

AM2952, AM2952A, AM2953, AM2953A

Eight-Bit Bidirectional I/O Ports with Handshake

The AM2952 and AM2953, members of Advanced Micro Devices' AM2900 Family, are designed for use as parallel data I/O ports. Two eight-bit, back-to-back registers store data moving in both directions between two bidirectional, 3-state busses. On chip flag flip-flops, set automatically when a register is loaded, provide the handshaking signals required for demand-response data transfer.

Considerable flexibility is designed into the AM2952/AM2953. Separate Clock, Clock Enable, and Three-State Output Enable signals are provided for each register, and edge-sensitive clear inputs are provided for each flag flip-flop. A number of these circuits can be used for wider I/O ports. Both inverting and non-inverting versions are available.

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All recreations are done with the approval of the OCM.

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-38535
 - Class Q Military
 - Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)
 - Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OEM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

Am2952-52A/Am2953-53A

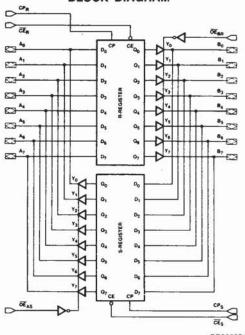
Eight-Bit Bidirectional I/O Ports with Handshake

DISTINCTIVE CHARACTERISTICS

- Eight-Bit, Bidirectional I/O Port –
 Two eight-bit, back-to-back registers store data moving in both directions between two bidirectional busses.
- Separate Clock, Clock Enable and Three-State Output Enable for Each Register.
- 24mA Output Current Sink Capability.
- Inverting and Non-Inverting Versions –
 The Am2952 provides non-inverting data outputs.
 The Am2953 provides inverting data outputs.
- 24-pin Slim Package
- Fast -

The Am2952A and Am2953A will be 25-30% faster than the Am2952 and Am2953.

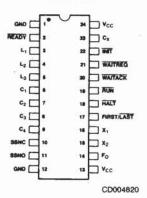
GENERAL DESCRIPTION


The Am2952 and Am2953, members of Advanced Micro Devices' Am2900 Family, are designed for use as parallel data I/O ports. Two eight-bit, back-to-back registers store data moving in both directions between two bidirectional, 3-state busses. On chip flag flip-flops, set automatically when a register is loaded, provide the handshaking signals required for demand-response data transfer.

Considerable flexibility is designed into the Am2952/ Am2953. Separate Clock, Clock Enable and Three-State Output Enable signals are provided for each register, and edge-sensitive clear inputs are provided for each flag flipflop. A number of these circuits can be used for wider I/O ports. Both inverting and non-inverting versions are available.

24mA output current sink capability, sufficient for most three-state busses, is provided by the Am2952/Am2953.

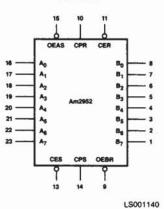
The Am2952A and Am2953A feature AMD's ion-implanted micro-oxide (IMOXTM) processing. They are plug-in replacements for the Am2952 and Am2953 respectively but will be approximately 30% faster.

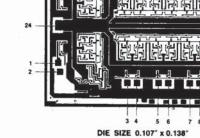

BLOCK DIAGRAM

Note: The Am2953 provides inverting data output

CONNECTION DIAGRAM Top View

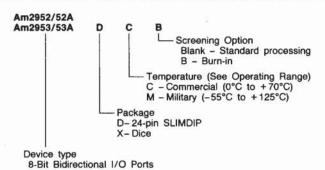
Am2952 D-24-SLIM

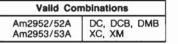



Note: Pin 1 is marked for orientation B_i is inverted on Am2953

23

LOGIC SYMBOL Am2952


METALLIZATION AND PAD LAYOUT



ORDERING INFORMATION

AMD products are available in several packages and operating ranges. The order number is formed by a combination of the following: Device number, speed option (if applicable), package type, operating range and screening option (if desired).

Valid Combinations

Consult the AMD sales office in your area to determine if a device is currently available in the combination you wish.

