Features

- 100MHz gain-bandwidth
- Gain-of-2 stable
- Low supply current (per amplifier) -5.2 mA at $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$
- Wide supply range -2.5 V to 36 V
- High slew rate $-275 \mathrm{~V} / \mu \mathrm{s}$
- Fast-settling - 80ns to 0.1% for a 10 V step
- Low differential gain -0.02% at $\mathrm{Av}_{\mathrm{V}}=+2, \mathrm{R}_{\mathrm{L}}=150 \Omega$
- Low differential phase -0.07° at $A_{V}=+2, R_{L}=150 \Omega$
- Wide output voltage swing $\pm 13.6 \mathrm{~V}$ with $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$

Applications

- Video amplifiers
- Single-supply amplifiers
- Active filters/integrators
- High speed signal processing
- ADC/DAC buffers
- Pulse/RF amplifiers
- Pin diode receivers
- Log amplifiers

Ordering Information

Part No.	Package	 Reel	Outline \#
EL2245CN	8-Pin PDIP	-	MDP0031
EL2245CS	8-Pin SO	-	MDP0027
EL2245CS-T7	8-Pin SO	$7^{\prime \prime}$	MDP0027
EL2245CS-T13	8-Pin SO	$13^{\prime \prime}$	MDP0027
EL2445CN	14-Pin PDIP	-	MDP0031
EL2445CS	14-Pin SO $\left(0.150^{\prime \prime}\right)$	-	MDP0027
EL2445CS-T7	14-Pin SO $\left(0.150^{\prime \prime}\right)$	$7^{\prime \prime}$	MDP0027
EL2445CS-T13	14-Pin SO $(0.150 ")$	$13^{\prime \prime}$	MDP0027

General Description

The EL2245C and EL2445C are dual and quad versions of the popular EL2045C. They are high speed, low power, low cost monolithic operational amplifiers built on Elantec's proprietary complementary bipolar process. The EL2245C and EL2445C are gain-of-2 stable and feature a $275 \mathrm{~V} / \mu$ s slew rate and 100 MHz bandwidth at gain-of-2 while requiring only 5.2 mA of supply current per amplifier.
The power supply operating range of the EL2245C and EL2445C is from $\pm 18 \mathrm{~V}$ down to as little as $\pm 2 \mathrm{~V}$. For single-supply operation, the EL2245C and EL2445C operate from 36 V down to as little as 2.5 V . The excellent power supply operating range of the EL2245C and EL2445C makes them an obvious choice for applications on a single +5 V or +3 V supply.

The EL2245C and EL2445C also feature an extremely wide output voltage swing of $\pm 13.6 \mathrm{~V}$ with $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$. At $\pm 5 \mathrm{~V}$, output voltage swing is a wide $\pm 3.8 \mathrm{~V}$ with $\mathrm{R}_{\mathrm{L}}=500 \Omega$ and $\pm 3.2 \mathrm{~V}$ with R_{L} $=150 \Omega$. Furthermore, for single-supply operation at +5 V , output voltage swing is an excellent 0.3 V to 3.8 V with $\mathrm{R}_{\mathrm{L}}=500 \Omega$.
At a gain of +2 , the EL2245C and EL2445C have a -3 dB bandwidth of 100 MHz with a phase margin of 50°. Because of their conventional voltage-feedback topology, the EL2245C and EL2445C allow the use of reactive or non-linear elements in their feedback network. This versatility combined with low cost and 75 mA of output-current drive make the EL2245C and EL2445C an ideal choice for price-sensitive applications requiring low power and high speed.

Connection Diagrams

EL2245C, EL2445C
 Dual/Quad Low-Power 100MHz Gain-of-2 Stable Op Amp

Parameter	Description	Condition	Temp	Min	Typ	Max	Unit
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{A}_{\mathrm{V}}=+1$ @ 10 MHz	$25^{\circ} \mathrm{C}$		1.0		pF
Rout	Output Resistance	$\mathrm{A}_{\mathrm{V}}=+1$	$25^{\circ} \mathrm{C}$		50		$\mathrm{m} \Omega$
PSOR	Power-supply Operating Range	Dual-supply	$25^{\circ} \mathrm{C}$	± 2.0		± 18.0	V
		Single-supply	$25^{\circ} \mathrm{C}$	2.5		36.0	V

