

April 2001

IGBT

SGS13N60UFD

Ultra-Fast IGBT

General Description

Fairchild's UFD series of Insulated Gate Bipolar Transistors (IGBTs) provides low conduction and switching losses. The UFD series is designed for applications such as motor control and general inverters where high speed switching is a required feature.

Features

- High speed switching
- Low saturation voltage : $V_{CE(sat)} = 2.1 \text{ V } @ I_C = 6.5 \text{A}$
- · High input impedance
- CO-PAK, IGBT with FRD : t_{rr} = 37ns (typ.)

Application

AC & DC Motor controls, general purpose inverters, robotics, servo controls

Absolute Maximum Ratings T_C = 25°C unless otherwise noted

Symbol	Description		SGS13N60UFD	Units	
V _{CES}	Collector-Emitter Voltage		600	V	
V _{GES}	Gate-Emitter Voltage		± 20	V	
	Collector Current	@ T _C = 25°C	13	Α	
I _C	Collector Current	@ T _C = 100°C	6.5	Α	
I _{CM (1)}	Pulsed Collector Current		52	Α	
I _F	Diode Continuous Forward Current	@ T _C = 100°C	8	Α	
I _{FM}	Diode Maximum Forward Current		56	Α	
P_{D}	Maximum Power Dissipation	@ T _C = 25°C	45	W	
	Maximum Power Dissipation	@ T _C = 100°C	18	W	
T _J	Operating Junction Temperature		-55 to +150	°C	
T _{stg}	Storage Temperature Range		-55 to +150	°C	
T _L	Maximum Lead Temp. for Soldering Purposes, 1/8" from Case for 5 Secon	ds	300	°C	

Notes:(1) Repetitive rating: Pulse width limited by max. junction temperature

Thermal Characteristics

Symbol	Parameter	Тур.	Max.	Units
$R_{\theta JC}(IGBT)$	Thermal Resistance, Junction-to-Case		2.7	°C/W
$R_{\theta JC}(DIODE)$	Thermal Resistance, Junction-to-Case		1.7	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient		62.5	°C/W

