Datasheet

PART NUMBER

54L74WB-ROCV

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All re-creations are done with the approval of the Original Component Manufacturer. (OCM)

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-38535
- Class Q Military
- Class V Space Level

Qualified Suppliers List of Distributors (QSLD)

- Rochester is a critical supplier to DLA and meets all industry and DLA standards.
Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OCM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

INCH-POUND
MIL-M-38510/21F
15 February 2006
SUPERSEDING
MIL-M-38510/21E
7 July 2005

MILITARY SPECIFICATION

MICROCIRCUITS, DIGITAL, BIPOLAR, TTL, LOW POWER, FLIP-FLOPS, MONOLITHIC SILICON

$$
\text { Inactive for new design after } 7 \text { September } 1995 .
$$

This specification is approved for use by all Departments and Agencies of the Department of Defense.

The requirements for acquiring the product herein shall consist of this specification sheet and MIL-PRF 38535

1. SCOPE

1.1 Scope. This specification covers the detail requirements for monolithic, silicon, TTL, low power, bistable logic microcircuits. Two product assurance classes and a choice of case outlines and lead finishes are provided for each type and are reflected in the complete part number. For this product, the requirements of MIL-M- 38510 have been superseded by MIL-PRF-38535, (see 6.4).
1.2 Part or Identifying Number (PIN). The PIN is in accordance with MIL-PRF-38535 and as specified herein.
1.2.1 Device types. The device types are as follows:

Device type

01	R-S master slave flip-flop
02	J-K master slave flip-flop
03	Dual J-K master slave flip-flop
04	Dual J-K master slave flip-flop
05	Dual D-type edge triggered flip-flop

02
04
05

Circuit

R-S master slave flip-flop
-K master slave flip-flop
Dual JK master slave flip flop
Dual D-type edge triggered flip-flop
1.2.2 Device class. The device class is the product assurance level as defined in MIL-PRF-38535.
1.2.3 Case outlines. The case outlines are as designated in MIL-STD-1835 and as follows:

Outline letter	Descriptive designator	Terminals	Package style
A	GDFP5-F14 or CDFP6-F14	14	Flat pack
B	GDFP4-F14	14	Flat pack
C	GDIP1-T14 or CDIP2-T14	14	Dual-in-line
D	GDFP1-F14 or CDFP2-F14	14	Flat pack

[^0]
1.3 Absolute maximum ratings.

Supply voltage range	0 V dc to 8.0 V dc
Input voltage range	0 V dc to 6.0 V dc
Storage temperature range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum power dissipation in accordance with flip-flop (P_{D}) $1 /$	11 mW dc
Lead temperature (soldering 10 seconds).	$300^{\circ} \mathrm{C}$
Thermal resistance, junction-to-case (θ_{Jc}).	(See MIL-STD-1835)
Junction temperature (T_{J}) $\underline{2}^{\text {/ }}$	$175{ }^{\circ} \mathrm{C}$

1.4 Recommended operating conditions.

Supply voltage (V_{Cc})	4.5 V dc minimum to 5.5 V dc maximum
Minimum high level input voltage (V_{HH})	2.0 V dc
Maximum low level input voltage ($\mathrm{V}_{\text {IL }}$)	0.7 V dc , except clock input of types 01, 02, 03, and 04
Maximum low level input voltage (V_{IL})	0.6 V dc , (types 01, 02, 03, and 04)
Normalized fanout (each output) 3/	10 maximum
Width of clock pulse	$\geq 200 \mathrm{~ns}$
Width of preset pulse	$\geq 100 \mathrm{~ns}$
Width of clear pulse	$\geq 100 \mathrm{~ns}$
Input setup time:	
Device types 02, 03, and 04	\geq Clock pulse width minimum
Device type 01	100 ns minimum when R, S input data is complementary
Device type 01	\geq Clock pulse width, minimum when R , S input data is not complementary
Device type 05	50 ns minimum
Input hold time	10 ns minimum
Case operating temperature range (T_{C})	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$

2.0 APPLICABLE DOCUMENT

2.1 General. The documents listed in this section are specified in sections 3,4 , or 5 of this specification. This section does not include documents cited in other sections of this specification or recommended for additional information or as examples. While every effort has been made to ensure the completeness of this list, document users are cautioned that they must meet all specified requirements of documents cited in sections 3, 4, or 5 of this specification, whether or not they are listed.

[^1]
2.2 Government documents.

2.2.1 Specifications and standards. The following specifications and standards form a part of this specification to the extent specified herein. Unless otherwise specified, the issues of these documents are those cited in the solicitation or contract.

DEPARTMENT OF DEFENSE SPECIFICATIONS

MIL-PRF-38535 - Integrated Circuits (Microcircuits) Manufacturing, General Specification for.
DEPARTMENT OF DEFENSE STANDARDS

```
MIL-STD-883 - Test Method Standard for Microelectronics.
MIL-STD-1835 - Interface Standard Electronic Component Case Outlines
```

(Copies of these documents are available online at http://assist.daps.dla.mil/quicksearch/ or http://assist.daps.dla.mil or from the Standardization Document Order Desk, 700 Robbins Avenue, Building 4D, Philadelphia, PA 19111-5094.)
2.3 Order of precedence. In the event of a conflict between the text of this specification and the references cited herein, the text of this document takes precedence. Nothing in this document, however, supersedes applicable laws and regulations unless a specific exemption has been obtained.

3. REQUIREMENTS

3.1 Qualification. Microcircuits furnished under this specification shall be products that are manufactured by a manufacturer authorized by the qualifying activity for listing on the applicable qualified manufacturers list before contract award (see 4.3 and 6.3).
3.2 Item requirements. The individual item requirements shall be in accordance with MIL-PRF-38535 and as specified herein or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not affect the form, fit, or function as described herein.
3.3 Design, construction, and physical dimensions. The design, construction, and physical dimensions shall be as specified in MIL-PRF-38535 and herein.
3.3.1 Terminal connections. The terminal connections shall be as specified on figure 1.
3.3.2 Truth tables and logic diagrams. The truth tables and logic diagrams shall be as specified on figure 2 .
3.3.3 Schematic circuits. The schematic circuits shall be maintained by the manufacturer and made available to the qualifying activity and the preparing activity upon request.
3.3.4 Case outlines. Case outlines shall be as specified in 1.2.3.
3.4 Lead material and finish. Lead material and finish shall be in accordance with MIL-PRF-38535 (see 6.6).
3.5 Electrical performance characteristics. The electrical performance characteristics are as specified in table 1 and apply over the full recommended case operating temperature range, unless otherwise specified.
3.6 Electrical test requirements. The electrical test requirements for each device class shall be the subgroups specified in table II. The electrical tests for each subgroup are described in table III.
3.7 Marking. Marking shall be in accordance with MIL-PRF-38535.
3.8 Microcircuit group assignment. The devices covered by this specification shall be in microcircuit group number 17 (see MIL-PRF-38535, appendix A).

TABLE I. Electrical performance characteristics.

Test	Symbol	Conditions$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{C}} \leq+125^{\circ} \mathrm{C}$	Device type					Limits		Unit
			01	02	03	04	05	Min	Max	
High level output voltage	V_{OH}	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0.7 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V} \\ & \mathrm{l}_{\mathrm{OH}}=-100 \mu \mathrm{~A} \end{aligned}$						2.4		V
Low level input voltage	VoL	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=2 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V} \end{aligned}$							0.3	V
Low level input current	$\mathrm{I}_{\text {LL1 }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=0.3 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{S} \\ & \mathrm{R} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{J} \\ & \mathrm{~K} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{J} \\ & \mathrm{~K} \end{aligned}$	$\begin{aligned} & \mathrm{J} \\ & \mathrm{~K} \\ & \hline \end{aligned}$		-43	-140	$\mu \mathrm{A}$
Low level input current	IIL2	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=0.3 \mathrm{~V} \end{aligned}$	Clock	Clock	Clock			-105	-360	$\mu \mathrm{A}$
			Preset Clear	Preset Clear	Clear	Preset		-86	-280	$\mu \mathrm{A}$
Low level input current	IIL3	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=0.3 \mathrm{~V} \end{aligned}$				Clock Clear		-172	-560	$\mu \mathrm{A}$
Low level input current	$\mathrm{I}_{\text {IL } 4}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=0.3 \mathrm{~V} \end{aligned}$					D	-50	-180	$\mu \mathrm{A}$
Low level input current	IIL5	$\begin{aligned} & V_{C C}=5.5 \mathrm{~V} \\ & V_{I N}=0.3 \mathrm{~V} \end{aligned}$					Clock Clear	-120	-360	$\mu \mathrm{A}$
High level input current	I_{1+1}	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=2.4 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{S} \\ & \mathrm{R} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{J} \\ & \mathrm{~K} \end{aligned}$	$\begin{aligned} & \mathrm{J} \\ & \mathrm{~K} \end{aligned}$	$\begin{aligned} & \mathrm{J} \\ & \mathrm{~K} \end{aligned}$	D		10	$\mu \mathrm{A}$
High level input current	$\mathrm{I}_{\mathrm{H} 2}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=5.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{S} \\ & \mathrm{R} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{J} \\ & \mathrm{~K} \end{aligned}$	$\begin{aligned} & \mathrm{J} \\ & \mathrm{~K} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{J} \\ & \mathrm{~K} \end{aligned}$	D		100	$\mu \mathrm{A}$
High level input current	I_{1+3}	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=2.4 \mathrm{~V} \end{aligned}$	Clear Preset	Clear Preset	Clear	Preset	Clock Preset		200	$\mu \mathrm{A}$
High level input current	I_{1+4}	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=5.5 \mathrm{~V} \end{aligned}$	Clear Preset Clock	Clear Preset Clock	Clock Clear	Preset	Clock Clear		200	$\mu \mathrm{A}$
High level input current	$\mathrm{I}_{\mathbf{H} 5}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=2.4 \mathrm{~V} \end{aligned}$					Clear		30	$\mu \mathrm{A}$
High level input current	$\mathrm{I}_{\mathbf{H 6}}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=5.5 \mathrm{~V} \end{aligned}$					Clear		300	$\mu \mathrm{A}$
High level input current	$\mathrm{I}_{1 H 7}$	$\begin{aligned} & V_{\mathrm{CC}}=5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=2.4 \mathrm{~V} \end{aligned}$				Clear			40	$\mu \mathrm{A}$

See footnotes at end of table.

TABLE I. Electrical performance characteristics.

Test	Symbol	Conditions$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{C}} \leq+125^{\circ} \mathrm{C}$	Device type					Limits		Unit
			01	02	03	04	05	Min	Max	
High level input current	I_{1+8}	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=5.5 \mathrm{~V} \end{aligned}$				Clock Clear			400	$\mu \mathrm{A}$
High level input current	І $^{\text {¢ }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{cC}}=5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=2.4 \mathrm{~V} \end{aligned}$				Clock		0	-400	$\mu \mathrm{A}$
High level input current	$\mathrm{I}_{\mathrm{H} 10}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=2.4 \mathrm{~V} \end{aligned}$	Clock	Clock	Clock			0	-200	$\mu \mathrm{A}$
Short circuit output current	los	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=0 \quad 1 / \end{aligned}$						-3	-15	mA
Supply current per flip-flop	ICC	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}(\text { (llock })}=0 \end{aligned}$	Types 01, 02, 03, and 04						1.9	mA
			Type 05						1.5	mA
Maximum clock frequency	$\mathrm{f}_{\text {MAX }} \underline{2} /$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=4 \mathrm{k} \Omega \end{aligned}$						2.5		MHz
Propagation delay to a high level (clear or preset to output)	$t_{\text {PLH }}$							10	125	ns
Propagation delay to a low level (clear or preset to output)	$\mathrm{t}_{\text {PHL }}$		$\mathrm{V}_{\operatorname{IN}(\mathrm{lock})}=2.4 \mathrm{~V}$					10	200	ns
			$\mathrm{V}_{\operatorname{IN}(\text { (lock })}=0 \mathrm{~V}$, types 01, 02, 03, and 04					10	250	
Propagation delay to a high level (clock to output)	tpLH							10	125	ns
Propagation delay to a low level (clock to output)	$\mathrm{t}_{\text {PHL }}$							10	200	ns

1/ Not more than one output should be shorted at a time.
2/ $f_{\text {MAX }}$, minimum limit specified is the frequency of the input pulse. The output frequency shall be one half of the input frequency.