1. Measured from $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$.

Closed-Loop AC Electrical Characteristics
$V_{S}= \pm 15 \mathrm{~V}, A_{V}=+2, R_{L}=1 \mathrm{k} \Omega$ unless otherwise specified

Parameter	Description	Condition	Temp	Min	Typ	Max	Unit
BW	-3dB Bandwidth ($\mathrm{V}_{\text {Out }}=0.4 \mathrm{~V}_{\mathrm{PP}}$)	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~A}_{\mathrm{V}}=+2$	$25^{\circ} \mathrm{C}$		100		MHz
		$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~A}_{\mathrm{V}}=-1$	$25^{\circ} \mathrm{C}$		75		MHz
		$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~A}_{\mathrm{V}}=+5$	$25^{\circ} \mathrm{C}$		20		MHz
		$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~A}_{\mathrm{V}}=+10$	$25^{\circ} \mathrm{C}$		10		MHz
		$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~A}_{\mathrm{V}}=+20$	$25^{\circ} \mathrm{C}$		5		MHz
		$\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{Av}=+2$	$25^{\circ} \mathrm{C}$		75		MHz
GBWP	Gain-bandwidth Product	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$	$25^{\circ} \mathrm{C}$		200		MHz
		$\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}$	$25^{\circ} \mathrm{C}$		150		MHz
PM	Phase Margin	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$	$25^{\circ} \mathrm{C}$		50		-
CS	Channel Separation	$\mathrm{f}=5 \mathrm{MHz}$	$25^{\circ} \mathrm{C}$		85		dB
SR	$\text { Slew Rate }{ }^{[1]}$	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	$25^{\circ} \mathrm{C}$	200	275		V/ $/ \mathrm{s}$
		$\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=500 \Omega$	$25^{\circ} \mathrm{C}$		200		V/ $/ \mathrm{s}$
FPBW	Full-power Bandwidth ${ }^{[2]}$	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$	$25^{\circ} \mathrm{C}$	3.2	4.4		MHz
		$\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}$	$25^{\circ} \mathrm{C}$		12.7		MHz
$\mathrm{t}_{\mathrm{R}}, \mathrm{t}_{\mathrm{F}}$	Rise Time, Fall Time	0.1 V step	$25^{\circ} \mathrm{C}$		3.0		ns
OS	Overshoot	0.1 V step	$25^{\circ} \mathrm{C}$		20		\%
tPD	Propagation Delay		$25^{\circ} \mathrm{C}$		2.5		ns
ts	Settling to $+0.1 \%\left(\mathrm{~A}_{\mathrm{V}}=+1\right)$	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, 10 \mathrm{~V}$ step	$25^{\circ} \mathrm{C}$		80		ns
		$\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, 5 \mathrm{~V}$ step	$25^{\circ} \mathrm{C}$		60		ns
dG	Differential Gain ${ }^{[3]}$	NTSC/PAL	$25^{\circ} \mathrm{C}$		0.02		\%
dP	Differential Phase ${ }^{[3]}$	NTSC/PAL	$25^{\circ} \mathrm{C}$		0.07		。
eN	Input Noise Voltage	10 kHz	$25^{\circ} \mathrm{C}$		15.0		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
iN	Input Noise Current	10 kHz	$25^{\circ} \mathrm{C}$		1.50		$\mathrm{pA} / \sqrt{ } \mathrm{Hz}$

Slew rate is measured on rising edge.
2. For $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=20 \mathrm{~V}_{\mathrm{PP}}$. For $\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V}_{\mathrm{PP}}$. Full-power bandwidth is based on slew rate measurement using: $\mathrm{FPBW}=\mathrm{SR} /(2 \pi *$ Vpeak).
3. Video performance measured at $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~A}_{\mathrm{V}}=+2$ with 2 times normal video level across $\mathrm{R}_{\mathrm{L}}=150 \Omega$. This corresponds to standard video levels across a back-terminated 75Ω load. For other values of R_{L}, see curves.

