National Semiconductor is now part of Texas Instruments.

Search http://www.ti.com/ for the latest technical information and details on our current products and services.

LM136A-5.0QML LM136-5.0QML

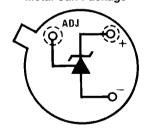
5.0V Reference Diode

General Description

The LM136A-5.0QML/LM136-5.0QML integrated circuits are precision 5.0V shunt regulator diodes. These monolithic IC voltage references operate as a low temperature coefficient 5.0V zener with 0.6 Ω dynamic impedance. A third terminal on the LM136-5.0 allows the reference voltage and temperature coefficient to be trimmed easily.

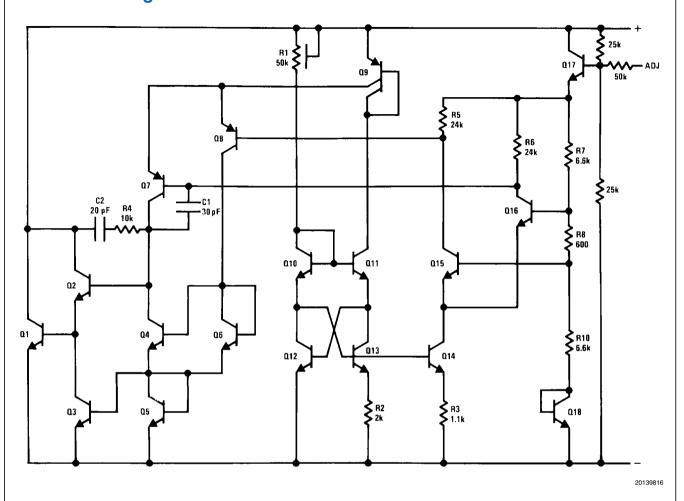
The LM136-5.0 series is useful as a precision 5.0V low voltage reference for digital voltmeters, power supplies or op amp circuitry. The 5.0V makes it convenient to obtain a stable reference from low voltage supplies. Further, since the LM136-5.0 operates as a shunt regulator, it can be used as either a positive or negative voltage reference.

Features

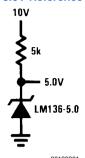

- Adjustable 4V to 6V
- Low temperature coefficient
- Wide operating current of 600 µA to 10 mA
- 0.6Ω dynamic impedance
- Guaranteed temperature stability
- Easily trimmed for minimum temperature drift
- Fast turn-on
- Three lead transistor package

Ordering Information

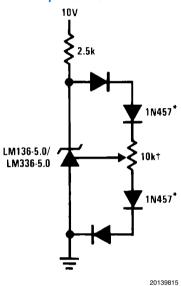
NS Part Number	SMD Part Number	NS Package Number	Package Description
LM136H-5.0/883		H03H	T0-46, 3LD Metal Can
LM136AH-5.0/883		H03H	T0-46, 3LD Metal Can
LM136AH-5.0-SMD	8418002XA	H03H	T0-46, 3LD Metal Can


Connection Diagram

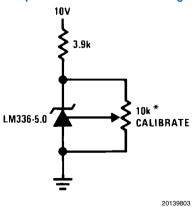
TO-46 Metal Can Package


Bottom View
20139805
See NS Package Number H03H

Schematic Diagram


Typical Applications

5.0V Reference


20139001

5.0V Reference with Minimum Temperature Coefficient

- † Adjust to 5.00V
- * Any silicon signal diode

Trimmed 4V to 6V Reference with Temperature Coefficient Independent of Breakdown Voltage

* Does not affect temperature coefficient

Absolute Maximum Ratings (Note 1)

Reverse Current 15mA Forward Current 15mA

Storage Temperature $-60^{\circ}\text{C} \le T_{\text{A}} \le +150^{\circ}\text{C}$ Operating Temperature Range (Note 2) $-55^{\circ}\text{C} \le T_{\text{A}} \le +125^{\circ}\text{C}$

Operating Temperature Range (Note 2) $-55^{\circ}\text{C} \le T_{\text{A}} \le +125^{\circ}\text{C}$ Soldering Information (10 Seconds) 300°C Maximum Junction Temperature (T_{lmax}) 150°C

Thermal Resistance

 θ_{JA}

ESD Rating

Still Air Flow 354°C/W 500LF/Min Air Flow 77°C/W

 Θ_{JC} 46°C/W

Quality Conformance Inspection

Mil-Std-883. Method 5005 - Group A

(Note 3)

Subgroup	Description	Temp°C
1	Static tests at	+25
2	Static tests at	+125
3	Static tests at	-55
4	Dynamic tests at	+25
5	Dynamic tests at	+125
6	Dynamic tests at	-55
7	Functional tests at	+25
8A	Functional tests at	+125
8B	Functional tests at	-55
9	Switching tests at	+25
10	Switching tests at	+125
11	Switching tests at	-55
12	Settling time at	
13	Settling time at	+125
14	Settling time at	-55