TABLE II. Electrical test requirements.

MIL-PRF-38535 Test requirement	Subgroups (see table III)	
	Class S Devices	
Interim electrical parameters	Class B Devices	
Final electrical test parameters	$1 *, 2,3,9$, 10,11	$1^{*}, 2,3,7$, 9
Group A test requirements	$1,2,3,7,8$ $9,10,11$	$1,2,3,7,8$, $9,10,11$
Group B electrical test parameters		
when using the method 5005 QCI option	$1,2,3,7,8$ $9,10,11$	N/A
Groups C end point electrical parameters	$1,2,3,7,8$ $9,10,11$	$1,2,3$
Group D end point electrical parameters	$1,2,3$	$1,2,3$

*PDA applies to subgroup 1.

4. VERIFICATION

4.1 Sampling and inspection. Sampling and inspection procedures shall be in accordance with MIL-PRF-38535 or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not effect the form, fit, or function as described herein.
4.2 Qualification inspection. Qualification inspection shall be in accordance with MIL-PRF-38535.
4.3 Screening. Screening shall be in accordance with MIL-PRF-38535 and shall be conducted on all devices prior to qualification and conformance inspection. The following additional criteria shall apply:
a. The burn-in test duration, test condition, and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The burn-in test circuit shall be maintained under document control by the device manufacturer's Technology Review Board (TRB) in accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1015 of MIL-STD-883.
b. Interim and final electrical test parameters shall be as specified in table II, except interim electrical parameters test prior to burn-in is optional at the discretion of the manufacturer.
c. Additional screening for space level product shall be as specified in MIL-PRF-38535.
4.4 Technology Conformance Inspection (TCI). Technology conformance inspection shall be in accordance with MIL-PRF-38535 and herein for groups A, B, C, and D inspections (see 4.4.1 through 4.4.4).
4.4.1 Group A inspection. Group A inspection shall be in accordance with table III of MIL-PRF-38535 and as follows:
a. Tests shall be as specified in table II herein.
b. Subgroups 4,5 , and 6 , shall be omitted.
4.4.2 Group B inspection. Group B inspection shall be in accordance with table II of MIL-PRF-38535.
4.4.3 Group C inspection. Group C inspection shall be in accordance with table IV of MIL-PRF-38535 and as follows:
a. End point electrical parameters shall be as specified in table II herein.
b. The steady-state life test duration, test condition, and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The burn-in test circuit shall be maintained under document control by the device manufacturer's Technology Review Board (TRB) in accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1005 of MIL-STD-883.
4.4.4 Group D inspection. Group D inspection shall be in accordance with table V of MIL-PRF-38535. End-point electrical parameters shall be as specified in table II herein.
4.5 Methods inspection. Methods of inspection shall be as specified in the appropriate tables and as follows:
4.5.1 Voltage and current. All voltages given are referenced to the microcircuit ground terminal. Currents given are conventional current and positive when flowing into the referenced terminal.

DEVICE TYPE 01

DEVICE TYPE 02

CASES A,B AND D

CASE C

Figure 1. Terminal connections.

Figure 1. Terminal connections - Continued.

Druth table		
t_{n}		t_{n+1}
J	K	Q
L	L	Qn
L	H	L
H	L	H
H	H	\bar{Q}_{n}

Positive logic: Low input to preset sets Q to high level
Low input to clear sets Q to low level
Preset and clear are independent of clock
NOTES:

1. $\mathrm{J}=\mathrm{J} 1 \mathrm{~J} 2 \mathrm{~J} 3$
2. $\mathrm{K}=\mathrm{K} 1 \mathrm{~K} 2 \mathrm{~K} 3$
3. $\mathrm{tn}=$ Bit time before clock pulse.
4. $\mathrm{tn}+1=$ Bit time after clock pulse.

Device type 02		
Truth table		
t_{n}		$\mathrm{t}_{\mathrm{n}+1}$
R	S	Q
L	L	Qn
L	H	H
H	L	L
H	H	Indeterminate

Positive logic: Low input to preset sets Q to high level Low input to clear sets Q to low level Preset and clear are independent of clock NOTES:

1. $R=R 1 R 2 R 3$
2. $S=S 1 S 2 S 3$
3. $\mathrm{tn}=$ Bit time before clock pulse.
4. $\mathrm{tn}+1=$ Bit time after clock pulse.

Description for device types 01 and 02

These flip-flops are based on the master slave principle and each has AND gate inputs for entry into the master section which are controlled by the clock pulse. The clock pulse also regulates the state of the coupling transistors which connect the master and slave sections. The sequence of operation as controlled by the clock pulse is as follows:

1. Isolate slave from master.
2. Enter information from AND gate inputs to master.
3. Disable AND gate inputs.
4. Transfer information from master to slave.

Figure 2. Truth tables and device descriptions.

Device type 03		
t_{n}		$\mathrm{t}_{\mathrm{n}+1}$
J	K	Q
L	L	Qn
L	H	L
H	L	H
H	H	$\bar{Q} \mathrm{n}$

Positive logic: Low input to clear sets Q to low level
Clear is independent of clock

NOTES:

1. $\mathrm{tn}=$ Bit time before clock pulse.
2. $\mathrm{tn}+1=$ Bit time after clock pulse.

Positive logic: Low input to preset sets Q to high level
Low input to clear sets Q to low level Preset and clear are independent of clock NOTES:

1. $\mathrm{tn}=$ Bit time before clock pulse.
2. $\mathrm{tn}+1=$ Bit time after clock pulse.

Description for device types 03 and 04

These flip-flops are based on the master slave principle and each has AND gate inputs for entry into the master section which are controlled by the clock pulse. The clock pulse also regulates the state of the coupling transistors which connect the master and slave sections. The sequence of operation as controlled by the clock pulse is as follows:

1. Isolate slave from master.
2. Enter information from AND gate inputs to master.
3. Disable AND gate inputs.
4. Transfer information from master to slave.

Figure 2. Truth tables and device descriptions- Continued.

Device type 05

Truth table each flip-flop		
t_{n}	$\mathrm{t}_{\mathrm{n}+1}$	
Input D	Output Q	Output $\overline{\mathrm{Q}}$
L	L	Qn
L	H	L

$$
\begin{array}{ll}
\text { Positive logic: } & \text { Low input to preset sets } Q \text { to high level } \\
& \text { Low input to clear sets } Q \text { to low level } \\
& \text { Preset and clear are independent of clock }
\end{array}
$$ NOTES:

1. $\mathrm{tn}=$ Bit time before clock pulse.
2. $\mathrm{tn}+1=$ Bit time after clock pulse.

Description for device type 05

Input information is transferred to the output on the positive edge of the clock pulse. Clock triggering occurs at a voltage level of the clock pulse and is not directly related to the transition time of the positive going pulse. After the clock input threshold voltage has been passed, the data input (D) is locked out.

Figure 2. Truth tables and device descriptions - Continued.

FIGURE 3. Logic diagram for device ty[pes 01, 02, 03, 04, and 05.

FIGURE 3. Logic diagram for device ty[pes 01, 02, 03, 04, and 05 - Continued.

FIGURE 3. Logic diagram for device ty[pes 01, 02, 03, 04, and 05 - Continued.

NOTES:
1/ Clear or preset input pulse characteristics: Vgen $=3.0 \mathrm{~V} \pm 0.2 \mathrm{~V}, \mathrm{t}_{0}=15 \mathrm{~ns}, \mathrm{t}_{1}=15 \mathrm{~ns}, \mathrm{t}_{\text {P(CLEAR) }}=\mathrm{t}_{\mathrm{P}(\text { PRESET })}=$ $100 \mathrm{~ns}, \mathrm{PRR}=0.5 \mathrm{MHz}$ and $\mathrm{Z}_{\text {out }} \approx 50 \Omega$.
2/ $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ minimum and includes probe and jig capacitance.
3/ $\mathrm{R}_{\mathrm{L}}=4 \mathrm{k} \Omega \pm 5 \%$ and $\mathrm{C}_{1}=30 \mathrm{pF}$ minimum.
4/ All diodes are 1N916 or equivalent.
$\underline{5} / \mathrm{R}$ and S inputs apply for device type 01, J and K inputs apply for device type 02.
6/ When testing clear to output switching, preset input shall have a negative pulse; when testing preset to output switching, clear input shall have a negative pulse (see table III).

FIGURE 4. Clear and preset switching test circuit for device type 01 and 02.

NOTES:
1/ Clock input pulse characteristics: Vgen $=3.0 \mathrm{~V} \pm 0.2 \mathrm{~V}, \mathrm{t}_{0}=15 \mathrm{~ns}, \mathrm{t}_{1}=15 \mathrm{~ns}, \mathrm{t}_{\mathrm{p}}=200 \mathrm{~ns}, \mathrm{PRR}=0.5 \mathrm{MHz}$, When testing $f_{\text {MAX }}, ~ P R R=$ see table III.
2/ All diodes are 1N916 or equivalent.
3/ $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ minimum and includes probe and jig capacitance.
4/ $\mathrm{R}_{\mathrm{L}}=4 \mathrm{k} \Omega \pm 5 \%$ and $\mathrm{C}_{1}=30 \mathrm{pF}$ minimum.
5/ R and S inputs apply for device type 01 , J and K inputs apply for device type 02.
6/ R1 input is connected to Q output, S 1 input is connected to \bar{Q} output. J1 and K1 inputs are connected to 2.4 V .

FIGURE 5. Synchronous switching test circuit for device types 01 and 02.

NOTES:
1/ Clear input pulse characteristics: V gen $=3.0 \mathrm{~V} \pm 0.2 \mathrm{~V}, \mathrm{t}_{0}=15 \mathrm{~ns}, \mathrm{t}_{1}=15 \mathrm{~ns}, \mathrm{t}_{\text {P(CLEAR) }}=100 \mathrm{~ns}$, $\mathrm{PRR}=0.5 \mathrm{MHz}$ and $\mathrm{Z}_{\text {out }}=50 \Omega$.
2/ $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ minimum and includes probe and jig capacitance.
3/ $\mathrm{R}_{\mathrm{L}}=4 \mathrm{k} \Omega \pm 5 \%$ and $\mathrm{C}_{1}=30 \mathrm{pF}$ minimum.
4/ All diodes are 1N916 or equivalent.
5/ Clock input pulse characteristics: $\mathrm{Vgen}=3.0 \mathrm{~V} \pm 0.2 \mathrm{~V}, \mathrm{t}_{\text {(CLOCK) }} \geq 200 \mathrm{~ns}, \mathrm{PRR}=0.5 \mathrm{MHz}$.