DSttzTA 'OStzzTH

Typical Performance Curves

EL2245C, EL2445C

EL2245C, EL2445C
Dual/Quad Low-Power 100MHz Gain-of-2 Stable Op Amp

Package Power Dissipation vs Ambient Temperature JEDEC JESD51-3 Low Effective Thermal Conductivity (Single Layer) Test Board

Overshoot vs Load Capacitance

Simplified Schematic (Per Amplifier)

Burn-In Circuit (Per Amplifier)

EL2245C, EL2445C
 Dual/Quad Low-Power 100MHz Gain-of-2 Stable Op Amp

Applications Information

Product Description

The EL2245C and EL2445C are dual and quad lowpower wideband monolithic operational amplifiers built on Elantec's proprietary high-speed complementary bipolar process. The EL2245C and EL2445C use a classical voltage-feedback topology which allows them to be used in a variety of applications where current-feedback amplifiers are not appropriate because of restrictions placed upon the feedback element used with the amplifier. The conventional topology of the EL2245C and EL2445C allows, for example, a capacitor to be placed in the feedback path, making it an excellent choice for applications such as active filters, sample-and-holds, or integrators. Similarly, because of the ability to use diodes in the feedback network, the EL2245C and EL2445C are an excellent choice for applications such as fast \log amplifiers.

Power Dissipation

With the wide power supply range and large output drive capability of the EL2245C and EL2445C, it is possible to exceed the $150^{\circ} \mathrm{C}$ maximum junction temperatures under certain load and power-supply conditions. It is therefore important to calculate the maximum junction temperature ($\mathrm{T}_{\text {JMAX }}$) for all applications to determine if power supply voltages, load conditions, or package type need to be modified for the EL2245C and EL2445C to remain in the safe operating area. These parameters are related as follows:

$$
\mathrm{T}_{\mathrm{JMAX}}=\mathrm{T}_{\mathrm{MAX}}+\left(\Theta_{\mathrm{JA}} \times \mathrm{PD}_{\mathrm{MAXTOTAL}}\right)
$$

where:
$\mathrm{PD}_{\text {MAXtotal }}$ is the sum of the maximum power dissipation of each amplifier in the package ($\mathrm{PD}_{\mathrm{MAX}}$). PDmax for each amplifier can be calculated as follows:

$$
\mathrm{PD}_{\mathrm{MAX}}=2 \times \mathrm{V}_{\mathrm{S}} \times \mathrm{I}_{\text {SMAX }}+\left(\mathrm{V}_{\mathrm{S}}-\mathrm{V}_{\text {OUTMAX }}\right) \times \frac{\mathrm{V}_{\text {OUTMAX }}}{R_{\mathrm{L}}}
$$

where:
$\mathrm{T}_{\mathrm{MAX}}=$ Maximum ambient temperature
$\theta_{\mathrm{JA}}=$ Thermal resistance of the package
$\mathrm{PD}_{\text {MAX }}=$ Maximum power dissipation of each amplifier
$\mathrm{V}_{\mathrm{S}}=$ Supply voltage
ISMAX $=$ Maximum supply current of each amplifier
VOUTMAX $=$ Maximum output voltage swing of the application
$\mathrm{R}_{\mathrm{L}}=$ Load resistance
To serve as a guide for the user, we can calculate maximum allowable supply voltages for the example of the video cable-driver below since we know that $\mathrm{T}_{\text {JMAX }}=$ $150^{\circ} \mathrm{C}, \mathrm{T}_{\text {MAX }}=85^{\circ} \mathrm{C}, \mathrm{I}_{\text {SMAX }}=7.6 \mathrm{~mA}$ per amplifier, and the package θ_{JA} are shown in Table 1. If we assume (for this example) that we are driving a back-terminated video cable, then the maximum average value (over duty-cycle) of $\mathrm{V}_{\text {OUTMAX }}$ is 1.4 V , and $\mathrm{R}_{\mathrm{L}}=150 \Omega$, giving the results seen in Table 1.

Table 1

Part				
Package	$\theta_{\text {JA }}$	Max PDiss $@ \mathbf{T}_{\text {MAX }}$	Max V	
Duals				
EL2245CN	PDIP8	$100^{\circ} \mathrm{C} / \mathrm{W}$	$0.650 \mathrm{~W} @ 85^{\circ} \mathrm{C}$	$\pm 16.6 \mathrm{~V}$
EL2245CS	SO8	$160^{\circ} \mathrm{C} / \mathrm{W}$	$0.406 \mathrm{~W} @ 85^{\circ} \mathrm{C}$	$\pm 10.5 \mathrm{~V}$
Quads				
EL2445CN	PDIP14	$81^{\circ} \mathrm{C} / \mathrm{W}$	$0.802 \mathrm{~W} @ 85^{\circ} \mathrm{C}$	$\pm 11.5 \mathrm{~V}$
EL2445CS	SO14	$120^{\circ} \mathrm{C} / \mathrm{W}$	$0.542 \mathrm{~W} @ 85^{\circ} \mathrm{C}$	$\pm 7.5 \mathrm{~V}$