PIN DESCRIPTION						
Pin No.	Name	1/0	Description			
	A0-7	1/0	Eight bidirectional lines carrying the R Register inputs or S Register outputs.			
	B0-7	1/0	Eight bidirectional lines carrying the S Register inputs or R Register outputs.			
10	CPR	1	The clock for the R Register. When CER is LOW, data is entered into the R Register on the LOW-to-HIGH transition of the CPR signal.			
11	CER	1	The Clock Enable for the R Register. When CER is LOW, data is entered into the R Register on the LOW-to-HIGH transition of the CPR signal. When CER is HIGH, the R Register holds its contents, regardless of CPR signal transitions.			
9	ŌĒBR	i	The Output Enable for the R Register. When OEBR is LOW, the R Register three-state outputs are enabled onto the B0-7 lines. When OEBR is HIGH, the R Register outputs are in the high-impedance state.			
14	CPS	1	The clock for the S Register. When CES is LOW, data is entered into the S Register on the LOW-to-HIGH transition of the CPS signal.			
13	CES	1	The clock enable for the S Register. When CES is LOW, data is entered into the S Register on the LOW-to-HIGH transition of the CPS signal. When CES is HIGH, the S Register holds its contents, regardless of CPS signal transitions.			
15	ŌĒAS	1	The output enable for the S Register. When OEAS is LOW, the S Register three-state outputs are enabled onto the A0-7 lines. When OEAS is HIGH, the S Register outputs are in the high-impedance state.			

REGISTER FUNCTION TABLE (Applies to R or S Register)

	Inputs			
D	СР	CE	Internal Q	Function
X	Х	Н	NC	Hold Data
L	† †	L	L H	Load Data

OUTPUT CONTROL

	Internal	Y-Ou	tputs	Fatlan	
ŌĒ	Q	Am2950	Am2951	Function	
Н	×	Z	Z	Disable Outputs	
L	L H	L H	H L	Enable Outputs	

ABSOLUTE MAXIMUM RATINGS

Storage Temperature65°C to +150°C
Ambient Temperature Under Bias55°C to +125°C
Supply Voltage to Ground Potential
Continuous0.5V to +7.0V
DC Voltage Applied to Outputs For
High Output State0.5V to +V _{CC} max
DC Input Voltage0.5V to +5.5V
DC Output Current, Into Outputs
DC Input Current30mA to +5.0mA

Stresses above those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

OPERATING RANGES

0°C to +70°C
+ 4.75V to + 5.25V
55°C to +125°C
+4.5V to +5.5V
over which the function-

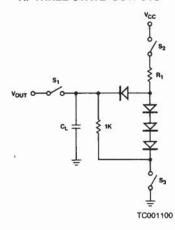
DC CHARACTERISTICS over operating range unless otherwise specified

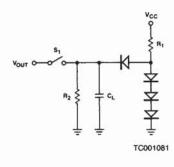
Parameters	Description	Test	Conditions	Note 1)	Min	Typ (Note 2)	Max	Units
Maria .	0 1 11011 11-1	VCC = MIN		MIL, IOH = -2mA	2.4	3.4		
Voh	Output HIGH Voltage	VIN = VIH OF VIL	A _{0.7} , B _{0.7}	COM'L, IOL = -6.5mA	2.4	3.4		Volts
	0 4 1000 1/-11-	V _{CC} = MIN		MIL, IOL = 16mA			0.5	
VOL	Output LOW Voltage	VIN = VIH or VIL	A ₀₋₇ B ₀₋₇	COM'L, IOL = 24mA	- 110		0.5	Volts
V _{IH}	Input HIGH Level	Guaranteed input voltage for all in	logical HIGH outs		2.0			Volts
V _{IL}	Input LOW Level	Guaranteed input voltage for all in					0.8	Volts
VI -	Input Clamp Voltage	VCC = MIN, IIN	- 18mA				- 1.5	Volts
¥9				A ₀₋₇ , B ₀₋₇			- 250	μА
lıL.	Input LOW Current	put LOW Current V _{CC} = MAX, V _{IN} = 0.5V Ott	Others			- 360	μΑ	
1000				A ₀₋₇ , B ₀₋₇			70	200
ин	Input HIGH Current	V _{CC} = MAX, V _{IN} = 2.7V Oth		Others			20	μΑ
lį	Input HIGH Current	V _{CC} = MAX, V _{IN}	= 5.5V				1.0	mA
•	Output Off-state			V ₀ = 2.4V			70	1743
lo	Leakage Current	V _{CC} = MAX	A ₀₋₇ , B ₀₋₇	V ₀ = 0.4V			- 250	μΑ
Isc	Output Short Circuit Current (Note 3)	V _{CC} = MAX			- 30		- 85	mA
e elektrice	·			T _A = 0 to + 70°C			275	
E.	Power Supply Current	As one	COM'L	T _A = +70°C			228	
lcc	(Notes 4, 5)	V _{CC} = MAX		T _C = -55 to + 125°C			309	mA
		MIL	T _C = + 125°C			202		

Notes: 1. For conditions shown as MIN or MAX, use the appropriate value specified under Operating Ranges for the applicable device type.