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
Off Cha	racteristics					
BV _{CES}	Collector-Emitter Breakdown Voltage	$V_{GE} = 0V, I_{C} = 250uA$	600			V
ΔB _{VCES} / ΔT _J	Temperature Coeff. of Breakdown Voltage	$V_{GE} = 0V$, $I_C = 1mA$		0.6		V/°C
I _{CES}	Collector Cut-off Current	$V_{CE} = V_{CES}, V_{GE} = 0V$			250	μΑ
I _{GES}	G-E Leakage Current	$V_{GE} = V_{GES}, V_{CE} = 0V$			± 100	nA
On Cha	racteristics					
V _{GE(th)}	G-E Threshold Voltage	$I_C = 6.5$ mA, $V_{CE} = V_{GE}$	3.5	4.5	6.5	V
	Collector to Emitter	$I_C = 6.5A$, $V_{GE} = 15V$		2.1	2.6	V
$V_{CE(sat)}$	Saturation Voltage	$I_C = 13A$, $V_{GE} = 15V$		2.6		V
Dynami C _{ies}	C Characteristics Input Capacitance			375		pF
	Output Capacitance	$V_{CE} = 30V, V_{GE} = 0V,$		63		рF
C _{oes} C _{res}	Reverse Transfer Capacitance	f = 1MHz		13		рF
t _{d(on)}	ng Characteristics Turn-On Delay Time			20		ns
t _r	Rise Time			27		
t _{d(off)}				21		ns
	Turn-Off Delay Time	$V_{CC} = 300 \text{ V}, I_{C} = 6.5 \text{A},$		70	130	ns ns
t _f	Turn-Off Delay Time Fall Time	$V_{CC} = 300 \text{ V}, I_{C} = 6.5 \text{A},$ $R_{G} = 50 \Omega, V_{GE} = 15 \text{V},$			130 150	
•	-			70		ns
E _{on}	Fall Time	$R_G = 50\Omega, V_{GE} = 15V,$		70	150	ns ns
E _{on}	Fall Time Turn-On Switching Loss	$R_G = 50\Omega, V_{GE} = 15V,$		70 97 85	150	ns ns µJ
E _{on} E _{off}	Fall Time Turn-On Switching Loss Turn-Off Switching Loss	$R_G = 50\Omega, V_{GE} = 15V,$		70 97 85 95	150 	ns ns µJ
E _{on} E _{off} E _{ts} t _{d(on)}	Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time	$R_G = 50\Omega, V_{GE} = 15V,$	 	70 97 85 95 180	150 	ns ns Lμ Lμ Lμ
E _{on} E _{off} E _{ts} t _{d(on)}	Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time	$R_G = 50\Omega$, $V_{GE} = 15V$, Inductive Load, $T_C = 25^{\circ}C$	 	70 97 85 95 180 30 32 85	150 270 200	ns ns Lμ Lμ Lμ ns
E _{on} E _{off} E _{ts} t _{d(on)} t _r t _{d(off)}	Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time	$R_G = 50\Omega, V_{GE} = 15V,$ Inductive Load, $T_C = 25^{\circ}C$ $V_{CC} = 300 \text{ V}, I_C = 6.5\text{A},$ $R_G = 50\Omega, V_{GE} = 15\text{V},$	 	70 97 85 95 180 30 32 85 168	150 270 	ns ns μJ Lμ Lμ ns ns ns
E _{on} E _{off} Ets t _{d(on)} t _r t _{d(off)}	Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn- On Switching Loss	$R_G = 50\Omega$, $V_{GE} = 15V$, Inductive Load, $T_C = 25^{\circ}C$	 	70 97 85 95 180 30 32 85 168	150 270 200 250	ns ns μJ Lu Lu ns ns ns ns
Eon Eoff Ets td(on) tr td(off) tf Eon Eoff	Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn- On Switching Loss Turn- Off Switching Loss	$R_G = 50\Omega, V_{GE} = 15V,$ Inductive Load, $T_C = 25^{\circ}C$ $V_{CC} = 300 \text{ V}, I_C = 6.5\text{A},$ $R_G = 50\Omega, V_{GE} = 15\text{V},$	 	70 97 85 95 180 30 32 85 168 180	150 270 200 250 	ns ns Lμ land san la
Eon Eoff Ets td(on) tr td(off) tf Eon Eoff Eoff Eoff Eoff Eoff	Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn- On Switching Loss Turn- Off Switching Loss Total Switching Loss	$R_G = 50\Omega, V_{GE} = 15V,$ Inductive Load, $T_C = 25^{\circ}C$ $V_{CC} = 300 \text{ V}, I_C = 6.5\text{A},$ $R_G = 50\Omega, V_{GE} = 15\text{V},$	 	70 97 85 95 180 30 32 85 168 180 165 345	150 270 200 250 500	sn sn Lu Lu Lu sn sn sn Lu Lu Lu
Eon Eoff Ets td(on) tr td(off) tf Eon Eoff Eon Eoff Eon Eoff Ets Qq	Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn- On Switching Loss Turn- Off Switching Loss Total Switching Loss Total Gate Charge	$R_G = 50\Omega, \ V_{GE} = 15V,$ Inductive Load, $T_C = 25^{\circ}C$ $V_{CC} = 300 \ V, \ I_C = 6.5A,$ $R_G = 50\Omega, \ V_{GE} = 15V,$ Inductive Load, $T_C = 125^{\circ}C$	 	70 97 85 95 180 30 32 85 168 180 165 345 25	150 270 200 250 500 35	ns ns Lu Lu ns ns ns ns Lu Lu Lu Lu
$\begin{array}{c} t_r \\ t_{d(off)} \\ t_f \\ E_{on} \\ E_{off} \\ E_{ts} \\ Q_g \\ Q_{ge} \end{array}$	Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn- On Switching Loss Turn- Off Switching Loss Total Switching Loss Total Gate Charge Gate-Emitter Charge	$R_G = 50\Omega, V_{GE} = 15V,$ Inductive Load, $T_C = 25^{\circ}C$ $V_{CC} = 300 \text{ V}, I_C = 6.5\text{A},$ $R_G = 50\Omega, V_{GE} = 15\text{V},$	 	70 97 85 95 180 30 32 85 168 180 165 345 25	150 270 200 250 500 35 12	ns ns ns Lu Lu ns
E _{on} E _{off} E _{ts} t _{d(on)} t _r t _{d(off)} t _f E _{on} E _{off} E _{on} E _{off}	Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn- On Switching Loss Turn- Off Switching Loss Total Switching Loss Total Gate Charge	$R_G = 50\Omega, V_{GE} = 15V,$ Inductive Load, $T_C = 25^{\circ}C$ $V_{CC} = 300 \text{ V}, I_C = 6.5\text{A},$ $R_G = 50\Omega, V_{GE} = 15V,$ Inductive Load, $T_C = 125^{\circ}C$ $V_{CE} = 300 \text{ V}, I_C = 6.5\text{A},$	 	70 97 85 95 180 30 32 85 168 180 165 345 25	150 270 200 250 500 35	ns ns ns Lu Lu Lu ns ns ns ns Lu