Single-Supply Operation

The EL2245C and EL2445C have been designed to have a wide input and output voltage range. This design also makes the EL2245C and EL2445C an excellent choice for single-supply operation. Using a single positive supply, the lower input voltage range is within 100 mV of ground $\left(\mathrm{R}_{\mathrm{L}}=500 \Omega\right)$, and the lower output voltage range is within 300 mV of ground. Upper input voltage range reaches 4.2 V , and output voltage range reaches 3.8 V with a 5 V supply and $\mathrm{R}_{\mathrm{L}}=500 \Omega$. This results in a 3.5 V output swing on a single 5 V supply. This wide output voltage range also allows single-supply operation with a supply voltage as high as 36 V or as low as 2.5 V . On a single 2.5 V supply, the EL2245C and EL2445C still have 1 V of output swing.

EL2245C, EL2445C
 Dual/Quad Low-Power 100MHz Gain-of-2 Stable Op Amp

Gain-Bandwidth Product and the -3dB Bandwidth

The EL2245C and EL2445C have a bandwidth at gainof -2 of 100 MHz while using only 5.2 mA of supply current per amplifier. For gains greater than 4 , their closedloop -3 dB bandwidth is approximately equal to the gainbandwidth product divided by the noise gain of the circuit. For gains less than 4 , higher-order poles in the amplifiers' transfer function contribute to even higher closed loop bandwidths. For example, the EL2245C and EL2445C have a -3 dB bandwidth of 100 MHz at a gain of +2 , dropping to 20 MHz at a gain of +5 . It is important to note that the EL2245C and EL2445C have been designed so that this "extra" bandwidth in low-gain applications does not come at the expense of stability. As seen in the typical performance curves, the EL2245C and EL2445C in a gain of +2 only exhibit 1.0 dB of peaking with a $1 \mathrm{k} \Omega$ load.

Video Performance

An industry-standard method of measuring the video distortion of components such as the EL2245C/ EL2445C is to measure the amount of differential gain (dG) and differential phase (dP) that they introduce. To make these measurements, a $0.286 \mathrm{~V}_{\mathrm{PP}}$ (40 IRE) signal is applied to the device with 0V DC offset (0 IRE) at either 3.58 MHz for NTSC or 4.43 MHz for PAL. A second measurement is then made at 0.714 V DC offset (100 IRE). Differential gain is a measure of the change in amplitude of the sine wave, and is measured in percent. Differential phase is a measure of the change in phase, and is measured in degrees.

For signal transmission and distribution, a back-terminated cable (75Ω in series at the drive end, and 75Ω to ground at the receiving end) is preferred since the impedance match at both ends will absorb any reflections. However, when double termination is used, the received signal is halved; therefore a gain of 2 configuration is typically used to compensate for the attenuation.

The EL2245C and EL2445C have been designed as an economical solution for applications requiring low video distortion. They have been thoroughly characterized for video performance in the topology described above, and the results have been included as typical dG and dP
specifications and as typical performance curves. In a gain of +2 , driving 150Ω, with standard video test levels at the input, the EL2245C and EL2445C exhibit dG and dP of only 0.02% and 0.07° at NTSC and PAL. Because dG and dP can vary with different DC offsets, the video performance of the EL2245C and EL2445C has been characterized over the entire DC offset range from 0.714 V to +0.714 V . For more information, refer to the curves of dG and dP vs DC Input Offset.

Output Drive Capability

The EL2245C and EL2445C have been designed to drive low impedance loads. They can easily drive $6 \mathrm{~V}_{\text {PP }}$ into a 150Ω load. This high output drive capability makes the EL2245C and EL2445C an ideal choice for RF, IF and video applications. Furthermore, the current drive of the EL2245C and EL2445C remains a minimum of 35 mA at low temperatures.