1,000 V

LM136-5.0 Electrical Characteristics

DC Parameters

The following conditions apply, unless otherwise specified. $I_R = 1 \text{ mA}$

Symbol	Parameter	Conditions	Notes	Min	Max	Unit	Sub- groups
	Reverse Breakdown Voltage	V _{Adj} = 2.5V		4.6	5.4	V	1
				4.8	5.6	V	2, 3
		V _{Adj} = 1.5V		5.4	6.6	V	1
V _R				5.6	6.8	V	2, 3
* R		$V_{Adj} = 3.5V$		2.4	4.6	V	1
				2.8	4.8	V	2, 3
		V _{Adj} = Open		4.878	5.081	V	1
				4.83	5.13	V	2, 3
		$V_{Adj} = 2.5V$		-260	260	μΑ	1
I _{Adj}	Adjust Current	$V_{Adj} = 1.5V$		-260	260	μΑ	1
		$V_{Adj} = 3.5V$		-260	260	μΑ	1
ΔV_{R}	Reverse Breakdown Change	0.6mA ≤ I _R ≤ 15 mA		-12	12	mV	1
	with Current			-20	20	mV	2, 3
V _F	Foward Voltage	I _R = -10mA		-1.5	-0.49	V	1
V _{Stab}	Temperature Stability	V _R = Adjusted to 5V			36	mV	2, 3
Z _{RD}	Reverse Dynamic Impedance		(Note 4)		1.6	Ω	1, 2, 3

LM136A-5.0 Electrical Characteristics

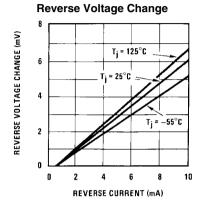
DC Parameters

The following conditions apply, unless otherwise specified. $I_{\rm R}$ = 1 mA

Symbol	Parameter	Conditions	Notes	Min	Max	Unit	Sub- groups
V _R Re		V _{Adj} = 2.5V		4.6	5.4	V	1
				4.8	5.6	V	2, 3
		V 1.5V		5.4	6.6	V	1
	Reverse Breakdown Voltage	$V_{Adj} = 1.5V$		5.6	6.8	V	2, 3
	neverse breakdown voltage	$V_{Adi} = 3.5V$		2.4	4.6	V	1
		$V_{Adj} = 3.5 V$		2.8	4.8	V	2, 3
		V _{Adj} = Open		4.935	5.029	V	1
				4.88	5.08	V	2, 3
I _{Adj}	Adjust Current	$V_{Adj} = 2.5V$		-260	260	μΑ	1
		$V_{Adj} = 1.5V$		-260	260	μΑ	1
		$V_{Adj} = 3.5V$		-260	260	μΑ	1
/\ V_	Reverse Breakdown Change with Current	0.6mA ≤ I _R ≤ 15 mA		-12	12	mV	1
				-20	20	mV	2, 3
V _F	Foward Voltage	I _R = -10mA		-1.5	-0.49	V	1
V _{Stab}	Temperature Stability	V _R = Adjusted to 5V			36	mV	2, 3
Z _{RD}	Reverse Dynamic Impedance		(Note 4)		1.6	Ω	1, 2, 3

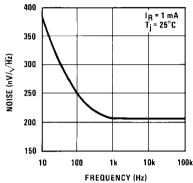
5

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.

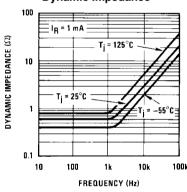

Note 2: The maximum power dissipation must be derated at elevated temperatures and is dictated by T_{Jmax} (maximum junction temperature), θ_{JA} (package junction to ambient thermal resistance), and T_A (ambient temperature). The maximum allowable power dissipation at any temperature is $P_{Dmax} = (T_{Jmax} - T_A)/\theta_{JA}$ or the number given in the Absolute Maximum Ratings, whichever is lower.

Note 3: Human body model, 100pF discharged through 1.5K Ω

Note 4: Guaranteed, not tested.


Typical Performance Characteristics

_

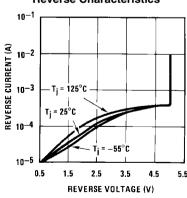

20139817

Zener Noise Voltage

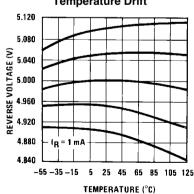
20139818

Dynamic Impedance

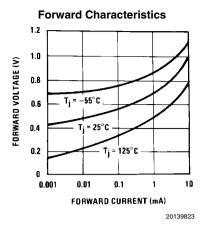
20139819


20139821

Response Time



20139820


Reverse Characteristics

Temperature Drift

20139822

Application Hints

The LM136-5.0 series voltage references are much easier to use than ordinary zener diodes. Their low impedance and wide operating current range simplify biasing in almost any circuit. Further, either the breakdown voltage or the temperature coefficient can be adjusted to optimize circuit performance.