2. Typical limits are at V_{CC} = 5.0V, 25°C ambient and maximum loading.

3. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second.


4. I_{CC} is measured with all inputs at 4.5V and all outputs open.


5. Worst case I_{CC} is at minimum temperature.

SWITCHING TEST CIRCUIT

A. THREE-STATE OUTPUTS

B. NORMAL OUTPUTS

$$R_2 = \frac{2.4V}{loh}$$

$$R_1 = \frac{5.0 - V_{BE} - V_{OL}}{\frac{I_{OL} + V_{OL}}{16}}$$

$$R_1 = \frac{5.0 - V_{BE} - V_{OL}}{\frac{I_{OL} + V_{OL}}{R_2}}$$

Notes: 1. CL = 50pF includes scope probe, wiring and stray capacitances without device in test fixture.

- 2. S1, S2, S3 are closed during function tests and all AC tests except output enable tests.
- S₁ and S₃ are closed while S₂ is open for tp_{ZH} test.
 S₁ and S₂ are closed while S₃ is open for tp_{ZL} test.
- 4. CL = 5.0pF for output disable tests.

TEST OUTPUT LOADS FOR Am2952/2953

Pin# (DIP)	Pin Label	Test Circuit	R ₁	R ₂
16-23	A ₀₋₇	Α	220	1K
1-8	B ₀₋₇	A	220	1K

For additional information on testing, see section "Guidelines on Testing Am2900 Family Devices."

Notes on Testing

Incoming test procedures on this device should be carefully planned, taking into account the high complexity and power levels of the part. The following notes may be useful:

- Insure the part is adequately decoupled at the test head.
 Large changes in V_{CC} current when the device switches may cause erroneous function failures due to V_{CC} changes.
- Do not leave inputs floating during any tests, as they may start to oscillate at high frequency.
- Do not attempt to perform threshold tests at high speed.
 Following an input transition, ground current may change by as much as 400mA in 5-8ns. Inductance in the ground

cable may allow the ground pin at the device to rise by 100s of millivolts momentarily.

- 4. Use extreme care in defining input levels for AC tests. Many inputs may be changed at once, so there will be significant noise at the device pins and they may not actually reach V_{IL} or V_{IH} until the noise has settled. AMD recommends using $V_{IL}~\leqslant 0V$ and $V_{IH}~\geqslant 3.0V$ for AC tests.
- To simplify failure analysis, programs should be designed to perform DC, Function, and AC tests as three distinct groups of tests.
- To assist in testing, AMD offers complete documentation on our test procedures and, in most cases, can provide Fairchild Sentry programs, under license.

Am2952A/Am2953A SWITCHING CHARACTERISTICS

The tables below define the Am2952/Am2953A switching characteristics. Tables A are set-up and hold times relative to a clock LOW-to-HIGH transition. Tables B are propagational delays. Tables C are pulse-width requirements. Tables D are enable/disable times. All measurements are made at 1.5V with input levels at 0V or 3V. All values are in ns with R_L on A_i and B_i = 220 Ω and R_L on FS and FR = 300 Ω . C_L = 50pF except output disable times which are specified at C_L = 5pF.

