMICONDUCTOR CORPORATION ("NATIONAL") PRODUCTS. NATIONAL MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS PUBLICATION AND RESERVES THE RIGHT TO MAKE CHANGES TO SPECIFICATIONS AND PRODUCT DESCRIPTIONS AT ANY TIME WITHOUT NOTICE. NO LICENSE, WHETHER EXPRESS, IMPLIED, ARISING BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT.

TESTING AND OTHER QUALITY CONTROLS ARE USED TO THE EXTENT NATIONAL DEEMS NECESSARY TO SUPPORT NATIONAL'S PRODUCT WARRANTY. EXCEPT WHERE MANDATED BY GOVERNMENT REQUIREMENTS, TESTING OF ALL PARAMETERS OF EACH PRODUCT IS NOT NECESSARILY PERFORMED. NATIONAL ASSUMES NO LIABILITY FOR APPLICATIONS ASSISTANCE OR BUYER PRODUCT DESIGN. BUYERS ARE RESPONSIBLE FOR THEIR PRODUCTS AND APPLICATIONS USING NATIONAL COMPONENTS. PRIOR TO USING OR DISTRIBUTING ANY PRODUCTS THAT INCLUDE NATIONAL COMPONENTS, BUYERS SHOULD PROVIDE ADEQUATE DESIGN, TESTING AND OPERATING SAFEGUARDS.

EXCEPT AS PROVIDED IN NATIONAL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NATIONAL ASSUMES NO LIABILITY WHATSOEVER, AND NATIONAL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO THE SALE AND/OR USE OF NATIONAL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.

National Semiconductor and the National Semiconductor logo are registered trademarks of National Semiconductor Corporation. All other brand or product names may be trademarks or registered trademarks of their respective holders.

Copyright© 2010 National Semiconductor Corporation

For the most current product information visit us at www.national.com

National Semiconductor Americas Technical Support Center Email: support@nsc.com Tel: 1-800-272-9959 National Semiconductor Europe Technical Support Center Email: europe.support@nsc.com National Semiconductor Asia Pacific Technical Support Center Email: ap.support@nsc.com

National Semiconductor Japan Technical Support Center Email: jpn.feedback@nsc.com