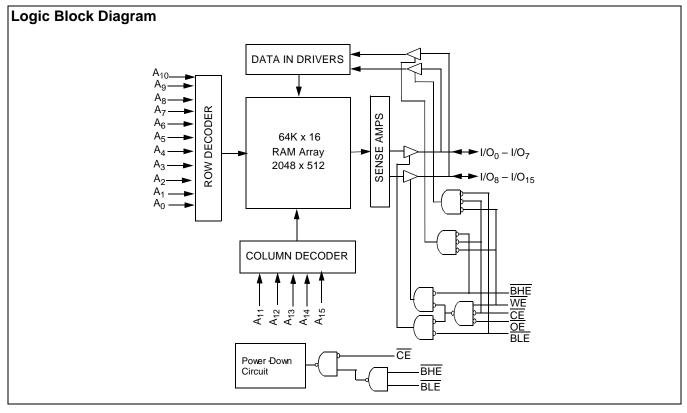


CY62127DV30 MoBL®

Features

- Very high speed: 55 and 70 ns
- Wide voltage range: 2.2V to 3.6V
- Pin compatible with CY62127BV
- Ultra-low active power
 - Typical active current: 0.85 mA @ f = 1 MHz
- Typical active current: 5 mA @ f = f_{MAX}
- Ultra-low standby power
- Easy memory expansion with \overline{CE} and \overline{OE} features
- Automatic power-down when deselected
- Packages offered in a 48-ball FBGA and a 44-lead TSOP Type II

Functional Description^[1]

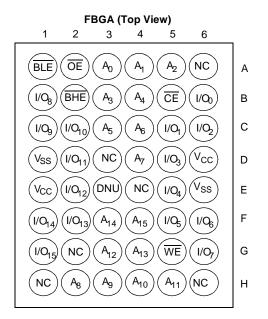

The CY62127DV30 is a high-performance CMOS static RAM organized as 64K words by 16 bits. This device features advanced circuit design to provide ultra-low active current. This is ideal for providing More Battery Life[™] (MoBL[®]) in portable applications such as cellular telephones. The device also has

1 Mb (64K x 16) Static RAM

an automatic power-down feature that significantly reduces power consumption by 90% when addresses are not toggling. The device can be put into standby mode reducing power consumption by more than 99% when deselected Chip Enable (CE) HIGH or both BHE and BLE are HIGH. The input/output pins (I/O₀ through I/O₁₅) are placed in a high-impedance state when: deselected Chip Enable (CE) HIGH, outputs are disabled (OE HIGH), both Byte High Enable and Byte Low Enable are disabled (BHE, BLE HIGH) or during a write operation (Chip Enable (CE) LOW and Write Enable (WE) LOW).

<u>Writing</u> to the device is accomplished by taking Chip Enable (\overline{CE}) LOW and Write Enable (WE) input LOW. If Byte Low Enable (BLE) is LOW, then data from I/O pins (I/O₀ through I/Oh A₁₅). If Byte High Enable (BHE) is LOW, then data from I/O pins (I/O₈ through I/O₁₅) is written into the location specified on the address pins (A₀ through A₁₅).

Reading from the device is accomplished by taking Chip Enable ($\overline{\text{CE}}$) LOW and Output Enable ($\overline{\text{OE}}$) LOW while forcing the Write Enable ($\overline{\text{WE}}$) HIGH. If Byte Low Enable ($\overline{\text{BLE}}$) is LOW, then O₇. If Byte High Enable ($\overline{\text{BHE}}$) is LOW, then data from memory will appear on I/O₈ to I/O₁₅.



Note:

1. For best-practice recommendations, please refer to the Cypress application note "System Design Guidelines" on http://www.cypress.com.