GUARANTEED CHARACTERISTICS OVER COMMERCIAL OPERATING RANGE

 $(T_A = 0 \text{ to } +70^{\circ}\text{C}, \ V_{CC} = 4.75 \text{ to } 5.25\text{V}, \ C_L = 50\text{pF})$

A. Set-up and Hold Times

Input	With Respect To	ts	th
A0-7 _	CPR		
B ₀₋₇ _	CPS		
CES _	CPS		
CER J	CPR		

B. Propagation Delays

Input	A ₀₋₇	B ₀₋₇
CPS _		
CPR _		

C. Pulse-Width Requirements

Input	Min LOW Pulse Width	Min HIGH Pulse Width
CPS		
CPR		

D. Enable/Disable Times

From	To	Disable	Enable
ŌĒAS	A ₀₋₇		
ŌĒBR	B ₀₋₇		

GUARANTEED CHARACTERISTICS OVER COMMERCIAL OPERATING RANGE

 $(T_C = -55 \text{ to } + 125^{\circ}\text{C}, \ V_{CC} = 4.5 \text{ to } 5.5\text{V}, \ C_L = 50\text{pF})$

A. Set-up and Hold Times.

Input	With Respect To	t _s	th
A ₀₋₇ _	CPR		
B ₀₋₇ _	CPS		
CES J	CPS		
CER _	CPR		

B. Propagation Delays

Input	A ₀₋₇	B ₀₋₇
CPS _		
CPR J		

C. Pulse-Width Requirements

Input	Min LOW Pulse Width	Min HIGH Pulse Width
CPS		
CPR		

D. Enable/Disable Times

From	То	Disable	Enable
ŌĒAS	A ₀₋₇		
ŌĒBR	B ₀₋₇		

Am2952/Am2953 SWITCHING CHARACTERISTICS

The tables below define the Am2952/Am2953 switching characteristics. Tables A are set-up and hold times relative to a clock LOW-to-HIGH transition. Tables B are propagational delays. Tables C are pulse-width requirements. Tables D are enable/disable times. All measurements are made at 1.5V with input levels at 0V or 3V. All values are in ns with R_L on A_i and B_i = 220 Ω and R_L on FS and FR = 300 Ω . C_L = 50pF except output disable times which are specified at C_L = 5pF.

GUARANTEED CHARACTERISTICS OVER COMMERCIAL OPERATING RANGE

 $(T_A = 0 \text{ to } +70^{\circ}\text{C}, \ V_{CC} = 4.75 \text{ to } 5.25\text{V}, \ C_L = 50\text{pF})$

A. Set-up and Hold Times

Input	With Respect To	ts	th
A ₀₋₇ _	CPR	7	5
B ₀₋₇	CPS	7	5
CES J	CPS	*19/15	4
CER J	CPR	*19/15	4

B. Propagation Delays

Input	A ₀₋₇	B ₀₋₇
CPS _	*30/26	-
CPR _	-	*30/26

C. Pulse-Width Requirements

Input	Min LOW Pulse Width	Min HIGH Pulse Width	
CPS	20	20	
CPR	20	20	

D. Enable/Disable Times

From	То	Disable	Enable
ŌĒAS	A ₀₋₇	22	27
ŌĒBR	B ₀₋₇	22	27

^{*}Where two numbers appear, the first is the Am2952 spec, the second is the Am2953 spec.

GUARANTEED CHARACTERISTICS OVER MILITARY OPERATING RANGE

 $(T_C = -55 \text{ to } + 125^{\circ}\text{C}, \ V_{CC} = 4.5 \text{ to } 5.5\text{V}, \ C_L = 50\text{pF})$

A. Set-up and Hold Times

Input	With Respect To	ts	th
A ₀₋₇ _	CPR	11	8
B ₀₋₇ _	CPS	11	8
CES _	CPS	*20/15	4
CER J	CPR	*20/15	4

B. Propagation Delays

Input	A ₀₋₇	B ₀₋₇
CPS _	*35/28	-
CPR _	-	*35/28

C. Pulse-Width Requirements

Input	Min LOW Pulse Width	Min HIGH Pulse Width
CPS	20	20
CPR	20	20

D. Enable/Disable Times

From	То	Disable	Enable
ÖEAS	A ₀₋₇	24	28
ÖEBR	B ₀₋₇	24	28

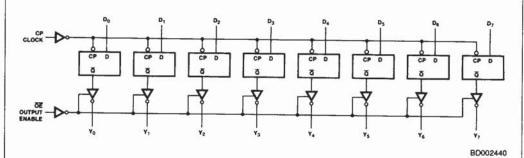
^{*}Where two numbers appear, the first is the Am2952 spec, the second is the Am2953 spec.