FIGURE 6. Clear switching test circuit for device types 03.

NOTES:
1/ Clock input pulse characteristics: Vgen $=3.0 \mathrm{~V} \pm 0.2 \mathrm{~V}, \mathrm{t}_{0}=15 \mathrm{~ns}, \mathrm{t}_{1}=15 \mathrm{~ns}, \mathrm{t}_{\mathrm{P}}=200 \mathrm{~ns}, \mathrm{PRR}=0.5 \mathrm{MHz}$, when testing $\mathrm{f}_{\text {MAX }}, \operatorname{PRR}=$ see table III.
2/ All diodes are 1 N 916 or equivalent.
3/ $C_{L}=50 \mathrm{pF}$ minimum and includes probe and jig capacitance.
4/ $\mathrm{R}_{\mathrm{L}}=4 \mathrm{k} \Omega \pm 5 \%$ and $\mathrm{C}_{1}=30 \mathrm{pF}$ minimum.

FIGURE 7. Synchronous switching test circuit for device types 03.

NOTES:
1/ Clear or preset input pulse characteristics: Vgen $=3.0 \mathrm{~V} \pm 0.2 \mathrm{~V}, \mathrm{t}_{0}=15 \mathrm{~ns}, \mathrm{t}_{1}=15 \mathrm{~ns}, \mathrm{t}_{\text {P(CLEAR) }}=\mathrm{t}_{\text {P(PRESET) }}=$ $100 \mathrm{~ns}, \mathrm{PRR}=0.5 \mathrm{MHz}$ and $\mathrm{Z}_{\text {out }} \approx 50 \Omega$.
2/ $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ minimum and includes probe and jig capacitance.
3/ $\mathrm{R}_{\mathrm{L}}=4 \mathrm{k} \Omega \pm 5 \%$ and $\mathrm{C}_{1}=30 \mathrm{pF}$ minimum.
4/ All diodes are 1N916 or equivalent.
5/ When testing clear to output switching, preset input shall have a negative pulse; when testing preset to output switching, clear input shall have a negative pulse (see table III).

FIGURE 8. Clear and preset switching test circuit for device type 04.

NOTES:
1/ Clock input pulse characteristics: Vgen $=3.0 \mathrm{~V} \pm 0.2 \mathrm{~V}, \mathrm{t}_{0}=15 \mathrm{~ns}, \mathrm{t}_{\mathrm{P}}=200 \mathrm{~ns}, \mathrm{PRR}=0.5 \mathrm{MHz}$, when testing $\mathrm{f}_{\text {MAX }}, \mathrm{PRR}=$ see table III.
2/ All diodes are 1N916 or equivalent.
3/ $C_{L}=50 \mathrm{pF}$ minimum and includes probe and jig capacitance.
4/ $\mathrm{R}_{\mathrm{L}}=4 \mathrm{k} \Omega \pm 5 \%$ and $\mathrm{C}_{1}=30 \mathrm{pF}$ minimum.

FIGURE 9. Synchronous switching test circuit for device type 04.

NOTES:
1/ Clear and preset inputs dominate regardless of the state of clock or D inputs.
2/ All diodes are 1N916 or equivalent.
3/ Clear or preset input pulse characteristics: Vgen $=3.0 \mathrm{~V} \pm 0.2 \mathrm{~V}, \mathrm{t}_{0}=15 \mathrm{~ns}, \mathrm{t}_{\mathrm{p}}=100 \mathrm{~ns}, \operatorname{PRR}=0.5 \mathrm{MHz}$.
$4 / \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ minimum and includes probe and jig capacitance.
$\underline{5} / R_{L}=4 \mathrm{k} \Omega \pm 5 \%$.
6/ When testing clear to output switching, preset input shall have a negative pulse; when testing preset to output switching, clear input shall have a negative pulse (see table III).

FIGURE 10. Clear and preset switching test circuit and waveformsfor device type 05.

NOTES:
1/ Clock input pulse has the following characteristics: Vgen $=3.0 \mathrm{~V} \pm 0.2 \mathrm{~V}, \mathrm{t}_{0}=15 \mathrm{~ns}, \mathrm{t}_{1}=15 \mathrm{~ns}, \mathrm{t}_{\mathrm{p}}=200 \mathrm{~ns}$, PRR $=0.5 \mathrm{MHz}$, when testing $\mathrm{f}_{\mathrm{mAx}}, \mathrm{PRR}=$ see table III.
$\underline{2 /} \mathrm{D}$ input (pulse G and pulse H) has the following characteristics: Vgen $=3.0 \mathrm{~V} \pm 0.2 \mathrm{~V}, \mathrm{t}_{0}=15 \mathrm{~ns}, \mathrm{t}_{1}=15 \mathrm{~ns}$, $\mathrm{t}_{\text {SETUP }}=50 \mathrm{~ns}$, , $\mathrm{t}_{\mathrm{P}}=100 \mathrm{~ns}$ and PRR is 50% of the clock PRR.
3/ All diodes are 1N916 or equivalent.
4/ $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ minimum and includes probe and jig capacitance.
$\underline{5} / R_{\mathrm{L}}=4 \mathrm{k} \Omega \pm 5 \%$.

FIGURE 11. Synchronous switching test circuit for device type 05.

NOTES:
1/ Clock input pulse has the following characteristics: Vgen $=3.0 \mathrm{~V} \pm 0.2 \mathrm{~V}, \mathrm{t}_{0}=15 \mathrm{~ns}, \mathrm{t}_{\mathrm{P}}=200 \mathrm{~ns}$, $\operatorname{PRR}=0.5 \mathrm{MHz}$. When testing $\mathrm{f}_{\text {MAX }}, \mathrm{PRR}=$ see table III.
2/ D input (pulse G) has the following characteristics: Vgen $=3.0 \mathrm{~V} \pm 0.2 \mathrm{~V}, \mathrm{t}_{0}=15 \mathrm{~ns}, \mathrm{t}_{1}=15 \mathrm{~ns}$, $\mathrm{t}_{\text {SETUP }}=50 \mathrm{~ns}, \mathrm{t}_{\mathrm{P}}=100 \mathrm{~ns}$ and PRR is 50% of the clock PRR. D input (pulse H) has the following characteristics: Vgen $=3.0 \mathrm{~V} \pm 0.2 \mathrm{~V}, \mathrm{t}_{0}=15 \mathrm{~ns}, \mathrm{t}_{1}=15 \mathrm{~ns}$,
$\mathrm{t}_{\text {HoLD }}=10 \mathrm{~ns}$, , $\mathrm{t}_{\mathrm{P}}=80 \mathrm{~ns}$ and PRR is 50% of the clock PRR.
3/ All diodes are 1N916 or equivalent.
4/ $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ minimum and includes probe and jig capacitance.
5/ $R_{L}=4 \mathrm{k} \Omega \pm 5 \%$.
FIGURE 12. Synchronous switching test circuit for device type 05.

TABLE III. Group A inspection for device type 01. 1/

See footnotes at end of device type 01.

TABLE III. Group A inspection for device type 01 - Continued. 1/

Subgroup	Symbol	$\begin{gathered} \hline \text { MIL- } \\ \text { STD- } \\ 883 \\ \text { method } \end{gathered}$	$\begin{aligned} & \hline \text { Cases } \\ & \text { A,B,D } \\ & \hline \end{aligned}$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	Measured terminal	Test limits		Unit	
			Case C	9	12	13	14	2	1	3	4	5	6	7	8	10	11		Min	Max		
			Test no.	R1	Clock	Preset	V_{cc}	Clear	NC	S1	S2	S3	Q	GND	Q	R2	R3					
7			43	A	A	A	4.5 V	B			A	A	H3/	GND	L 3/	A	A	All	H or L as shown $\underline{3}$ /			
$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$			44	B	A	"	"	A		"	A	"	${ }^{\text {H }}$	"	L-	"	"	outputs				
$\underline{2 / 4}$			45	B	B	"	"	"		"	"	"	L	"	H	"	"					
			46	A	A	"	"	"	A	B	"	"	"	"	"	"	"	"				
			47	"	B	"	"	"		B	"	"	"	"	"	"	"	"				
			48	"	A	"	"	"		A	"	"	"	"	"	B	"	"				
			49	"	B	"	"	"		"	"	"	"	"	"	B	"	"				
			50	"	A	"	"	"		"	B	"	"	"	"	A	"	"				
			51	"	B	"	"	"		"	B	"	"	"	"	"	"	"				
			52	"	A	"	"	"		"	A	"	"	"	"	"	B	"				
			53	"	B	"	"	"		"	"	"	"	"	"	"	B	"				
			54	"	A	"	"	"		"	"	"	"	"	"	"	A	"				
			55	"	B	"	"	"		"	"	"	"	"	"	"	A	"				
			56	B	A	"	"	"		B	B	B	"	"	"	B	B	"				
			57	B	B	"	"	"		"	"	"	"	"	"	B	B	"				
			58	A	A	B	"	"		"	"	"	"	"	"	A	A	"				
			59	A	B	B	"	"		"	"	"	"	"	"	A	A	"				
8 2/ 4/	Same tests, terminal conditions, and limits as for subgroup 7, except $\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$ and $-55^{\circ} \mathrm{C}$.																					
$\begin{array}{c\|} 9 \\ T_{\mathrm{C}}=+25^{\circ} \mathrm{C} \end{array}$	$\mathrm{f}_{\text {MAX }}$ 5/	(Fig. 6)	60	D	IN	5.0 V	5.0 V	$\begin{aligned} & \mathrm{B} \\ & \mathrm{~B} \\ & \hline \end{aligned}$			2.4 V	2.4 V		GND	OUT	2.4 V	2.4 V	Q	3			
	$\mathrm{f}_{\text {MAX }}$ 5/		61		IN	5.0 V				"			OUT					Q	3		MHz	
								$\begin{gathered} \mathrm{IN} \\ \mathrm{IN} \\ \mathrm{~J} \\ \mathrm{~J} \\ \mathrm{IN} \\ \mathrm{IN} \\ \mathrm{~J} \\ \mathrm{~J} \\ 5.0 \mathrm{~V} \\ 5.0 \mathrm{~V} \\ \mathrm{~J} \\ \mathrm{~J} \\ 5.0 \mathrm{~V} \\ 5.0 \mathrm{~V} \\ \mathrm{~J} \\ \mathrm{~J} \\ \hline \end{gathered}$	C				$\begin{aligned} & \text { OUT } \\ & \text { OUT } \end{aligned}$			"	"	Clear/Q	10	751 Hz	ns	
															"	"	Clear/Q	"	50	"		
															*	"	Preset/Q	"	75	"		
															"	"	Preset/Q	"	50	"		
															"	"	Clear/Q	"	200	"		
															"	"	Clear/Q		90	"		
															*	"	Preset/Q	"	200	"		
															"	"	Preset/ \mathbf{Q}	"	90	"		
															"	"	Clock/Q	"	75	"		
															"	"	Clock/Q	"	50	"		
													OUT		*	"	Clock/Q	"	75	"		
													"		*	"	Clock/Q	"	50	"		
													"		"	"	Clock/Q	"	150	"		
													"		"	"	Clock/Q	"	70	"		
															"	"	Clock/ $\mathrm{Q}^{\text {a }}$	"	150	"		
																"	Clock/Q	"	70	"		

See footnotes at end of device type 01.