Pin Configuration^[2,3]

TSC	OP II (Fo	rwa	ard)
	Top Vi	ew	_
A ₄ L L L L A ₃ L L L L A ₂ L L L L A ₂ L L L L I/O 1 L L L I/O 2 L I/O 3	Top Via 1 2 3 4 5 6 7 8 9 10	44 43 42 41 40 39 38 37 36 35	A ₅ A ₆ A ₇ OE BHE BLE I/O15 I/O14 I/O13 I/O13
VCS V/05 I/05 I/06 I/07 VE I/06 VE I/07 VE I/07 VE I/07 VE I/07 VE I/07 VE I/07 VE I/07 VE I/07 VE I/07 VE VE VE VE VS VS VS VS VS VS VS VS VS VS VS VS VS	11 12 13 14 15 16 17 18 19 20 21 22	34 32 31 30 29 28 27 26 25 24 23	NC 12 VSS VCC 1/O11 1/O9 1/O8 NC A8 A9 A10 A11 NC

Notes:

- NC pins are not connected to the die. E3 (DNU) can be left as NC or Vss to ensure proper operation. (Expansion Pins on FBGA Package: E4 2M, D3 4M, H1 8M, G2 16M, H6 32M). 2. 3.

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature	–65°C to +150°C
Ambient Temperature with Power Applied	–55°C to +125°C
Supply Voltage to Ground Potential	–0.3V to 3.9V
DC Voltage Applied to Outputs in High-Z State ^[4]	0.3V to V _{CC} + 0.3V

DC Input Voltage^[4].....-0.3V to V_{CC} + 0.3V Output Current into Outputs (LOW)...... 20 mA Static Discharge Voltage...... > 2001V (per MIL-STD-883, Method 3015) Latch-up Current > 200 mA

Operating Range

Range	Ambient Temperature (T _A)	V_{CC} ^[5]
Industrial	–40°C to +85°C	2.2V to 3.6V

Product Portfolio

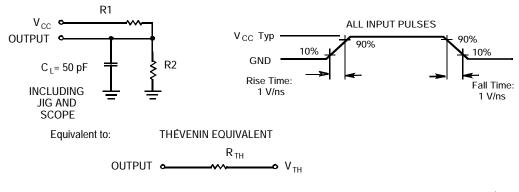
					Power Dissipation					
						Operating, Icc (mA)				
	٧c	_C Range ((V)	Speed	f = 1	f = 1 MHz f = f _{MAX} S		Standby, I _{SB2} (μA)		
Product	Min.	Тур.	Max.	(ns)	Typ. ^[6]	Max.	Typ. ^[6]	Max.	Typ. ^[6]	Max.
CY62127DV30L	2.2	3.0	3.6	55/70	0.85	1.5	5	10	1.5	5
CY62127DV30LL				55/70	0.85	1.5	5	10	1.5	4

DC Electrical Characteristics (Over the Operating Range)

					CY6	2127DV30-	55/70	
Parameter	Description	Test Co	Test Conditions			Typ. ^[6]	Max.	Unit
V _{OH}	Output HIGH Voltage	2.2 <u>≤</u> V _{CC} <u>≤</u> 2.7	I _{OH} = -0.1 m	A	2.0			V
		2.7 <u><</u> V _{CC} <u><</u> 3.6	I _{OH} = -1.0 m	A	2.4			
V _{OL}	Output LOW Voltage	2.2 <u>≤</u> V _{CC} <u>≤</u> 2.7	I _{OL} = 0.1 mA				0.4	V
		2.7 <u><</u> V _{CC} <u><</u> 3.6	I _{OL} = 2.1 mA				0.4	
V _{IH}	Input HIGH Voltage	2.2 <u><</u> V _{CC} <u><</u> 2.7			1.8		V _{CC} + 0.3	V
		2.7 <u><</u> V _{CC} <u><</u> 3.6			2.2		V _{CC} + 0.3	
V _{IL}	Input LOW Voltage	$2.2 \le V_{CC} \le 2.7$ $2.7 \le V_{CC} \le 3.6$			-0.3		0.6	V
					-0.3		0.8	
I _{IX}	Input Leakage Current	$GND \leq V_I \leq V_{CC}$			-1		+1	μΑ
I _{OZ}	Output Leakage Current	$GND \le V_O \le V_{CC}, C$	utput Disabled	k	-1		+1	μΑ
I _{CC}	V _{CC} Operating Supply	$f = f_{MAX} = 1/t_{RC}$	Vcc = 3.6V,			5	10	mA
	Current	f = 1 MHz	I _{OUT} = 0 mA, CMOS level	,		0.85	1.5	
I _{SB1}	Automatic CE Power-down	$\overline{CE} \ge V_{CC} - 0.2V,$		L		1.5	5	μΑ
	Current – CMOS Inputs	$ \begin{array}{l} V_{\text{IN}} \geq V_{\text{CC}} - 0.2 \text{V}, \ V_{\text{IN}} \leq 0.2 \text{V}, \\ f = f_{\text{MAX}} \left(\underline{\text{Address and Data Only}}, \\ f = 0 \left(\overline{\text{OE}}, \ \overline{\text{WE}}, \ \overline{\text{BHE}} \ \text{and BLE} \right) \end{array} \right) $			1.5	4		
I _{SB2}	Automatic CE Power-down	$\overline{CE} \ge V_{CC} - 0.2V,$		L		1.5	5	μΑ
Nataa	Current – CMOS Inputs	$V_{IN} \ge V_{CC} - 0.2V$ or f = 0, $V_{CC} = 3.6V$	V _{IN} <u><</u> 0.2V,	LL		1.5	4	