Am2954/Am2955

Octal Registers with Three-State Outputs

DISTINCTIVE CHARACTERISTICS

- · Eight-bit, high-speed parallel registers
- Am2954 has non-inverting inputs; Am2955 has inverting
- · Positive, edge-triggered, D-type flip-flops
- Buffered common clock and buffered common threestate control
- Vol = 0.5V (max) at lol = 32mA
 High-speed Clock to output 11 ns typical

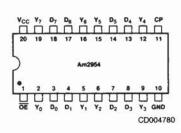

GENERAL DESCRIPTION

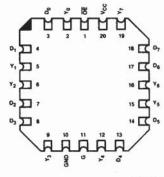
The Am2954 and Am2955 are 8-bit registers built using high-speed Schottky technology. The registers consist of eight D-type flip-flops with a buffered common clock and a buffered 3-state output control. When the output enable (OE) input is LOW, the eight outputs are enabled. When the OE input is HIGH, the outputs are in the 3-state condition.

Input data meeting the set-up and hold time requirements of the D inputs is transferred to the Y outputs on the LOWto-HIGH transition of the clock input.

The devices are packaged in a space-saving (0.3-inch row spacing) 20-pin package.

BLOCK DIAGRAM


Inputs Do through D7 are inverted on the Am2955.

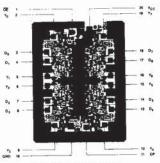

RELATED PRODUCTS

Part No.	Description	
Am29821-26	8, 9, 10-Bit Registers	
Am2918	Quad D-Register	
Am2920	Quad D-Type Flip-Flop	

CONNECTION DIAGRAM Top View

D-20, P-20, F-20* L-20-1

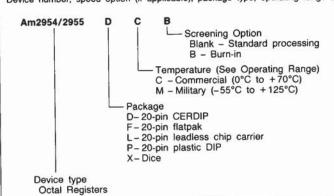
CD004580


Note: Pin 1 is marked for orientation *F-20 pin configuration identical to D-20, P-20.

LOGIC SYMBOL

LS000970

Note: Inputs D₀ through D₇ are inverted on the Am2955


METALLIZATION AND PAD LAYOUT Am2954

DIE SIZE 0.085" x 0.110"

ORDERING INFORMATION

AMD products are available in several packages and operating ranges. The order number is formed by a combination of the following: Device number, speed option (if applicable), package type, operating range and screening option (if desired).

Valid Combinations					
Am2954 Am2955	PC DC, DCB, DM, DMB FM, FMB LC, LCB, LM, LMB XC, XM				

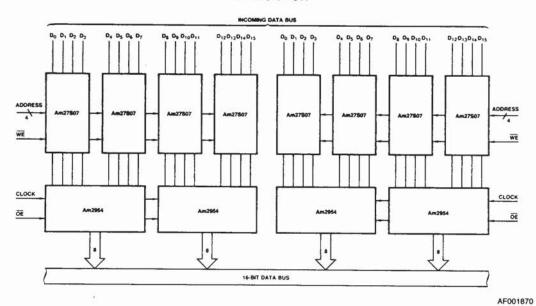
Valid Combinations

Consult the AMD sales office in your area to determine if a device is currently available in the combination you wish.

PIN DESCRIPTION

Pin No.	Name	1/0	Description
	D _i /D̄ _i	- 1	The D flip-flop data inputs (Am2954, non-inverting/Am2955, inverting).
11	CP	- 1	Clock Pulse for the register. Enters data on the LOW-to-HIGH transition.
171	Yi	0	The register three-state outputs.
1	ŌĒ	1	Output Control. An active-LOW three-state control used to enable the outputs. A HIGH level input forces the outputs to the high impedance (off) state.

FUNCTION TABLE


	Inputs				Internal	Outputs	
Function	ŌĒ	Clock	Am2954 Di	Am2955 D _I	Qį	Yı	
H _i -Z	Н	L	Х	Х	NC	Z	
	н	н	Х	Х	NC	z	
	L	1	L	Н	L	L	
LOAD	L	1	н	L	н	н	
REGISTER	H	1	L	н	L	Z	
	Н	1	н	L	Н	Z	

H = HIGH

L = LOW X = Don't Care

NC = No Change Z = High Impedance ↑ = LOW-to-HIGH transition

APPLICATION

Dual 16-word by 16-bit non-inverting high-speed data buffer.