TABLE III. Group A inspection for device type 01 - Continued. 1/

Subgroup	Symbol	$\begin{array}{\|c\|} \hline \text { MIL- } \\ \text { STD- } \\ 883 \\ \text { method } \end{array}$	$\begin{aligned} & \hline \text { Cases } \\ & A, B, D \end{aligned}$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	Measured terminal	Test limits		Unit
			Case C	9	12	13	14	2	1	3	4	5	6	7	8	10	11		Min	Max	
			Test no.	R1	Clock	Preset	V_{cc}	Clear	NC	S1	S2	S3	$\overline{\mathrm{Q}}$	GND	Q	R2	R3				
$\begin{array}{c\|} 10 \\ \mathrm{~T}_{\mathrm{C}}=+125^{\circ} \mathrm{C} \end{array}$	$\begin{aligned} & f_{\mathrm{MAX}} \frac{5 /}{5 /} \\ & \mathrm{f}_{\mathrm{MAX}} \underline{5} \end{aligned}$	(Fig. 5)	$\begin{aligned} & 70 \\ & 71 \end{aligned}$	D	$\begin{aligned} & \text { IN } \\ & \text { IN } \end{aligned}$	$\begin{aligned} & 5.0 \mathrm{~V} \\ & 5.0 \mathrm{~V} \end{aligned}$	5.0 V	$\begin{aligned} & \mathrm{B} \\ & \mathrm{~B} \end{aligned}$		"	2.4 V	2.4 V	OUT	GND	OUT	2.4 V	2.4 V	Q	3 3		MHz
	$t_{\text {PLH }}$	3003	*72 CKT A	"	2.4 V	J	"	IN			"	"	OUT	"		"	"	Clear/Q	10	125 Hz	ns
		(Fig. 4)	* 72 CKT B	"		J	"	IN	C	"	"	"	OUT	"		"	"	Clear/Q		65	"
			* 73 CKT A	"	"	IN	"	J		"	"	"		"	OUT	*	"	Preset/Q	"	125	"
	"		*73 CKT B	"	"	IN	"	J	"	"	"	"		"	"	"	"	Preset/Q	"	65	"
	$\mathrm{t}_{\text {PHL }}$		74 CKT A	"	GND	J	"	IN		"	"	"		"	"	"	"	Clear/Q	"	250	"
			74 CKT B	"	"	J	"	IN		"	"	"		"	"	"	"	Clear/Q	"	100	"
	"		75 CKT A	"	"	IN	"	J		"	"	"	OUT	"		"	"	Preset/ $\overline{\mathbf{Q}}$	"	250	"
	"		75 CKT B	"	"	IN	"	J		"	"	"	OUT	"		"	"	Preset/Q	"	100	"
	$t_{\text {PLH }}$		76 CKT A	"	IN	J	"	5.0 V		"	"	"	"	"		"	"	Clock/ $\overline{\mathrm{Q}}$	"	125	"
		(Fig. 5)	76 CKT B	"	"	J	"	5.0 V		"	"	"	"	"		"	"	Clock/Q	"	65	"
	"		77 CKT A	"	"	5.0 V	"	J		"	"	"		"	OUT	"	"	Clock/Q	"	125	"
	"		77 CKT B	"	"	5.0 V	"	J		"	"	"		"	"	"	"	Clock/Q	"	65	"
	$\mathrm{t}_{\text {PHL }}$		78 CKT A	"	"	J	"	5.0 V		"	"	"		"	"	"	"	Clock/Q	"	200	"
	"		78 CKT B	"	"	J	"	5.0 V		"	"	"		"	"	"	"	Clock/Q	"	85	"
	"		79 CKT A	"	"	5.0 V	"	J		"	"	"	OUT	"		"	"	Clock/ $/ \underline{\mathrm{Q}}$	"	200	"
	"		79 CKT B	"	"	5.0 V	"	J		"	"	"	OUT	"		"	"	Clock/Q	"	85	"
11	Same tests, terminal conditions, and limits as for subgroup 10, except $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$.																				

NOTE: $\quad \mathrm{A}=$ normal clock pulse, $\mathrm{B}=$ momentary GND , then 4.5 V .
$C=$ input connected to $\bar{Q}, D=$ input connected to Q.
$\mathrm{J}=$ input pulse $\mathrm{t}_{\mathrm{p}} \geq 100 \mathrm{~ns}, \mathrm{PRR}=0.5 \mathrm{MHz}, \mathrm{V}_{\mathrm{OL}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=4.5 \mathrm{~V}$.
1/ Terminal conditions (pins not designated may be $\mathrm{H} \geq 2.0 \mathrm{~V}$, or $\mathrm{L} \leq 0.8 \mathrm{~V}$, or open).
$\underline{2} /$ Tests shall be performed in sequence.
3/ Input voltages shown are: $\mathrm{A}=2.4 \mathrm{~V}$ minimum and $\mathrm{B}=0.4 \mathrm{~V}$ maximum.
4/ Output voltages shall be either: (a) $\mathrm{H}=2.4 \mathrm{~V}$, minimum and $\mathrm{L}-0.4 \mathrm{~V}$, maximum when using a high speed checker double comparator; or (b) $\mathrm{H} \geq 1.5 \mathrm{~V}$ and $\mathrm{L} \leq 1.5 \mathrm{~V}$ when using a high speed checker single comparator.
5/ $f_{\text {MAX }}$, minimum limit specified is the frequency of the input pulse. The output frequency shall be one-half of the input frequency. These tests are performed at device manufacturer's option.

TABLE III. Group A inspection for device type 02. 1/

See footnotes at end of device type 02.

TABLE III. Group A inspection for device type 02. 1/

See footnotes at end of device type 02.

TABLE III. Group A inspection for device type 02 - Continued. 1/

NOTE: A = normal clock pulse, B = momentary GND, then 4.5 V .
$\mathrm{J}=$ input pulse, $\mathrm{t}_{\mathrm{p}} \geq 100 \mathrm{~ns}, \mathrm{PRR}=0.5 \mathrm{MHz}, \mathrm{V}_{\mathrm{OL}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=4.5 \mathrm{~V}$.
1/ Terminal conditions (pins not designated may be $\mathrm{H} \geq 2.0 \mathrm{~V}$, or $\mathrm{L} \leq 0.8 \mathrm{~V}$, or open).
2/ Tests shall be performed in sequence.
3/ Output voltages shall be either: (a) $\mathrm{H}=2.4 \mathrm{~V}$, minimum and $\mathrm{L}=0.4 \mathrm{~V}$, maximum when using a high speed checker double comparator; or
(b) $\mathrm{H} \geq 1.5 \mathrm{~V}$ and $\mathrm{L} \leq 1.5 \mathrm{~V}$ when using a high speed checker single comparator.

4/ Input voltages shown are: $\mathrm{A}=2.4 \mathrm{~V}$ minimum and $\mathrm{B}=0.4 \mathrm{~V}$ maximum.
ㄷ/ $f_{\text {MAX }}$, minimum limit specified is the frequency of the input pulse. The output frequency shall be one-half of the input frequency.
These tests are performed at device manufacturer's option.