Notes:

V_{IL(min.)} = -2.0V for pulse durations less than 20 ns., V_{IH(max.)} = Vcc+0.75V for pulse durations less than 20 ns.
 Full device Operation Requires linear Ramp of Vcc from 0V to Vcc(min) & Vcc must be stable at Vcc(min) for 500μ s .
 Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = V_{CC(typ)}, T_A = 25C.

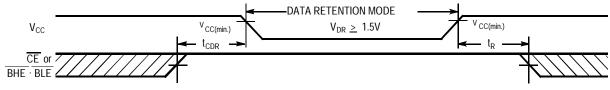

Capacitance^[7]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_{A} = 25^{\circ}C, f = 1 MHz$	8	pF
C _{OUT}	Output Capacitance	$V_{CC} = V_{CC(typ)}$	8	pF

Thermal Resistance

Parameter	Description	Test Conditions	FBGA	TSOP II	Unit
θ_{JA}		Still Air, soldered on a 3 x 4.5 inch,	55	76	°C/W
θ_{JC}	Thermal Resistance (Junction to Case) ^[7]	two-layer printed circuit board	12	11	°C/W

AC Test Loads and Waveforms



Parameters	2.5V (2.2 – 2.7V)	3.0V (2.7 – 3.6V)	Unit
R1	16600	1103	Ω
R2	15400	1554	Ω
R _{TH}	8000	645	Ω
V _{TH}	1.2	1.75	V

Data Retention Characteristics

Parameter	Description	Conditions	Min.	Typ. ^[6]	Max.	Unit	
V _{DR}	V _{CC} for Data Retention			1.5			V
I _{CCDR}	Data Retention Current	$V_{CC}=1.5V, \overline{CE} \ge V_{CC} - 0.2V, V_{IN} \ge V_{CC} - 0.2V \text{ or } V_{IN} \le 0.2V$	L			4	μA
		$V_{\text{IN}} \ge V_{\text{CC}} - 0.2V \text{ or } V_{\text{IN}} \le 0.2V$	LL			3	
t _{CDR} ^[7]	Chip Deselect to Data Reten- tion Time		-	0			ns
t _R ^[8]	Operation Recovery Time			200			μs

Data Retention Waveform^[9]

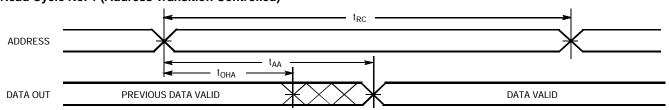
Notes:

Tested initially and after any design or proces changes that may affect these parameters. Full device operation requires linear V_{CC} ramp from V_{DR} to $V_{CC(min.)} > 200$ us. 7. 8.