ABSOLUTE MAXIMUM RATINGS

Storage Temperature65°C to +150°C
Ambient Temperature Under Bias55°C to +125°C
Supply Voltage to Ground Potential
(Pin 16 to Pin 8) Continuous0.5V to +7.0V
DC Voltage Applied to Outputs For
High Output State0.5V to +VCC max
DC Input Voltage0.5V to +5.5V
DC Output Current, Into Outputs
DC Input Current30 to +5.0mA

Stresses above those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

OPERATING RANGES

Commercial (C) Devices	
Temperature0°	C to +70°C
Supply Voltage + 4.75\	/ to +5.25V
Military (M) Devices	
Temperature55°C	to +125°C
Supply Voltage + 4.5	V to +5.5V
Operating ranges define those limits over which ality of the device is guaranteed.	

DC CHARACTERISTICS over operating range unless otherwise specified

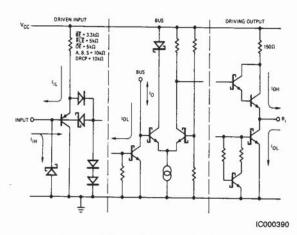
Parameters	Description	Test Conditions (Note 1)		Min	Typ (Note 2)	Max	Units
		V _{CC} = MIN	MIL., I _{OH} = -2.0mA	2.4	3.4		Volts
VOH	Output HIGH Voltage	VIN - VIH or VIL	COM'L, IOH = -6.5mA	2.4	3.1		Voits
	44 10 4000 1000 1000 1000 1000 1000 100	V _{CC} = MIN	IOL = 20mA			.45	Volts
VOL	Output LOW Voltage	VIN - VIH OF VIL	IOL = 32mA	4.10		.5	VOIIS
VIN	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs		2.0			Volts
VIL	Input LOW Level	Guaranteed input logical LOW voltage for all inputs				0.8	Volts
Vi	Input Clamp Voltage	V _{CC} = MIN, I _{IN} = -18mA				- 1.2	Volts
I _{IL}	Input LOW Current	V _{CC} = MAX, V _{IN} = 0.5V				- 250	μA
In	Input HIGH Current	VCC = MAX, VIN	VCC - MAX, VIN - 2.7V			50	μА
l ₁	Input HIGH Current	VCC = MAX, VIN =	5.5V			1.0	mA
-	Off-State (High-Impedance)		V _O = 0.5V			- 50	
loz	Output Current	V _{CC} = MAX	V _{CC} = MAX			50	μΑ
Isc	Output Short Circuit Current (Note 3)	Vcc = MAX		- 40		- 100	mA
lcc	Power Supply Current (Note 4)	V _{CC} = MAX			90	140	mA

Notes: 1. For conditions shown as MIN or MAX use the appropriate value specified under Operating Ranges for the applicable device type.

2. Typical limits are at V_{CC} = 5.0V, 25°C ambient and maximum loading.

3. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second.

4. Am2954 measured at CLK = LOW-to-HIGH, OE = HIGH and all data inputs are LOW.


Am2955 measured at CLK = LOW-to-HIGH, OE = HIGH, and all data inputs are OE = HIGH, and all data inputs are LOW.

SWITCHING CHARACTERISTICS ($T_A = +25$ °C, $V_{CC} = 5.0V$)

	Description			Am2954 / Am2955			
Parameters			Test Conditions	Min	Тур	Max	Units
t _{PLH}	Clock to Output, Yi		C _L = 15pF R _L = 280Ω		8	15	ns
t _{PHL}					11	17	ns
tzH	OE to Yi				8	15	ns
tzL					11	18	ns
tHZ	OE to Yi		C _L =5pF R _L = 280Ω		5	9	ns
tLZ					7	12	ns
	Clock Pulse Width	HIGH		6			ns
tpw		LOW		7.3			ns
ts	Data to Clock Maximum Clock Frequency (Note 1)		$C_L = 15pF$ $R_L = 280\Omega$	5			ns
tH				2			ns
f _{max}				75	100	tareseer e	MHz

Note: 1. Per industry convention, f_{max} is the worst case value of the maximum device operating frequency with no constraints on t_r, t_f, pulse width or duty cycle.

INPUT/OUTPUT CURRENT INTERFACE CONDITIONS

Note: Actual current flow direction shown.