Figure 1 shows an LM136-5.0 with a 10k potentiometer for adjusting the reverse breakdown voltage. With the addition of R1 the breakdown voltage can be adjusted without affecting the temperature coefficient of the device. The adjustment range is usually sufficient to adjust for both the initial device tolerance and inaccuracies in buffer circuitry.

If minimum temperature coefficient is desired, four diodes can be added in series with the adjustment potentiometer as shown in *Figure 2*. When the device is adjusted to 5.00V the temperature coefficient is minimized. Almost any silicon signal diode can be used for this purpose such as a 1N914, 1N4148 or a 1N457. For proper temperature compensation the diodes should be in the same thermal environment as the LM136-5.0. It is usually sufficient to mount the diodes near the LM136-5.0 on the printed circuit board. The absolute resistance of the network is not critical and any value from 2k to 20k will work. Because of the wide adjustment range, fixed resistors should be connected in series with the pot to make pot setting less critical.

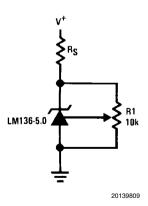
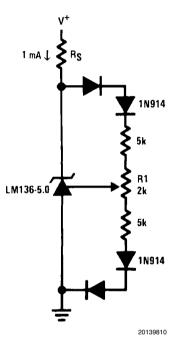
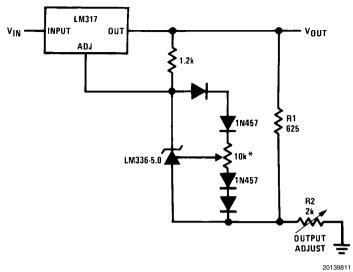
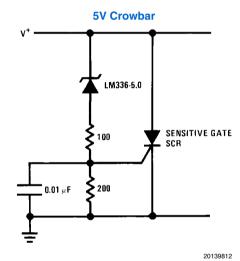
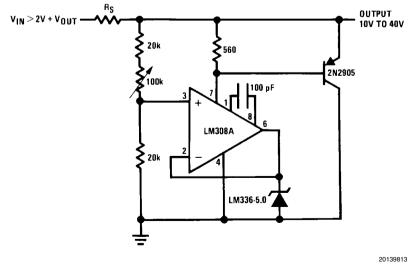


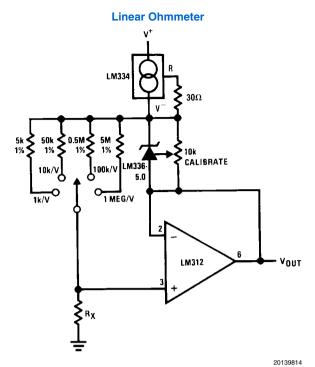
FIGURE 1. LM136-5.0 with Pot for Adjustment of Breakdown Voltage (Trim Range = ±1.0V Typical)

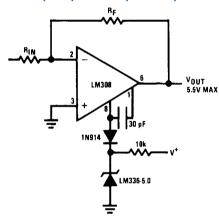



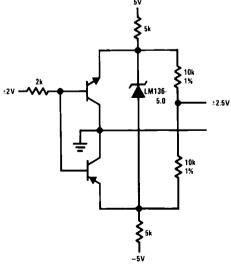

FIGURE 2. Temperature Coefficient Adjustment (Trim Range = ±0.5V Typical)

Typical Applications

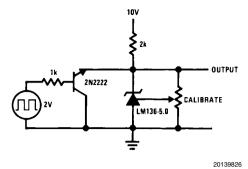

Precision Power Regulator with Low Temperature Coefficient

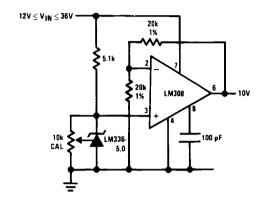

* Adjust for 6.25V across R1


Adjustable Shunt Regulator


2013981

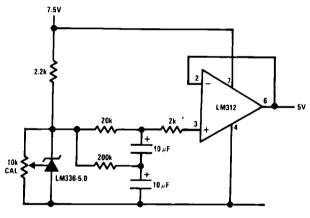
Op Amp with Output Clamped


Bipolar Output Reference

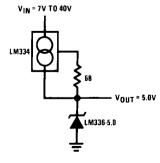

20139825

20139824

5.0V Square Wave Calibrator



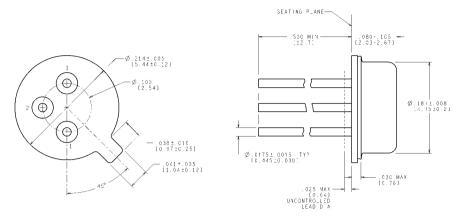
10V Buffered Reference


20139827

Low Noise Buffered Reference

20139828

Wide Input Range Reference



20139829

Revision History

Date Released	Revision	Section	Changes
04/10/08	А	New Release, Corporate format.	2 MDS datasheets were converted into one Corporate datasheet format. MNLM136A-5.0-X Rev 0B0 & LM136-5.0-X Rev 0A0 MDS Data Sheets will be archived.
10/26/2010	В	Data Sheet Title	Changed Title from LM136A-5.0/LM136–5.0QML to LM136A-5.0QML/LM136–5.0QML. Revision A will be Archived.