9. BHE BLE is the AND of both BHE and BLE. Chip can be deselected by either disabling the Chip Enable signals or by disabling both.

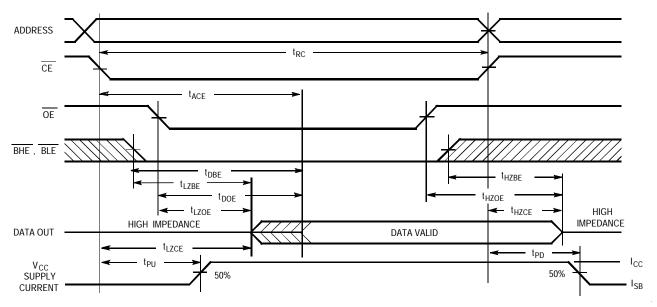
Switching Characteristics (Over the Operating Range)^[10]

		CY62127	7DV30-55	CY62127	7DV30-70	
Parameter	Description	Min.	Max.	Min.	Max.	Unit
Read Cycle			•	•	•	•
t _{RC}	Read Cycle Time	55		70		ns
t _{AA}	Address to Data Valid		55		70	ns
t _{OHA}	Data Hold from Address Change	10		10		ns
t _{ACE}	CE LOW to Data Valid		55		70	ns
t _{DOE}	OE LOW to Data Valid		25		35	ns
t _{LZOE}	OE LOW to Low Z ^[11]	5		5		ns
t _{HZOE}	OE HIGH to High Z ^[11,13]		20		25	ns
t _{LZCE}	CE LOW to Low Z ^[11]	10		10		ns
t _{HZCE}	CE HIGH to High Z ^[11,13]		20		25	ns
t _{PU}	CE LOW to Power-up	0		0		ns
t _{PD}	CE HIGH to Power-down		55		70	ns
t _{DBE}	BLE/BHE LOW to Data Valid		55		70	ns
t _{LZBE} ^[12]	BLE/BHE LOW to Low Z ^[11]	5		5		ns
t _{HZBE}	BLE/BHE HIGH to High-Z ^[11,13]		20		25	ns
Write Cycle ^[14]		·	Į	ļ		4
t _{WC}	Write Cycle Time	55		70		ns
t _{SCE}	CE LOW to Write End	40		60		ns
t _{AW}	Address Set-up to Write End	40		60		ns
t _{HA}	Address Hold from Write End	0		0		ns
t _{SA}	Address Set-up to Write Start	0		0		ns
t _{PWE}	WE Pulse Width	40		50		ns
t _{BW}	BLE/BHE LOW to Write End	40		60		ns
t _{SD}	Data Set-up to Write End	25		30		ns
t _{HD}	Data Hold from Write End	0		0		ns
t _{HZWE}	WE LOW to High Z ^[11,13]		20		25	ns
t _{LZWE}	WE HIGH to Low Z ^[11]	10		5		ns


Notes:

10. Test conditions assume signal transition time of 1V/ns or less, timing reference levels of V_{CC(typ.)}/2, input pulse levels of 0 to V_{CC(typ.)}, and output loading of the specified I_{OL}.

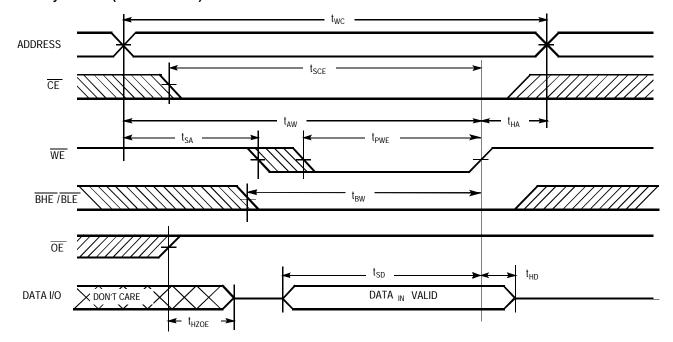
11. At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE} , t_{HZBE} is less than t_{LZBE} , t_{HZOE} ,