Electrical Characteristics of DIODE $T_C = 25^{\circ}C$ unless otherwise noted

Symbol	Parameter	Test Conditions		Min.	Тур.	Max.	Units
V	Diode Forward Voltage	I _F = 8A	$T_C = 25^{\circ}C$		1.4	1.7	V
V_{FM}	blode Forward Voltage	IF = 0A	T _C = 100°C		1.3] V
+	Diada Payaraa Baaayary Tima		$T_C = 25^{\circ}C$		37	55	ns
t _{rr}	Diode Reverse Recovery Time		T _C = 100°C		55		
1	Diode Peak Reverse Recovery	I _F = 8A,	$T_C = 25^{\circ}C$		3.5	5.0	Α
¹rr	Current	di/dt = 200A/μs	T _C = 100°C		4.5		_ A
	Diada Dayarra Basayary Charga		$T_C = 25^{\circ}C$		65	138	
Q_{rr}	Diode Reverse Recovery Charge		T _C = 100°C		124		nC

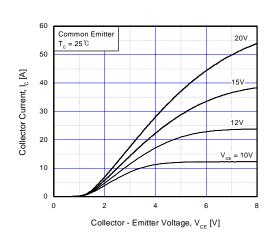
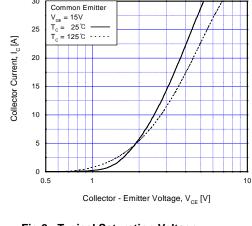



Fig 1. Typical Output Chacracteristics

30

Fig 2. Typical Saturation Voltage Characteristics

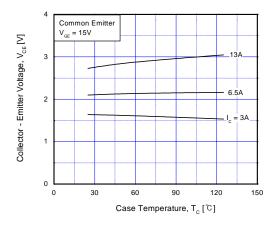


Fig 3. Saturation Voltage vs. Case
Temperature at Variant Current Level

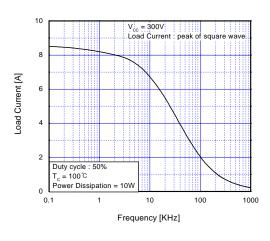


Fig 4. Load Current vs. Frequency

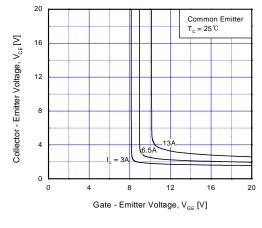


Fig 5. Saturation Voltage vs. V_{GE}

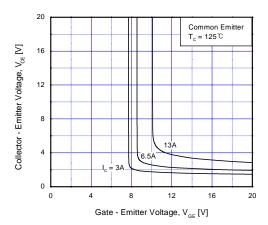
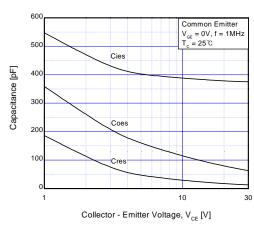



Fig 6. Saturation Voltage vs. $V_{\rm GE}$

©2001 Fairchild Semiconductor Corporation SGS13N60UFD Rev. A

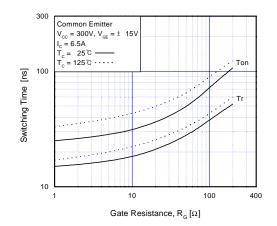
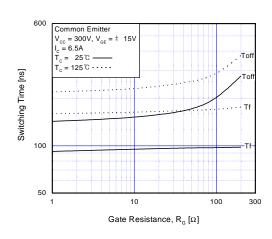



Fig 7. Capacitance Characteristics

Fig 8. Turn-On Characteristics vs.
Gate Resistance

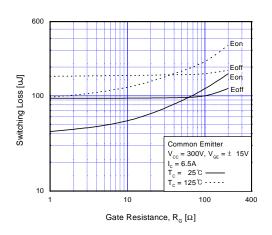
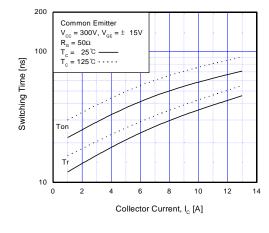