TABLE III. Group A inspection for device type 03. 1/

Subgroup	Symbol	$\begin{array}{\|l\|} \hline \text { MIL- } \\ \text { STD-883 } \\ \text { method } \end{array}$	$\begin{gathered} \text { Cases } \\ \text { A,B,C,D } \end{gathered}$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	Measured terminal	Test limits		Unit
																			Min	Max	
			Test no.	Clock 1	Clear 1	K1	V_{cc}	Clock 2	Clear 2	J2	Q 2	Q2	K2	GND	Q1	Q 1	J1				
$\begin{array}{c\|} 1 \\ \mathrm{~T}_{\mathrm{C}}=+25^{\circ} \mathrm{C} \end{array}$	V_{OH}	3006	1 2 3 4 5 6	$\begin{gathered} \mathrm{A} \\ \mathrm{~A} \\ 4.5 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 4.5 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 0.7 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0.7 \mathrm{~V} \\ & 2.0 \mathrm{~V} \\ & 4.5 \mathrm{~V} \end{aligned}$	$4.5 \mathrm{~V}$	$\begin{gathered} \mathrm{A} \\ \mathrm{~A} \\ 4.5 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 4.5 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 0.7 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 2.0 \mathrm{~V} \\ & 0.7 \mathrm{~V} \\ & 4.5 \mathrm{~V} \end{aligned}$	$\begin{array}{\|c\|} \hline- \\ 100 \mu \mathrm{~A} \\ -\overline{2} \\ 100 \mu \mathrm{~A} \\ \hline \end{array}$	$-100 \mu \mathrm{~A}$	$\begin{aligned} & 0.7 \mathrm{~V} \\ & 2.0 \mathrm{~V} \\ & 4.5 \mathrm{~V} \end{aligned}$	GND	$-100 \mu \mathrm{~A}$	$\begin{aligned} & -100 \mu \mathrm{~A} \\ & -100 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 2.0 \mathrm{~V} \\ & 0.7 \mathrm{~V} \\ & 4.5 \mathrm{~V} \end{aligned}$	Q 1 Q 1 Q 1 Q 1 Q 2 Q 2 Q 2	2.4 $"$ " " "	V	
	$\mathrm{V}_{\text {OL }}$	3007	$\begin{gathered} \hline 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \end{gathered}$	$\begin{gathered} \mathrm{A} \\ \mathrm{~A} \\ 4.5 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 4.5 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 0.7 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 2.0 \mathrm{~V} \\ & 0.7 \mathrm{~V} \\ & 4.5 \mathrm{~V} \end{aligned}$		$\begin{gathered} \mathrm{A} \\ \mathrm{~A} \\ 4.5 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 4.5 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 0.7 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0.7 \mathrm{~V} \\ & 2.0 \mathrm{~V} \\ & 4.5 \mathrm{~V} \end{aligned}$	2 mA	$\begin{array}{r} 2 \mathrm{~mA} \\ 2 \mathrm{~mA} \\ \hline \end{array}$	$\begin{aligned} & 2.0 \mathrm{~V} \\ & 0.7 \mathrm{~V} \\ & 4.5 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 2 \mathrm{~mA} \\ & 2 \mathrm{~mA} \end{aligned}$	2 mA	$\begin{aligned} & 0.7 \mathrm{~V} \\ & 2.0 \mathrm{~V} \\ & 4.5 \mathrm{~V} \end{aligned}$	Q1 Q1 Q1 Q2 Q2 Q2	0.3	"	" ${ }_{\text {" }}$
	$\mathrm{I}_{\text {L1 }}$	3009	13 14 15 16	$\begin{aligned} & 4.5 \mathrm{~V} \\ & 4.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 4.5 \mathrm{~V} \\ & 4.5 \mathrm{~V} \end{aligned}$	0.3 V	$\begin{gathered} 5.5 \mathrm{~V} \\ \text { " } \\ \text { " } \end{gathered}$	$\begin{aligned} & 4.5 \mathrm{~V} \\ & 4.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 4.5 \mathrm{~V} \\ & 4.5 \mathrm{~V} \end{aligned}$	0.3 V	E	E	0.3 V	"	E	E	0.3 V	$\begin{aligned} & \hline \text { J1 } \\ & \text { K1 } \\ & \text { J2 } \\ & \text { K2 } \\ & \hline \end{aligned}$	-43	-140	$\mu \mathrm{A}$ " "
	$\mathrm{I}_{\text {LL2 }}$		17 18 19 20	$\begin{aligned} & 4.5 \mathrm{~V} \\ & 0.3 \mathrm{~V} \end{aligned}$	$\begin{gathered} 0.3 \mathrm{~V} \\ \mathrm{~B} \end{gathered}$	4.5 V	" ${ }_{\text {" }}$	$\begin{aligned} & 4.5 \mathrm{~V} \\ & 0.3 \mathrm{~V} \end{aligned}$	$\begin{gathered} 0.3 \mathrm{~V} \\ \mathrm{~B} \end{gathered}$	$\begin{aligned} & 4.5 \mathrm{~V} \\ & 4.5 \mathrm{~V} \end{aligned}$			4.5 V	"			$\begin{aligned} & 4.5 \mathrm{~V} \\ & 4.5 \mathrm{~V} \end{aligned}$	Clear 1 Clock 1 Clear 2 Clock 2	$\begin{gathered} \hline-86 \\ -120 \\ -86 \\ -120 \\ \hline \end{gathered}$	$\begin{aligned} & \hline-280 \\ & -360 \\ & -280 \\ & -360 \\ & \hline \end{aligned}$	"
	$\mathrm{I}_{\mathrm{H} 1}$	3010	21 22 23 24	$\begin{aligned} & \text { GND } \\ & \text { GND } \end{aligned}$	$\begin{gathered} \text { GND } \\ \text { B } \end{gathered}$	2.4 V	"	$\begin{aligned} & \text { GND } \\ & \text { GND } \end{aligned}$	$\begin{gathered} \text { GND } \\ \mathrm{B} \end{gathered}$	2.4 V			2.4 V	" ${ }^{\prime}$			2.4 V	$\begin{aligned} & \text { J1 } \\ & \text { K1 } \\ & \text { J2 } \\ & \text { K2 } \\ & \hline \end{aligned}$	10	"	" ${ }^{\prime}$
	$\mathrm{I}_{\mathrm{H} 2}$		25 26 27 28	$\begin{aligned} & \hline \text { GND } \\ & \text { GND } \end{aligned}$	$\begin{gathered} \text { GND } \\ \text { B } \end{gathered}$	5.5 V	"	$\begin{aligned} & \text { GND } \\ & \text { GND } \end{aligned}$	$\begin{gathered} \text { GND } \\ \mathrm{B} \\ \hline \end{gathered}$	5.5 V			5.5 V	"			5.5 V	$\begin{aligned} & \hline \text { J1 } \\ & \text { K1 } \\ & \text { J2 } \\ & \text { K2 } \\ & \hline \end{aligned}$	100	"	"
	I_{1+3} I_{1+3}		29 30	GND	2.4 V		"	GND	2.4 V	GND	GND			"			GND	Clear 1 Clear 2		20	"
	$\mathrm{I}_{1 / 4}$		31 32 33 34	$\begin{aligned} & 5.5 \mathrm{~V} \\ & \text { GND } \end{aligned}$	$\begin{aligned} & \text { GND } \\ & 5.5 \mathrm{~V} \end{aligned}$	GND	"	$\begin{aligned} & 5.5 \mathrm{~V} \\ & \text { GND } \end{aligned}$	$\begin{aligned} & \text { GND } \\ & 5.5 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { GND } \\ & \text { GND } \\ & \hline \end{aligned}$	GND		GND	" ${ }^{\prime}$	GND	GND	$\begin{aligned} & \text { GND } \\ & \text { GND } \end{aligned}$	Clock 1 Clear 1 Clock 2 Clear 2	$\begin{aligned} & 20 \\ & 200 \\ & \hline \end{aligned}$	"	" ${ }^{\prime}$
	$\begin{aligned} & \hline I_{H 10} \\ & I_{1 H 10} \\ & \hline \end{aligned}$		$\begin{aligned} & 35 \\ & 36 \\ & \hline \end{aligned}$	2.4 V	GND	GND		2.4 V	GND	GND			GND	"			GND	Clock 1 Clock 2	$\begin{aligned} & \hline 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline-200 \\ & -200 \\ & \hline \end{aligned}$	
	los	$\begin{aligned} & 3011 \\ & 3011^{* *} \\ & 3011^{* *} \\ & 3011 \end{aligned}$	$\begin{aligned} & 37 \\ & 38 \\ & 39 \\ & 40 \\ & \hline \end{aligned}$	$\begin{gathered} 2.4 \mathrm{~V} \\ \mathrm{~A} \end{gathered}$	$\begin{aligned} & \text { GND } \\ & 2.4 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 2.4 \mathrm{~V} \\ & \text { GND } \end{aligned}$	"	$\begin{gathered} \mathrm{A} \\ 2.4 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 2.4 \mathrm{~V} \\ & \mathrm{GND} \end{aligned}$	$\begin{aligned} & 2.4 \mathrm{~V} \\ & 2.4 \mathrm{~V} \end{aligned}$	GND	GND	$\begin{aligned} & \text { GND } \\ & 2.4 \mathrm{~V} \end{aligned}$,	GND	GND	$\begin{aligned} & 2.4 \mathrm{~V} \\ & 2.4 \mathrm{~V} \end{aligned}$	Q1 Q1 Q^{2} Q2	-3	-15 " "	mA
	I_{cc}	3005	$\begin{array}{\|ll\|} \hline 41 & \text { CKT A } \\ 41 & \text { CKT } \\ 42 & \text { CKT A } \\ 42 & \text { CKT } \\ \hline \end{array}$	$\begin{gathered} \hline \mathrm{F} \\ \mathrm{~F} \\ \text { GND } \\ \text { GND } \\ \hline \end{gathered}$	$\begin{aligned} & \hline 4.5 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & \text { GND } \\ & \text { GND } \\ & \hline \end{aligned}$	GND	"	$\begin{gathered} \hline \text { F } \\ \text { F } \\ \text { GND } \\ \text { GND } \\ \hline \end{gathered}$	$\begin{aligned} & \hline 4.5 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & \text { GND } \\ & \text { GND } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 4.5 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & \text { GND } \\ & \text { GND } \\ & \hline \end{aligned}$			GND	" ${ }^{\prime}$			$\begin{aligned} & \hline 4.5 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & \text { GND } \\ & \text { GND } \\ & \hline \end{aligned}$		3.8	$\begin{gathered} 2.88 \\ 3.8 \\ 2.88 \\ \hline \end{gathered}$	" ${ }^{\text {" }}$
2	Same tests, terminal conditions and limits as for subgroup 1, except $\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$ and $\mathrm{I}_{\mathrm{LL} 2}=-50 \mu \mathrm{Amin} /-360 \mu \mathrm{~A} \mathrm{max}$ for Clock 1 and Clock 2.																				

See footnotes at end of device type 03.

TABLE III. Group A inspection for device type 03. Continued. 1/

See footnotes at end of device type 03

TABLE III. Group A inspection for device type 03. Continued. 1/

See footnotes at end of device type 03.

TABLE III. Group A inspection for device type 03. Continued. 1/

Subgroup	Symbol	MIL- STD- 883 method	$\begin{gathered} \text { Cases } \\ \text { A,B,C,D } \end{gathered}$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	Measured terminal	Test limits		Unit
																			Min	Max	
			Test no.	Clock 1	Clear 1	K1	V_{cc}	Clock 2	Clear 2	J2	Q 2	Q2	K2	GND	Q1	Q 1	J1				
$\begin{array}{c\|} 10 \\ \mathrm{~T}_{\mathrm{C}}=+125^{\circ} \mathrm{C} \end{array}$	$t_{\text {PLH }}$	$\begin{gathered} 3003 \\ \text { (Fig. 7) } \end{gathered}$	108 CKT A	IN	J	2.4 V	5.0 V							GND	OUT		2.4 V	Clock1/Q1	10	125	ns
			108 CKT B	"	"	"	"							"	OUT		"	Clock1/Q1	"	65	"
			109 CKT A	"	"	"	"							"		OUT	"	Clock1/Q1	"	125	"
			109 CKT B				"							"		OUT	"	Clock1/Q1	"	65	"
			110 CKT A				"	IN		2.4 V		OUT	2.4 V	"				Clock2/Q2	"	125	"
			110 CKT B				"	"	"	.		OUT	.	"				Clock2/Q2	"	65	"
			111 CKT A				"	"	"	"	OUT		"	"				Clock2/ ${ }^{\text {Q }} 2$	"	125	"
			111 CKT B				"	"	"	"			"	"				Clock2/Q2	"	65	"
	$\mathrm{t}_{\text {PHL }}$		112 CKT A				"	"	"	"	"		"	"				Clock2/Q2		200	"
			112 CKT B				"	"	"	"	"		"	"				Clock2/Q2		85	"
			113 CKT A				"	"	"	"		OUT	"	"				Clock2/Q2		200	"
			113 CKT B				"	"	"	"		OUT	"	"				Clock2/Q2		85	"
11	Same tests, terminal conditions, and limits as for subgroup 10, except $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$.																				

NOTE: $\quad \mathrm{A}=$ normal clock pulse, $\mathrm{B}=$ momentary GND , then $4.5 \mathrm{~V}, \mathrm{E}=$ momentary GND, then open.

$$
\mathrm{F}=\text { momentary } 4.5 \mathrm{~V} \text {, then } \mathrm{GND} . \mathrm{J}=\text { input pulse, } \mathrm{t}_{\mathrm{p}} \geq 100 \mathrm{~ns}, \mathrm{PRR}=0.5 \mathrm{MHz}, \mathrm{~V}_{\mathrm{OL}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=4.5 \mathrm{~V}
$$

1/ Terminal conditions (pins not designated may be $\mathrm{H} \geq 2.0 \mathrm{~V}$, or $\mathrm{L} \leq 0.8 \mathrm{~V}$, or open).
2/ Tests shall be performed in sequence.
3/ Output voltages shall be either: (a) $\mathrm{H}=2.4 \mathrm{~V}$, minimum and $\mathrm{L}=0.4 \mathrm{~V}$, maximum when using a high speed checker double comparator; or (b) $\mathrm{H} \geq 1.5 \mathrm{~V}$ and $\mathrm{L} \leq 1.5 \mathrm{~V}$ when using a high speed checker single comparator.

4/ Input voltages shown are: $\mathrm{A}=2.4 \mathrm{~V}$ minimum and $\mathrm{B}=0.4 \mathrm{~V}$ maximum.
$\overline{5} / f_{\text {MAX }}$, minimum limit specified is the frequency of the input pulse. The output frequency shall be one-half of the input frequency.
${ }_{*}^{*} \quad$ These tests are performed at device manufacturer's option.
** Test time limit $\leq 100 \mathrm{~ns}$.

TABLE III. Group A inspection for device type 04. 1/

See footnotes at end of device type 04.

TABLE III. Group A inspection for device type 04.- Continued. 1/

See footnotes at end of device type 04.