Printed-Circuit Layout

The EL2245C and EL2445C are well behaved, and easy to apply in most applications. However, a few simple techniques will help assure rapid, high quality results. As with any high-frequency device, good PCB layout is necessary for optimum performance. Ground-plane construction is highly recommended, as is good power supply bypassing. A $0.1 \mu \mathrm{~F}$ ceramic capacitor is recommended for bypassing both supplies. Lead lengths should be as short as possible, and bypass capacitors should be as close to the device pins as possible. For good AC performance, parasitic capacitances should be kept to a minimum at both inputs and at the output. Resistor values should be kept under $5 \mathrm{k} \Omega$ because of the RC time constants associated with the parasitic capacitance. Metal-film and carbon resistors are both acceptable, use of wire-wound resistors is not recommended because of their parasitic inductance. Similarly, capacitors should be low-inductance for best performance.

The EL2245C and EL2445C Macromodel

This macromodel has been developed to assist the user in simulating the EL2245C and EL2445C with surrounding circuitry. It has been developed for the PSPICE simulator (copywritten by the Microsim Corporation), and may need to be rearranged for other

EL2245C, EL2445C

Dual/Quad Low-Power 100MHz Gain-of-2 Stable Op Amp
simulators. It approximates DC, AC, and transient response for resistive loads, but does not accurately model capacitive loading. This model is slightly more complicated than the models used for low-frequency opamps, but it is much more accurate for AC analysis.

The model does not simulate these characteristics accurately:

- Noise
- Settling time
- Non-linearities
- Temperature effects
- Manufacturing variations
- CMRR
- PSRR

EL2245C and EL2445C Macromodel

```
* Connections: +input
```

* I -input
* I I +Vsupply
$\begin{array}{lllll}* & \text { | } \\ * & \text { I } & \text {-Vsupply }\end{array}$
$\begin{array}{llllll}* & \mid & \mid & \text { output } \\ * & \mid & \mid & 1\end{array}$
.subckt M2245 $3 \quad 2 \quad 7$
*
* Input stage
*

ie 7371 mA
r6 3637400
r7 3837400
rc1 430850
rc2 439850
q1 30336 qp
q2 39238 qpa
ediff 33039301.0
rdiff 3301 Meg
*

* Compensation Section
*

ga 0343301 m
rh 3402 Meg
ch 3401.3 pF
rc 34401 K
cc 4001 pF
*

* Poles
ep 4104001
rpa 4142200
cpa 4201 pF
rpb 4243200
cpb 4301 pF
* Output Stage
*

ios1 7501.0 mA
ios2 5141.0 mA
q3 44350 qp
q474351 qn
q5 75052 qn
q645153 qp
$\operatorname{ros} 152625$
$\operatorname{ros} 265325$
*

* Power Supply Current
*

ips 742.7 mA

* Models
*

.model qn npn(is $=800 \mathrm{E}-18 \mathrm{bf}=200 \mathrm{tf}=0.2 \mathrm{nS}$)
.model qpa pnp(is=864E-18 bf=100 tf=0.2nS)
model qp pnp(is=800E-18 bf=125 tf=0.2nS)
.ends

EL2245C, EL2445C
EL2245C, EL2445C
Dual/Quad Low-Power 100MHz Gain-of-2 Stable Op Amp

EL2245C and EL2445C Macromodel

EL2245C and EL2445C Model
 herein and makes no representations that they are free from patent infringement.

Elantec Semiconductor, Inc.
675 Trade Zone Blvd.
Milpitas, CA 95035
Telephone: (408) 945-1323
(888) ELANTEC
$\begin{array}{ll}\text { Fax: } & \text { (408) 945-9305 } \\ \text { European Office: }+44-118-977-6020\end{array}$
Japan Technical Center: +81-45-682-5820

WARNING - Life Support Policy

Elantec, Inc. products are not authorized for and should not be used within Life Support Systems without the specific written consent of Elantec, Inc. Life Support systems are equipment intended to support or sustain life and whose failure to perform when properly used in accordance with instructions provided can be reasonably expected to result in significant personal injury or death. Users contemplating application of Elantec, Inc. Products in Life Support Systems are requested to contact Elantec, Inc. factory headquarters to establish suitable terms \& conditions for these applications. Elantec, Inc.'s warranty is limited to replacement of defective components and does not cover injury to persons or property or other consequential damages.