Fig 9. Turn-Off Characteristics vs.
Gate Resistance

Fig 10. Switching Loss vs. Gate Resistance

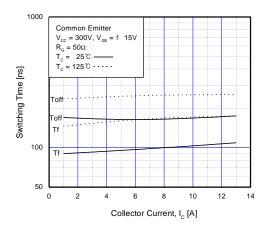
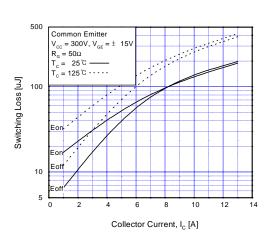
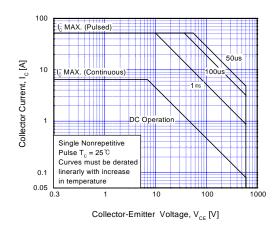



Fig 11. Turn-On Characteristics vs. Collector Current


Fig 12. Turn-Off Characteristics vs. Collector Current

To the second control of the second control

Fig 13. Switching Loss vs. Collector Current

Fig 14. Gate Charge Characteristics

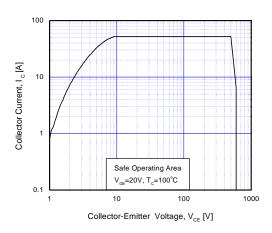


Fig 15. SOA Characteristics

Fig 16. Turn-Off SOA Characteristics

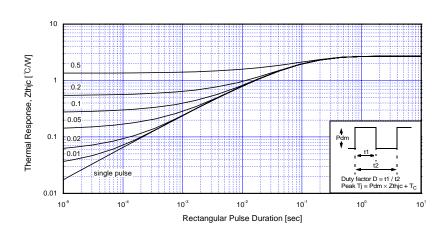
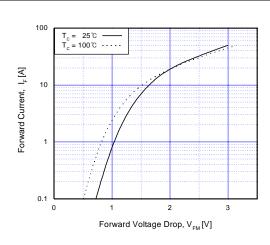



Fig 17. Transient Thermal Impedance of IGBT

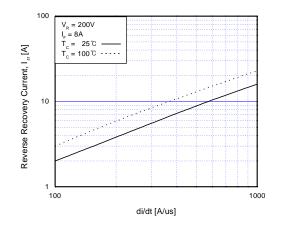
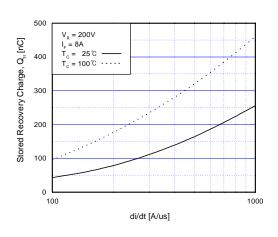



Fig 18. Forward Characteristics

Fig 19. Reverse Recovery Current

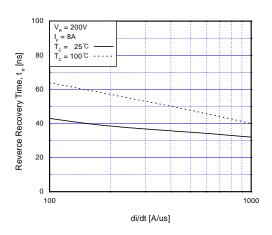
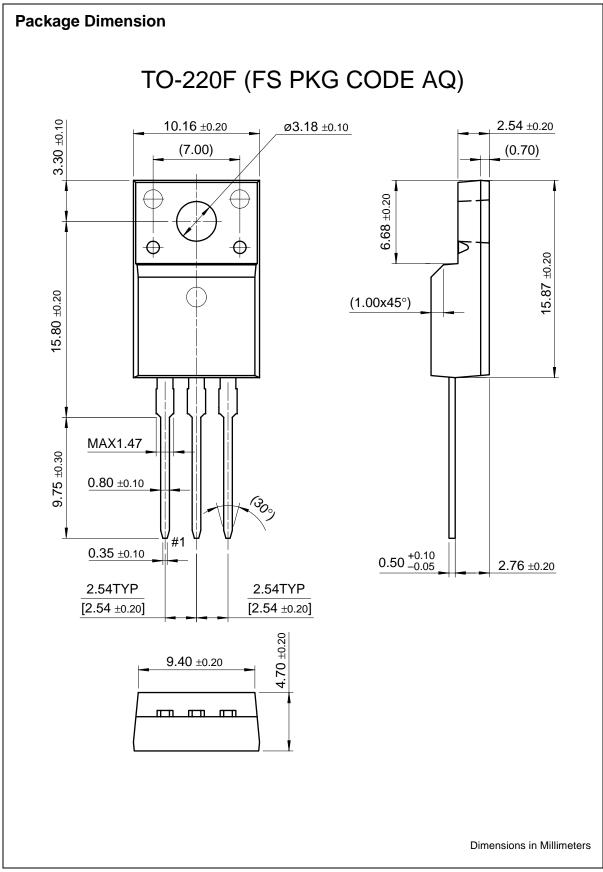