TABLE III．Group A inspection for device type 04．－Continued．1／

Subgroup	Symbol	$\begin{gathered} \text { MIL- } \\ \text { STD- } \\ 883 \\ \text { method } \end{gathered}$	$\begin{gathered} \text { Cases } \\ \text { A,B,C,D } \end{gathered}$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	Measured terminal	Test limits		Unit
																			Min	Max	
			Test no．	Clock	Preset 1	J1	V_{cc}	Clear	Preset 2	K2	Q2	$\overline{\mathrm{Q}} 2$	J2	GND	$\overline{\text { Q }} 1$	Q1	K1				
9	$\mathrm{t}_{\text {PLH }}$	3003	74 CKT A	IN	J	2.4 V	5.0 V	4.5 V						GND		OUT	2.4 V	Clock1／Q1	10	150	ns
$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		（Fig．9）	74 CKT B	＂	J			4.5 V						＂		OUT	＂	Clock1／Q1	＂	70	＂
			75 CKT A	＂	2.4 V	＂	＂	J						＂	OUT		＂	Clock1／Q1	＂	150	＂
			75 CKT B	＂		＂	＂	J						＂	OUT		＂	Clock1／Q1	＂	70	＂
			76 CKT A	＂			＂	4.5 V	J	2.4 V	OUT		2.4 V	＂				Clock2／Q2	＂	150	＂
			76 CKT B	＂			＂	4.5 V	J		OUT			＂				Clock2／Q2	＂	70	＂
			77 CKT A	＂			＂	J	4.5 V	＂		OUT	＂	＂				Clock2／${ }^{\text {Q }} 2$	＂	150	＂
			77 CKT B	＂			＂	J	4.5 V	＂		OUT	＂	＂				Clock2／Q2	＂	70	＂
$\begin{array}{c\|} 10 \\ \mathrm{~T}_{\mathrm{C}}=+125^{\circ} \mathrm{C} \end{array}$	$f_{\text {MAX }}$［／	（Fig．9）	78	＂	2.4 V2.4 V	$\begin{aligned} & \hline 2.4 \mathrm{~V} \\ & 2.4 \mathrm{~V} \end{aligned}$	＂	B	$2.4 \mathrm{~V}$	$\begin{aligned} & 2.4 \mathrm{~V} \\ & 2.4 \mathrm{~V} \end{aligned}$	OUT	OUT	$\begin{aligned} & 2.4 \mathrm{~V} \\ & 2.4 \mathrm{~V} \end{aligned}$	＂	OUT	OUT	$\begin{aligned} & 2.4 \mathrm{~V} \\ & 2.4 \mathrm{~V} \end{aligned}$	Clock／Q1	2．5	MHz	＂${ }^{\prime \prime}$
			79	＂			＂	＂						＂				Clock／Q1			
			80	＂			＂	＂						＂				Clock／Q2			
			81	＂										＂				Clock／Q2			
	$\mathrm{t}_{\text {PLH }}$	3003 （Fig．8）	＊82 CKT A ＊82 CKT B ＊83 CKT A ＊83 CKT B ＊84 CKT A ＊84 CKT B ＊85 CKT A ＊85 CKT B	2.4	$\begin{aligned} & \hline \mathrm{J} \\ & \mathrm{~J} \\ & \mathrm{IN} \\ & \mathrm{IN} \end{aligned}$	$2.4 \mathrm{~V}$	＂	IN		$2.4 \mathrm{~V}$	OUT OUT	OUT	$2.4 \mathrm{~V}$	＂،	$\begin{aligned} & \text { OUT } \\ & \text { OUT } \end{aligned}$	$\begin{aligned} & \text { OUT } \\ & \text { OUT } \end{aligned}$	$2.4 \mathrm{~V}$	Clear／Q1 Clear／Q1 Preset 1／Q1 Preset 1／Q1 Clear／Q2 Clear／Q2 Preset 2／Q2 Preset 2／Q2	10	$\begin{gathered} 125 \\ 65 \\ 125 \\ 65 \\ 125 \\ 65 \\ 125 \\ 65 \\ \hline \end{gathered}$	ns
							＂	IN													
							＂	J													
							＂	J													
							＂	IN	J												
							＂	IN	J												
							＂	J	IN												
							＂	J	IN												
	$\mathrm{t}_{\text {PHL }}$		86 CKT A	GND	J	2.4 V	＂	IN		$2.4 \mathrm{~V}$	$\begin{aligned} & \text { OUT } \\ & \text { OUT } \end{aligned}$	$\begin{aligned} & \text { OUT } \\ & \text { OUT } \end{aligned}$	$2.4 \mathrm{~V}$	＂	$\begin{aligned} & \text { OUT } \\ & \text { OUT } \end{aligned}$	$\begin{aligned} & \hline \text { OUT } \\ & \text { OUT } \end{aligned}$	$2.4 \mathrm{~V}$	Clear／Q1	＂	250	＂
			86 CKT B		J	＂	＂	IN						＂				Clear／Q1	＂	100	＂
			87 CKT A	＂	IN	＂	＂	J						＂				Preset 1／Q1	＂	250	＂
			87 CKT B	＂			＂	J						＂				Preset 1／Q1	＂	100	＂
			88 CKT A	＂			＂	IN	J					＂				Clear／Q2	＂	250	＂
			88 CKT B	＂			＂	IN	J					＂				Clear／Q2	＂	100	＂
			89 CKT A	＂			＂	J	IN					＂				Preset 2／Q 2	＂	250	＂
			89 CKT B	＂			＂	J	IN					＂				Preset 2／Q2	＂	100	＂
	$\mathrm{t}_{\text {PLH }}$		90 CKT A	IN	2.4 V	2.4 V	＂	J						＂		OUT	2.4 V	Clock／Q1	＂	125	ns
		（Fig．9）	90 CKT B	＂	2.4 V	＂	＂	J						＂		OUT	＂	Clock／Q1	＂	65	＂
			91 CKT A	＂	J	＂	＂	4.5 V						＂	OUT		＂	Clock／言1	＂	125	＂
			91 CKT B	＂	J	＂	＂	4.5 V						＂	OUT		＂	Clock／Q1	＂	65	＂
			92 CKT A	＂			＂	J	2.4 V	2.4 V	OUT		2.4 V	＂				Clock／Q2	＂	125	＂
			92 CKT B	＂			＂	J	2.4 V	＂	OUT		＂	＂				Clock／Q2	＂	65	＂
			93 CKT A	＂			＂	4.5 V	J	＂		OUT	＂	＂				Clock／ \mathbf{Q}^{2}	＂	125	＂
			93 CKT B	＂			＂	4.5 V	J	＂		OUT	＂	＂				Clock／Q2	＂	65	＂
	$\mathrm{t}_{\text {PHL }}$		94 CKT A	＂	J	2.4 V	＂	4.5 V						＂		OUT	2.4 V	Clock／Q1			＂
			94 CKT B	＂	J	＂	＂	4.5 V						＂		OUT	＂	Clock／Q1		85	＂
			95 CKT A	＂	2.4 V		＂	J						＂	OUT		＂	Clock／恖1		200	＂
			95 CKT B	＂			＂	J						＂	OUT		＂	Clock／Q1	200	85	＂
			96 CKT A	＂			＂	4.5 V	J	2.4 V	OUT		2.4 V	＂				Clock／Q2		200	＂
			96 CKT B	＂			＂	4.5 V	J	＂	OUT			＂				Clock／Q2		85	＂
			97 CKT A	＂			＂	J	4.5 V	＂		OUT	＂	＂				Clock／恖2		200	＂
			97 CKT B	＂			－	J	4.5 V	＂		OUT	＂	＂				Clock／Q2		85	＂
11	Same tests，terminal conditions，and limits as for subgroup 10，except $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ ．																				

See footnotes on next page．

TABLE III. Group A inspection for device type 04.- Continued. 1/

NOTE: $\quad \mathrm{A}=$ normal clock pulse, $\mathrm{B}=$ momentary GND , then $4.5 \mathrm{~V}, \mathrm{E}=$ momentary GND , then open. $\mathrm{J}=$ input pulse, $\mathrm{t}_{\mathrm{p}} \geq 100 \mathrm{~ns}, \mathrm{~V}_{\mathrm{OL}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=4.5 \mathrm{~V}$.

1/ Terminal conditions (pins not designated may be $\mathrm{H} \geq 2.0 \mathrm{~V}$, or $\mathrm{L} \leq 0.8 \mathrm{~V}$, or open).
$\underline{2}$ / Tests shall be performed in sequence.
3/ Output voltages shall be either: (a) $\mathrm{H}=2.4 \mathrm{~V}$, minimum and $\mathrm{L}=0.4 \mathrm{~V}$, maximum when using a high speed checker double comparator; or (b) $\mathrm{H} \geq 1.5 \mathrm{~V}$ and $\mathrm{L} \leq 1.5 \mathrm{~V}$ when using a high speed checker single comparator.

4/ Input voltages shown are: $\mathrm{A}=2.4 \mathrm{~V}$ minimum and $\mathrm{B}=0.4 \mathrm{~V}$ maximum.
$\overline{5} / f_{\text {MAX }}$, minimum limit specified is the frequency of the input pulse. The output frequency shall be one-half of the input frequency.
These tests are performed at device manufacturer's option.