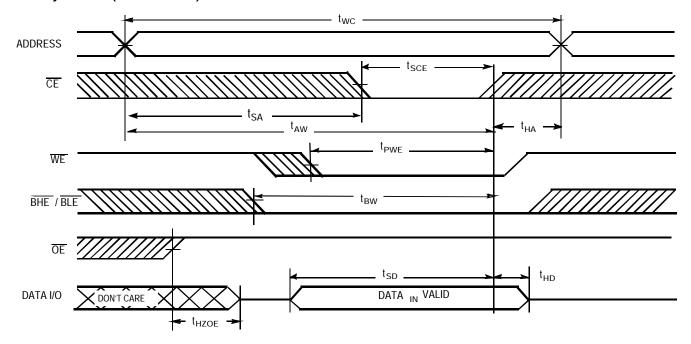
Switching Waveforms

Read Cycle No. 1 (Address Transition Controlled)^[15,16]

Read Cycle No. 2 (OE Controlled)^[15,16,17]


Notes:

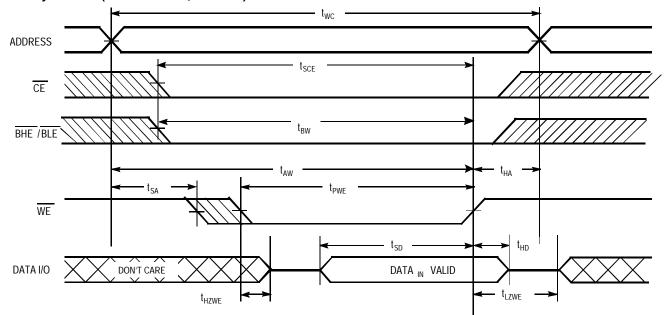
- 15. <u>Device</u> is continuously selected. \overline{OE} , $\overline{CE} = V_{IL}$, \overline{BHE} , $\overline{BLE} = V_{IL}$. 16. WE is HIGH for Read cycle. 17. Address valid prior to or coincident with \overline{CE} , \overline{BHE} , \overline{BLE} transition LOW.



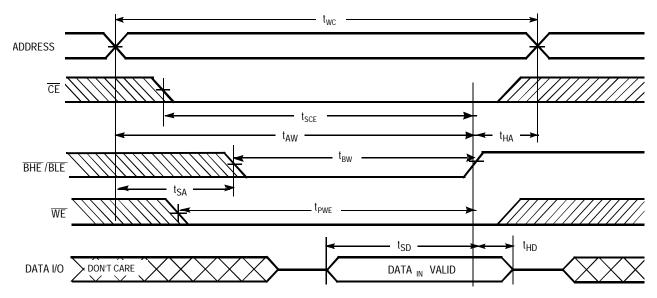
Switching Waveforms (continued)

Write Cycle No. 1 (WE Controlled) [13,14, 18, 19, 20]

Write Cycle No. 2 (CE Controlled) ^[13,14, 18, 19, 20]


Notes:

- 18. Data I/O is high-impedance if OE = V_{IH}.
 19. If CE goes HIGH simultaneously with WE HIGH, the output remains in a high-impedance state.
 20. During the DON'T CARE period in the DATA I/O waveform, the I/Os are in output state and input signals should not be applied.



Switching Waveforms (continued)

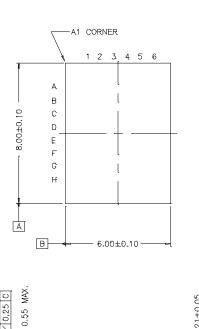
Write Cycle No. 3 ($\overline{\text{WE}}$ Controlled, $\overline{\text{OE}}$ LOW)^[19, 20]

Write Cycle No. 4 (BHE-/BLE-controlled, OE LOW)^[19, 20]