Fig 20. Stored Charge

Fig 21. Reverse Recovery Time

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

$ACEx^{TM}$	FAST [®]	PACMAN™	SuperSOT™-3
Bottomless™	FASTr™	POP™	SuperSOT™-6
CoolFET™	GlobalOptoisolator™	PowerTrench [®]	SuperSOT™-8
CROSSVOLT™	GTO™	QFET™	SyncFET™
DenseTrench™	HiSeC™	QS™	TinyLogic™
DOME™	ISOPLANAR™	QT Optoelectronics™	UHC™
EcoSPARK™	LittleFET™	Quiet Series™	UltraFET [®]
E ² CMOS™	MicroFET™	SLIENT SWITCHER®	VCX™
EnSigna™	MICROWIRE™	SMART START™	
FACT™	OPTOLOGIC™	Star* Power™	
FACT Quiet Series™	OPTOPLANAR™	Stealth™	

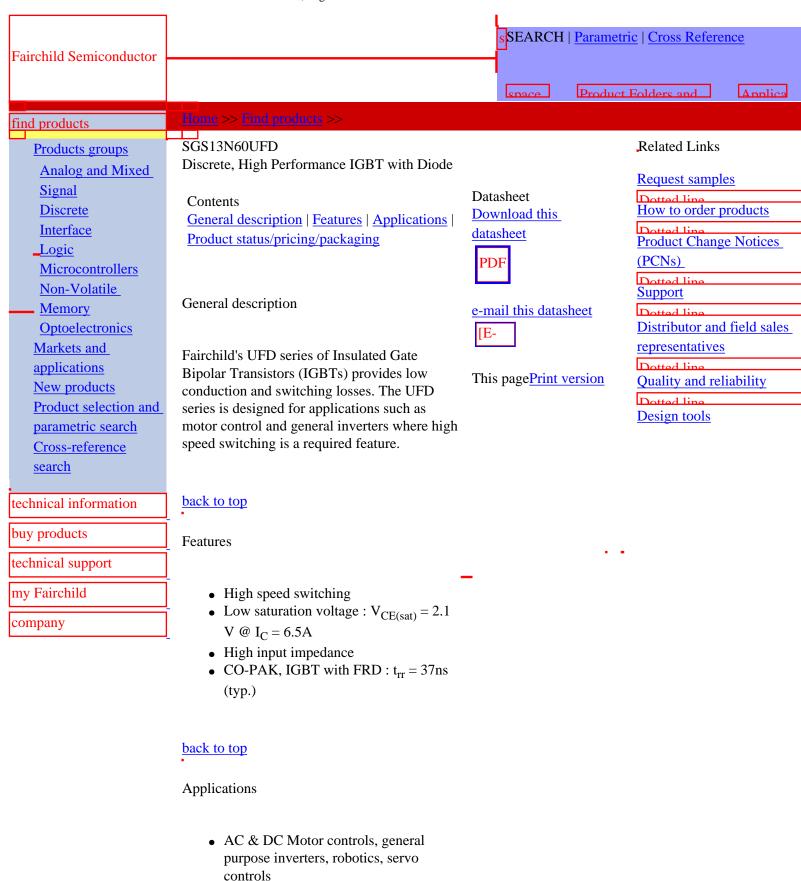
DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:


- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

©2001 Fairchild Semiconductor Corporation Rev. H1

back to top

Product status/pricing/packaging

Product	Product status	Pricing*	Package type	Leads	Packing method
SGS13N60UFDTU	Full Production	\$1.31	<u>TO-220F</u>	3	RAIL

^{* 1,000} piece Budgetary Pricing

back to top

<u>Home</u> | <u>Find products</u> | <u>Technical information</u> | <u>Buy products</u> | <u>Support</u> | <u>Company</u> | <u>Contact us</u> | <u>Site index</u> | <u>Privacy policy</u>

© Copyright 2002 Fairchild Semiconductor