TABLE III. Group A inspection for device type 05. 1/

Subgroup	Symbol	$\begin{gathered} \hline \text { MIL- } \\ \text { STD- } \\ 883 \\ \text { method } \end{gathered}$	$\begin{aligned} & \text { Cases } \\ & \text { A,B, } \end{aligned}$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	Measured	Test limits		Unit
			Case C	3	2	1	14	13	12	11	10	9	8	7	6	5	4	terminal	Min	Max	
			Test no.	Clock 1	D1	Clear 1	V_{cc}	Clear 2	D2	Clock 2	Preset 2	Q2	Q 2	GND	Q 1	Q1	Preset 1				
$\begin{array}{c\|} \hline 1 \\ T_{\mathrm{C}}=+25^{\circ} \mathrm{C} \\ \hline \end{array}$	V_{OH}	3006	$\begin{aligned} & \hline 1 \\ & 2 \\ & 3 \\ & 4 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 2.0 \mathrm{~V} \\ & 0.7 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 4.5 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 0.7 \mathrm{~V} \\ & 2.0 \mathrm{~V} \end{aligned}$	$4.5 \mathrm{~V}$	$\begin{aligned} & 4.5 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 0.7 \mathrm{~V} \\ & 2.0 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{aligned} & 2.0 \mathrm{~V} \\ & 0.7 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 4.5 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 2.0 \mathrm{~V} \\ & 0.7 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline-100 \mu \mathrm{~A} \\ -100 \mu \mathrm{~A} \\ \hline \end{array}$	$\begin{aligned} & -100 \mu \mathrm{~A} \\ & -100 \mu \mathrm{~A} \end{aligned}$	GND	$\begin{aligned} & -100 \mu \mathrm{~A} \\ & -100 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & -100 \mu \mathrm{~A} \\ & -100 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 4.5 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 2.0 \mathrm{~V} \\ & 0.7 \mathrm{~V} \end{aligned}$	Q1 Q1 Q1 Q1 Q1 Q2 Q2 Q2 Q2	2.4	V	
	V OL	3007	$\begin{gathered} 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ \hline \end{gathered}$	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 2.0 \mathrm{~V} \\ & 0.7 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 4.5 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 0.7 \mathrm{~V} \\ & 2.0 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 4.5 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 0.7 \mathrm{~V} \\ & 2.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 2.0 \mathrm{~V} \\ & 0.7 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 4.5 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 2.0 \mathrm{~V} \\ & 0.7 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{aligned} & 2 \mathrm{~mA} \\ & 2 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 2 \mathrm{~mA} \\ & 2 \mathrm{~mA} \end{aligned}$		$\begin{aligned} & 2 \mathrm{~mA} \\ & 2 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 2 \mathrm{~mA} \\ & 2 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 4.5 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 2.0 \mathrm{~V} \\ & 0.7 \mathrm{~V} \end{aligned}$	Q1 Q1 Q1 Q1 Q2 Q2 Q2 Q2	0.3	"	"
	$I_{\text {IL4 }}$	3009	17 18 19 20	$\begin{aligned} & \hline 4.5 \mathrm{~V} \\ & \text { GND } \end{aligned}$	$\begin{aligned} & \hline 0.3 \mathrm{~V} \\ & \text { GND } \end{aligned}$	$\begin{aligned} & 4.5 \mathrm{~V} \\ & 4.5 \mathrm{~V} \end{aligned}$	$5.5 \mathrm{~V}$	$\begin{aligned} & 4.5 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{aligned} & 0.3 \mathrm{~V} \\ & \text { GND } \end{aligned}$	$\begin{aligned} & 4.5 \mathrm{~V} \\ & \text { GND } \end{aligned}$	$\begin{aligned} & \text { GND } \\ & 0.3 \mathrm{~V} \end{aligned}$			" ${ }^{\text {" }}$			$\begin{aligned} & \text { GND } \\ & 0.3 \mathrm{~V} \end{aligned}$	D 1 Preset 1 D 2 Preset 2	-60	-180 "	$\mu \mathrm{A}$
	$\mathrm{I}_{\text {LL5 }}$		21 22 23 24	$\begin{aligned} & 0.3 \mathrm{~V} \\ & 4.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { GND } \\ & 4.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 4.5 \mathrm{~V} \\ & 0.3 \mathrm{~V} \end{aligned}$	"	$\begin{aligned} & 4.5 \mathrm{~V} \\ & 0.3 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{GND} \\ & 4.5 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{aligned} & 0.3 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { GND } \\ & 4.5 \mathrm{~V} \end{aligned}$			" ${ }^{\prime}$			$\begin{aligned} & \text { GND } \\ & 4.5 \mathrm{~V} \end{aligned}$	Clock 1 Clear 1 Clock 2 Clear 2	-120	-360 " "	
	$\begin{aligned} & \hline I_{\mathrm{HH} 1} \\ & \mathrm{I}_{\mathrm{IH} 1} \end{aligned}$	3010	$\begin{aligned} & 25 \\ & 26 \end{aligned}$	4.5 V	2.4 V	GND	"	GND	2.4 V	4.5 V	4.5 V			"			4.5 V	$\begin{aligned} & \hline \text { D1 } \\ & \text { D2 } \\ & \hline \end{aligned}$		10	"
	1 $\mathrm{I}_{\mathrm{H} 2}$ $\mathrm{I}_{\mathrm{H} 2}$		27	4.5 V	5.5 V	GND	"	GND	5.5 V	4.5 V	4.5 V			"			4.5 V	$\begin{aligned} & \hline \text { D1 } \\ & \text { D2 } \end{aligned}$	10	100	"
	I_{1+3}		29 30 31 32	$\begin{gathered} 2.4 \mathrm{~V} \\ \mathrm{~B} \end{gathered}$	$\begin{aligned} & 4.5 \mathrm{~V} \\ & 4.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { GND } \\ & 4.5 \mathrm{~V} \end{aligned}$	" ${ }^{\prime}$	$\begin{aligned} & \text { GND } \\ & 4.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 4.5 \mathrm{~V} \\ & 4.5 \mathrm{~V} \end{aligned}$	$\begin{gathered} 2.4 \mathrm{~V} \\ \mathrm{~B} \end{gathered}$	$\begin{aligned} & 4.5 \mathrm{~V} \\ & 2.4 \mathrm{~V} \end{aligned}$			"			$\begin{aligned} & 4.5 \mathrm{~V} \\ & 2.4 \mathrm{~V} \end{aligned}$	Clock 1 Preset 1 Clock 2 Preset 2	100	20	
	I_{1+4}		33 34 35 36	$\begin{gathered} 5.5 \mathrm{~V} \\ \mathrm{~B} \end{gathered}$	$\begin{aligned} & 4.5 \mathrm{~V} \\ & 4.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { GND } \\ & 4.5 \mathrm{~V} \end{aligned}$	" ${ }^{\prime}$	$\begin{aligned} & \mathrm{GND} \\ & 4.5 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{aligned} & 4.5 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{gathered} 5.5 \mathrm{~V} \\ \mathrm{~B} \end{gathered}$	$\begin{aligned} & 4.5 \mathrm{~V} \\ & 5.5 \mathrm{~V} \end{aligned}$			" ${ }^{\text {" }}$			$\begin{aligned} & 4.5 \mathrm{~V} \\ & 5.5 \mathrm{~V} \end{aligned}$	Clock 1 Preset 1 Clock 2 Preset 2		200	" ${ }^{\prime}$
	$\mathrm{I}_{\text {H5 }}$ $\mathrm{I}_{\text {H }}$		37 38	B	GND	2.4 V	"	2.4 V	GND	B				"				Clear 1 Clear 2		30	"
	$\begin{aligned} & \quad \begin{array}{l} l_{\text {In }} \\ I_{\text {IH6 }} \end{array} \end{aligned}$		$\begin{aligned} & 39 \\ & 40 \end{aligned}$	B	GND	5.5 V	"	5.5 V	GND	B				"				Clear 1 Clear 2	30	300	"
	los	3011	$\begin{aligned} & 41 \\ & 42 \\ & 43 \\ & 44 \\ & \hline \end{aligned}$			GND		GND			GND	GND	GND	" ${ }_{\text {" }}$	GND	GND	GND	$\begin{aligned} & \mathrm{Q} 1 \\ & \hline \mathrm{Q} 1 \\ & \mathrm{Q} 2 \\ & \mathrm{Q} 2 \end{aligned}$	$\begin{aligned} & \hline-3 \\ & \hline 300 \end{aligned}$	-15	$\begin{gathered} \mathrm{mA} \\ \text { " } \\ \text { " } \end{gathered}$
	$\begin{aligned} & \mathrm{I}_{\mathrm{cc}} \\ & \mathrm{I}_{\mathrm{cc}} \end{aligned}$	$\begin{aligned} & 3005 \\ & 3005 \end{aligned}$	45	$\begin{aligned} & \text { GND } \\ & \text { GND } \end{aligned}$	$\begin{aligned} & \text { GND } \\ & \text { GND } \end{aligned}$	$\begin{aligned} & 4.5 \mathrm{~V} \\ & \text { GND } \end{aligned}$		4.5 V GND	$\begin{aligned} & \hline \text { GND } \\ & \text { GND } \end{aligned}$	$\begin{aligned} & \hline \text { GND } \\ & \text { GND } \end{aligned}$	$\begin{aligned} & \text { GND } \\ & 4.5 \mathrm{~V} \end{aligned}$			"			$\begin{aligned} & \text { GND } \\ & 4.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}} \\ & \mathrm{~V}_{\mathrm{cc}} \end{aligned}$		$\begin{aligned} & \hline 3.0 \\ & 3.0 \\ & \hline \end{aligned}$	"

[^2]See footnotes at end of device type 05.

TABLE III. Group A inspection for device type 05 - Continued. 1 /

See footnotes at end of device type 05.

TABLE III. Group A inspection for device type 05 - Continued. $\mathcal{L}^{/ /}$

Subgroup	Symbol	$\begin{array}{\|c\|} \hline \text { MIL- } \\ \text { STD- } \\ 883 \\ \text { method } \end{array}$	$\begin{aligned} & \text { Cases } \\ & \text { A,B,D } \end{aligned}$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	Measured terminal	Test limits		Unit
			Case C	3	2	1	14	13	12	11	10	9	8	7	6	5	4		Min	Max	
			Test no.	Clock 1	D1	Clear 1	V_{cc}	Clear 2	D2	Clock 2	Preset 2	Q2	Q 2	GND	Q 1	Q1	Preset 1				
$\begin{gathered} 9 \\ \mathrm{~T}_{\mathrm{C}}=+25^{\circ} \mathrm{C} \end{gathered}$	$\mathrm{t}_{\text {PLH }}$	$\begin{array}{\|c\|} \hline 3003 \\ \text { (Fig. 11) } \end{array}$	86 CKT A 86 CKT B 87 CKT A 87 CKT B 88	$\begin{aligned} & \text { IN } \\ & \text { IN } \end{aligned}$	$\begin{aligned} & \operatorname{IN}(\mathrm{G}) \\ & \mathrm{IN}(\mathrm{G}) \end{aligned}$	$\begin{aligned} & \mathrm{B} \\ & \mathrm{~B} \end{aligned}$	$5.0 \mathrm{~V}$	$\begin{aligned} & \mathrm{B} \\ & \mathrm{~B} \\ & \hline \end{aligned}$	$\begin{aligned} & \operatorname{IN}(\mathrm{G}) \\ & \mathrm{IN}(\mathrm{G}) \end{aligned}$	$\begin{aligned} & \text { IN } \\ & \text { IN } \end{aligned}$	$\begin{aligned} & 5.0 \mathrm{~V} \\ & 5.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { OUT } \\ & \text { OUT } \end{aligned}$	GND	"	OUT	OUT	$\begin{aligned} & 5.0 \mathrm{~V} \\ & 5.0 \mathrm{~V} \end{aligned}$	Clock1/Q1 Clock1/Q1 Clock2/Q2 Clock2/Q2	10	$\begin{gathered} 100 \\ 72 \\ 100 \\ 72 \\ \hline \end{gathered}$	ns
	$\mathrm{t}_{\text {PHL }}$		$\begin{array}{\|l\|} \hline 88 \text { CKT A } \\ 88 \text { CKT B } \\ 89 \text { CKT A } \\ 89 \text { CKT B } \\ \hline \end{array}$	$\begin{aligned} & \text { IN } \\ & \text { IN } \end{aligned}$	$\begin{aligned} & \operatorname{IN}(\mathrm{H}) \\ & \operatorname{IN}(\mathrm{H}) \end{aligned}$	$\begin{aligned} & \mathrm{B} \\ & \mathrm{~B} \end{aligned}$		$\begin{aligned} & \mathrm{B} \\ & \mathrm{~B} \\ & \hline \end{aligned}$	$\begin{aligned} & \operatorname{IN}(\mathrm{H}) \\ & \operatorname{IN}(\mathrm{H}) \end{aligned}$	$\begin{aligned} & \text { IN } \\ & \text { IN } \end{aligned}$	$\begin{aligned} & 5.0 \mathrm{~V} \\ & 5.0 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \text { OUT } \\ & \text { OUT } \end{aligned}$	" ${ }^{\text {" }}$	$\begin{aligned} & \text { OUT } \\ & \text { OUT } \end{aligned}$		$\begin{aligned} & 5.0 \mathrm{~V} \\ & 5.0 \mathrm{~V} \end{aligned}$	Clock1/(̄) Clock1/Q1 Clock2/Q2 Clock2/Q2	"،	$\begin{aligned} & 150 \\ & 110 \\ & 150 \\ & 110 \\ & \hline \end{aligned}$	"
	$\mathrm{t}_{\text {PLH }}$	$\left\|\begin{array}{c} 3003 \\ \text { (Fig. 12) } \end{array}\right\|$	$\begin{array}{\|l\|} \hline 90 \text { CKT A } \\ 90 \text { CKT B } \\ 91 \text { CKT A } \\ 91 \text { CKT B } \\ \hline \end{array}$	$\begin{aligned} & \text { IN } \\ & \text { IN } \end{aligned}$	$\begin{aligned} & \text { IN(G) } \\ & \operatorname{IN}(\mathrm{G}) \end{aligned}$	$\begin{aligned} & 5.0 \mathrm{~V} \\ & 5.0 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 5.0 \mathrm{~V} \\ & 5.0 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { IN(G) } \\ & \operatorname{IN}(\mathrm{G}) \\ & \hline \end{aligned}$	$\begin{aligned} & \text { IN } \\ & \text { IN } \end{aligned}$	$\begin{aligned} & \mathrm{B} \\ & \mathrm{~B} \\ & \hline \end{aligned}$		$\begin{aligned} & \text { OUT } \\ & \text { OUT } \\ & \hline \end{aligned}$	" ${ }^{\text {" }}$	$\begin{aligned} & \text { OUT } \\ & \text { OUT } \end{aligned}$	B	B	Clock1/Q1 Clock1/Q1 Clock2/Q2 Clock2/Q2	"	$\begin{gathered} 100 \\ 72 \\ 100 \\ 72 \\ \hline \end{gathered}$	"
	$\mathrm{t}_{\text {PHL }}$		$\begin{array}{\|l\|} \hline 92 \text { CKT A } \\ 92 \text { CKT B } \\ 93 \\ \text { CKT A } \\ 93 \\ \text { CKT B } \\ \hline \end{array}$	$\begin{aligned} & \text { IN } \\ & \text { IN } \end{aligned}$	$\begin{aligned} & \text { IN(H) } \\ & \operatorname{IN}(\mathrm{H}) \end{aligned}$	$\begin{aligned} & 5.0 \mathrm{~V} \\ & 5.0 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 5.0 \mathrm{~V} \\ & 5.0 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{aligned} & \operatorname{IN}(\mathrm{H}) \\ & \mathrm{IN}(\mathrm{H}) \end{aligned}$	$\begin{aligned} & \text { IN } \\ & \text { IN } \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{B} \\ & \mathrm{~B} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { OUT } \\ & \text { OUT } \end{aligned}$	"	" ${ }^{\text {" }}$	OUT	OUT	$\begin{aligned} & \hline \text { B } \\ & \text { B } \end{aligned}$	Clock1/Q1 Clock1/Q1 Clock2/Q2 Clock2/Q2	"	$\begin{aligned} & 150 \\ & 110 \\ & 150 \\ & 110 \\ & \hline \end{aligned}$	"
$\begin{gathered} 10 \\ \mathrm{~T}_{\mathrm{C}}=+125^{\circ} \mathrm{C} \end{gathered}$	$\mathrm{f}_{\text {MAX }}$ 5/	(Fig. 11)	$\begin{aligned} & 94 \\ & 95 \\ & 96 \\ & 97 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { IN } \\ & \text { IN } \end{aligned}$	IN(H) $\operatorname{IN}(\mathrm{G})$	$\begin{aligned} & 5.0 \mathrm{~V} \\ & 5.0 \mathrm{~V} \end{aligned}$	"	$\begin{aligned} & 5.0 \mathrm{~V} \\ & 5.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{IN}(\mathrm{H}) \\ & \mathrm{IN}(\mathrm{G}) \end{aligned}$	$\begin{aligned} & \text { IN } \\ & \text { IN } \end{aligned}$	$\begin{aligned} & \mathrm{B} \\ & \mathrm{~B} \\ & \hline \end{aligned}$	OUT	OUT	" ${ }^{\text {" }}$	OUT	OUT	$\begin{aligned} & \mathrm{B} \\ & \mathrm{~B} \end{aligned}$	Clock1/Q1 Clock1/Q1 Clock2/Q2 Clock2/Q2	2.5 " "	MHz	"
	$\mathrm{t}_{\text {PLH }}$	$\left\lvert\, \begin{gathered} 3003 \\ \text { (Fig. 10) } \end{gathered}\right.$	98 98 CKT A 99 CKT A 99 CKT B 100 100 CKT A 101 CKT A 101 CKT B			IN IN J J	"،	$\begin{gathered} \text { IN } \\ \text { IN } \\ \mathrm{J} \\ \mathrm{~J} \\ \hline \end{gathered}$			J J IN IN	$\begin{aligned} & \text { OUT } \\ & \text { OUT } \end{aligned}$	$\begin{aligned} & \text { OUT } \\ & \text { OUT } \end{aligned}$	" ${ }^{\text {" }}$	$\begin{aligned} & \text { OUT } \\ & \text { OUT } \end{aligned}$	$\begin{aligned} & \text { OUT } \\ & \text { OUT } \end{aligned}$	J J IN IN	Clear1/Q1 Clear1/Q1 Preset 1/Q1 Preset 1/Q1 Clear2/Q2 Clear2/Q2 Preset 2/Q2 Preset 2/Q2	10 " " " " " "	125 85 125 85 125 85 125 85	ns " " " " " "