Physical Dimensions inches (millimeters) unless otherwise noted

CONTROLLING DIMENSION IS INCH VALUES IN [] ARE IN MILLIMETERS

H03H (Rev F)

TO-46 Metal Can Package (H) NS Package Number H03H

13 www.national.com

LM136A-5.0QML/LM136-5.0QML

Notes

For more National Semiconductor product information and proven design tools, visit the following Web sites at:

Pr	oducts	Design Support		
Amplifiers	www.national.com/amplifiers	WEBENCH® Tools	www.national.com/webench	
Audio	www.national.com/audio	App Notes	www.national.com/appnotes	
Clock and Timing	www.national.com/timing	Reference Designs	www.national.com/refdesigns	
Data Converters	www.national.com/adc	Samples	www.national.com/samples	
Interface	www.national.com/interface	Eval Boards	www.national.com/evalboards	
LVDS	www.national.com/lvds	Packaging	www.national.com/packaging	
Power Management	www.national.com/power	Green Compliance	www.national.com/quality/green	
Switching Regulators	www.national.com/switchers	Distributors	www.national.com/contacts	
LDOs	www.national.com/ldo	Quality and Reliability	www.national.com/quality	
LED Lighting	www.national.com/led	Feedback/Support	www.national.com/feedback	
Voltage References	www.national.com/vref	Design Made Easy	www.national.com/easy	
PowerWise® Solutions	www.national.com/powerwise	Applications & Markets	www.national.com/solutions	
Serial Digital Interface (SDI)	www.national.com/sdi	Mil/Aero	www.national.com/milaero	
Temperature Sensors	www.national.com/tempsensors	SolarMagic™	www.national.com/solarmagic	
PLL/VCO	www.national.com/wireless	PowerWise® Design University	www.national.com/training	

THE CONTENTS OF THIS DOCUMENT ARE PROVIDED IN CONNECTION WITH NATIONAL SEMICONDUCTOR CORPORATION ("NATIONAL") PRODUCTS. NATIONAL MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS PUBLICATION AND RESERVES THE RIGHT TO MAKE CHANGES TO SPECIFICATIONS AND PRODUCT DESCRIPTIONS AT ANY TIME WITHOUT NOTICE. NO LICENSE, WHETHER EXPRESS, IMPLIED, ARISING BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT.

TESTING AND OTHER QUALITY CONTROLS ARE USED TO THE EXTENT NATIONAL DEEMS NECESSARY TO SUPPORT NATIONAL'S PRODUCT WARRANTY. EXCEPT WHERE MANDATED BY GOVERNMENT REQUIREMENTS, TESTING OF ALL PARAMETERS OF EACH PRODUCT IS NOT NECESSARILY PERFORMED. NATIONAL ASSUMES NO LIABILITY FOR APPLICATIONS ASSISTANCE OR BUYER PRODUCT DESIGN. BUYERS ARE RESPONSIBLE FOR THEIR PRODUCTS AND APPLICATIONS USING NATIONAL COMPONENTS. PRIOR TO USING OR DISTRIBUTING ANY PRODUCTS THAT INCLUDE NATIONAL COMPONENTS, BUYERS SHOULD PROVIDE ADEQUATE DESIGN, TESTING AND OPERATING SAFEGUARDS.

EXCEPT AS PROVIDED IN NATIONAL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NATIONAL ASSUMES NO LIABILITY WHATSOEVER, AND NATIONAL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO THE SALE AND/OR USE OF NATIONAL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.

National Semiconductor and the National Semiconductor logo are registered trademarks of National Semiconductor Corporation. All other brand or product names may be trademarks or registered trademarks of their respective holders.

Copyright© 2010 National Semiconductor Corporation

For the most current product information visit us at www.national.com

National Semiconductor Americas Technical Support Center Email: support@nsc.com Tel: 1-800-272-9959 National Semiconductor Europe Technical Support Center Email: europe.support@nsc.com National Semiconductor Asia Pacific Technical Support Center Email: ap.support@nsc.com

National Semiconductor Japan Technical Support Center Email: jpn.feedback@nsc.com