Truth Table

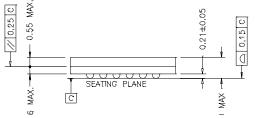
CE	WE	OE	BHE	BLE	I/O ₀ -I/O ₇	I/O ₈ –I/O ₁₅	Mode	Power
Н	Х	Х	Х	Х	High Z	High Z	Deselect/Power-down	Standby (I _{SB})
Х	Х	Х	Н	Н	High Z	High Z	Deselect/Power-down	Standby (I _{SB})
L	Н	L	L	L	Data Out	Data Out	Read All bits	Active (I _{CC})
L	Н	L	Н	L	Data Out	High Z	Read Lower Byte Only	Active (I _{CC})
L	Н	L	L	Н	High Z	Data Out	Read Upper Byte Only	Active (I _{CC})
L	Н	Н	L	L	High Z	High Z	Output Disabled	Active (I _{CC})
L	Н	Н	Н	L	High Z	High Z	Output Disabled	Active (I _{CC})
L	Н	Н	L	Н	High Z	High Z	Output Disabled	Active (I _{CC})
L	L	Х	L	L	Data In	Data In	Write	Active (I _{CC})
L	L	Х	Н	L	Data In	High Z	Write Lower Byte Only	Active (I _{CC})
L	L	Х	L	Н	High Z	Data In	Write Upper Byte Only	Active (I _{CC})

Ordering Information

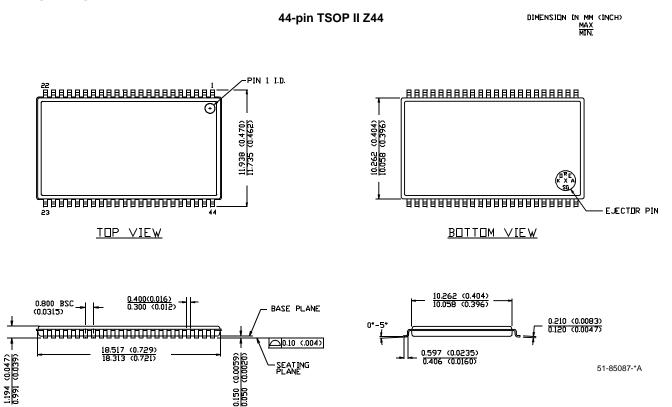

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
55	CY62127DV30L-55BVI	BV48A	48-ball Fine Pitch BGA (6 mm x 8 mm x 1 mm)	Industrial
	CY62127DV30LL-55BVI	BV48A	48-ball Fine Pitch BGA (6 mm x 8 mm x 1 mm)	-
	CY62127DV30L-55ZI	Z44	44-lead TSOP Type II	
	CY62127DV30LL-55ZI	Z44	44-lead TSOP Type II	
70	CY62127DV30L-70BVI	BV48A	48-ball Fine Pitch BGA (6 mm x 8 mm x 1 mm)	Industrial
	CY62127DV30LL-70BVI	BV48A	48-ball Fine Pitch BGA (6 mm x 8 mm x 1 mm)	
	CY62127DV30L-70ZI	Z44	44-lead TSOP Type II	
	CY62127DV30LL-70ZI	Z44	44-lead TSOP Type II	



Package Diagrams


TOP VIEW

48-Lead VFBGA (6 x 8 x 1 mm) BV48A



51-85150-*B

Package Diagrams

MoBL is a registered trademark, and MoBL2 and More Battery Life are trademarks of Cypress Semiconductor. All product and company names mentioned in this document are the trademarks of their respective holders.

© Cypress Semiconductor Corporation, 2003. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.

Document History Page

Document Title: CY62127DV30 MoBL ^{®®} 1 Mb (64K x 16) Static RAM Document Number: 38-05229				
REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change
**	117690	08/27/02	JUI	New Data Sheet
*A	127311	06/13/03	MPR	Changed From Advanced Status to Preliminary Changed Isb2 to 5 uA (L), 4 uA (LL) Changed Iccdr to 4 uA (L), 3 uA (LL) Changed Cin from 6 pF to 8 pF
*В	128341	07/22/03	JUI	Changed from Preliminary to Final Add 70-ns speed, updated ordering information
*C	129000	08/29/03	CDY	Changed Icc 1 MHz typ from 0.5 mA to 0.85 mA