See footnotes at end of device type 05.

TABLE III. Group A inspection for device type 05 - Continued. 1/

NOTE: $\mathrm{A}=$ normal clock pulse, $\mathrm{B}=$ momentary GND, then 4.5 V ,
$\mathrm{J}=$ input pulse, $\mathrm{t}_{\mathrm{p}} \geq 100 \mathrm{~ns}, \mathrm{PRR}=0 \mathrm{MHz}, \mathrm{V}_{\mathrm{OL}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=4.5 \mathrm{~V}$.
1/ Terminal conditions (pins not designated may be $\mathrm{H} \geq 2.0 \mathrm{~V}$, or $\mathrm{L} \leq 0.8 \mathrm{~V}$, or open).
$\underline{2} /$ Tests shall be performed in sequence.
3/ Input voltages shown are: $\mathrm{A}=2.4 \mathrm{~V}$ minimum and $\mathrm{B}=0.4 \mathrm{~V}$ maximum.
4/ Output voltages shall be either: (a) $\mathrm{H}=2.4 \mathrm{~V}$, minimum and $\mathrm{L}=0.4 \mathrm{~V}$, maximum when using a high speed checker double comparator; or
(b) $\mathrm{H} \geq 1.5 \mathrm{~V}$ and $\mathrm{L} \leq 1.5 \mathrm{~V}$ when using a high speed checker single comparator.

5/ $f_{\text {MAX }}$ minimum limit specified is the frequency of the input pulse. The output frequency shall be one-half of the input frequency.

5. PACKAGING

5.1 Packaging requirements. For acquisition purposes, the packaging requirements shall be as specified in the contract or order (see 6.2). When packaging of materiel is to be performed by DoD or in-house contractor personnel, these personnel need to contact the responsible packaging activity to ascertain packaging requirements. Packaging requirements are maintained by the Inventory Control Point's packaging activity within the Military Service or Defense Agency, or within the military service's system command. Packaging data retrieval is available from the managing Military Department's or Defense Agency's automated packaging files, CD-ROM products, or by contacting the responsible packaging activity.

6. NOTES

(This section contains information of a general or explanatory nature that may be helpful, but it is not mandatory)
6.1 Intended use. Microcircuits conforming to this specification are intended for logistic support of existing equipment.
6.2 Acquisition requirements. Acquisition documents should specify the following:
a. Title, number, and date of the specification.
b. PIN and compliance identifier, if applicable (see 1.2).
c. Requirements for delivery of one copy of the conformance inspection data pertinent to the device inspection lot to be supplied with each shipment by the device manufacturer, if applicable.
d. Requirement for certificate of compliance, if applicable.
e. Requirements for notification of change of product or process to acquiring activity in addition to notification to the qualifying activity, if applicable.
f. Requirements for failure analysis (including required test condition of method 5003), corrective action and reporting of results, if applicable.
g. Requirements for product assurance options.
h. Requirements for carriers, special lead lengths or lead forming, if applicable. These requirements shall not affect the part number. Unless otherwise specified, these requirements will not apply to direct purchase by or direct shipment to the Government.
i. Requirements for "JAN" marking.
j. Packaging requirements (see 5.1).
6.3 Qualification. With respect to products requiring qualification, awards will be made only for products which are, at the time of award of contract, qualified for inclusion in Qualified Manufacturers List QML-38535 whether or not such products have actually been so listed by that date. The attention of the contractors is called to these requirements, and manufacturers are urged to arrange to have the products that they propose to offer to the Federal Government tested for qualification in order that they may be eligible to be awarded contracts or purchase orders for the products covered by this specification. Information pertaining to qualification of products may be obtained from DSCC-VQ, 3990 E. Broad Street, Columbus, Ohio 43123-1199.
6.4 Superseding information. The requirements of MIL-M-38510 have been superseded to take advantage of the available Qualified Manufacturer Listing (QML) system provided by MIL-PRF-38535. Previous references to MIL-M38510 in this document have been replaced by appropriate references to MIL-PRF-38535. All technical requirements now consist of this specification and MIL-PRF-38535. The MIL-M-38510 specification sheet number and PIN have been retained to avoid adversely impacting existing government logistics systems and contractor's parts lists.
6.5 Abbreviations, symbols and definitions. The abbreviations, symbols, and definitions used herein are defined in MIL-PRF-38535 and MIL-HDBK-1331, and as follows:

GND	. Electrical ground (common terminal)
$V_{\text {IN }}$	Voltage level at an input terminal
	Current flowing into an input terminal

6.6 Logistic support. Lead materials and finishes (see 3.3) are interchangeable. Unless otherwise specified, microcircuits acquired for Government logistic support will be acquired to device class B (see 1.2.2), lead material and finish A (see 3.4). Longer lead lengths and lead forming should not affect the part number.
6.7 Substitutability. The cross-reference information below is presented for the convenience of users.

Microcircuits covered by this specification will functionally replace the listed generic-industry type. Generic-industry microcircuit types may not have equivalent operational performance characteristics across military temperature ranges or reliability factors equivalent to MIL-M-35810 device types and may have slight physical variations in relation to case size. The presence of this information should not be deemed as permitting substitution of generic-industry types for MIL-M-38510 types or as a waiver of any of the provisions of MIL-PRF-38535.

Device type	Commercial type
01	54 L 71
02	54 L 72
03	54 L 73
04	54 L 78
05	54 L 74

6.8 Manufacturers' designation. Manufacturers' circuits included in this specification are designated as shown in table IV herein.

TABLE IV. Manufacturers designator.

Device Types	Texas Instruments	National Semiconductor
	A	B
01		X
02		X
03		X
04		X
05		X

6.9 Changes from previous issue. The margins of this specification are marked with vertical lines to indicate where changes from the previous issue were made. This was done as a convenience only and the Government assumes no liability whatsoever for any inaccuracies in these notations. Bidders and contractors are cautioned to evaluate the requirements of this document based on the entire content irrespective of the marginal notations and relationship; to the last previous issue.

Custodians:	Preparing activity:
Army - CR	DLA - CC
Navy - EC	(Project 5962-2006-004)
Air Force -11	
DLA - CC	

Review activities:
Army - MI, SM
Navy - AS, CG, MC, SH, TD
Air Force - 03, 19, 99
NOTE: The activities listed above were interested in this document as of the date of this document. Since organizations and responsibilities can change, you should verify the currency of the information above using the ASSIST Online database at http://assist.daps.dla.mil.

[^0]: Comments, suggestions, or questions on this document should be addressed to: Commander, Defense Supply Center Columbus, ATTN: DSCC-VAS, P. O. Box 3990, Columbus, OH 43218-3990, or emailed to bipolar@dla.mil. Since contact information can change, you may want to verify the currency of this address information using the ASSIST Online database at http://assist.daps.dla.mil.

[^1]: 1/ Must withstand the added P_{D} due to short circuit condition (e.g. IOs) at one output for 5 seconds duration.
 2/ Maximum junction temperature should not be exceeded except in accordance with allowable short duration burn-in screening condition in accordance with MIL-PRF-38535.
 3/ Device will fanout in both high and low levels to the specified number of inputs of the same device type as that being tested.

[^2]: - Same tests, terminal conditions and limits as for subgroup 1, except $T_{\mathrm{C}}=-55^{\circ} \mathrm{C}$

