

# 11C05

# 1 GHz Divide-By-Four Counter

The 11C05 is an ECL Divide-By-Four Counter with a maximum operating frequency above 1 GHz over the 0°C to + 75°C temperature range. The input may be DC or AC (capacitively) coupled to the signal source. The emitter follower outputs (Q and  $\overline{Q}$ ) are capable of driving 50 $\Omega$  lines. The outputs are voltage-compensated and provide standard ECL output levels.

## Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All re-creations are done with the approval of the Original Component Manufacturer (OCM).

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

# **Quality Overview**

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-35835
  - Class Q Military
  - Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)
  - Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OCM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

# FOR REFERENCE ONLY

#### Not Intended For New Designs



11C05

### 11C05 1 GHz Divide-By-Four Counter

#### **General Description**

The 11C05 is an ECL Divide-By-Four Counter with a maximum operating frequency above 1 GHz over the 0°C to  $+75^{\circ}$ C temperature range. The input may be DC or AC (capacitively) coupled to the signal source. The emitter follower

outputs (Q and  $\overline{Q})$  are capable of driving 50 $\Omega$  lines. The outputs are voltage-compensated and provide standard ECL output levels.



# Absolute Maximum Ratings Above which the useful life may be impaired

| Storage Temperature                   | -65°C to +150°C        |
|---------------------------------------|------------------------|
| Maximum Junction Temperature (TJ)     | + 150°C                |
| Supply Voltage Range                  | -7.0V to GND           |
| Input Voltage (DC)                    | V <sub>EE</sub> to GND |
| Output Current (DC Output HIGH)       | —50 mA                 |
| Operating Range                       | -5.5V to -4.75V        |
| Lead Temperature (Soldering, 10 sec.) | 300°C                  |

# Recommended Operating Conditions

|                          | Min         | Тур               | Max    |
|--------------------------|-------------|-------------------|--------|
| Supply Voltage (VEE)     |             | •••               |        |
| Commercial               | -5.25V      | <del>~</del> 5.0V | -4.75V |
| Military                 | -5.5V       | -5.0V             | -4.75V |
| Ambient Temperature (TA) |             |                   |        |
| Commercial               | 0° <b>C</b> |                   | +75°C  |
| Military                 | −55°Ĉ       | 7                 | +125°C |

#### **Commercial DC Electrical Characteristics**

| V <sub>EE</sub> = 5.0V, V <sub>CC</sub> = G | àND |
|---------------------------------------------|-----|
|---------------------------------------------|-----|

| Symbol          | Parameter               | Min    | Тур    | Max    | Units | TA             | Conditions                            |
|-----------------|-------------------------|--------|--------|--------|-------|----------------|---------------------------------------|
| V <sub>OH</sub> | Output Voltage HIGH     | 1060   | - 995  | -910   | m٧    | 0°C            | $V_{IN} = V_{IH} \text{ or } V_{IL},$ |
|                 |                         | - 1025 | -960   | 880    | mV    | + 25°C         | Loading 50 $\Omega$ to -2V            |
|                 |                         | - 980  | -910   | -830   | m۷    | + 75°C         |                                       |
| V <sub>OL</sub> | Output Voltage LOW      | -1810  | - 1705 | - 1620 | mV    | 0°C to +75°C   |                                       |
| VIH             | Input Voltage HIGH      | -2.45  |        |        | V     | 0°C            | Guaranteed Input HIGH                 |
|                 |                         | - 2.50 | 1      |        | V []  | + <b>25°</b> C |                                       |
|                 |                         | - 2.60 |        |        | V i   | + 75°C         |                                       |
| VIL             | Input Voltage LOW       |        |        | - 3.25 | v     | 0°C            | Guaranteed Input LOW                  |
|                 |                         |        |        | - 3.30 | v     | + 25°C         |                                       |
|                 |                         |        |        | -3.40  | V     | + 75°C         |                                       |
| IEE             | Power Supply Current    | -90    | - 65   |        | mA    | + 25°C         | Input Open                            |
| V <sub>EE</sub> | Supply Voltage Range    | - 5.25 | -5.0   | -4.75  | V     | 0°C to +75°C   |                                       |
| VREF            | Input Reference Voltage |        | -2.9   |        | v     | + 25°C         |                                       |

### Military DC Electrical Characteristics

| $V_{\rm EE} = -5.0V, V_{\rm CC} =$ | GND |
|------------------------------------|-----|
|------------------------------------|-----|

| Symbol          | Parameter               | Min                    | Тур                        | Max                     | Units          | TA                       | Conditions                                                             |
|-----------------|-------------------------|------------------------|----------------------------|-------------------------|----------------|--------------------------|------------------------------------------------------------------------|
| V <sub>OH</sub> | Output Voltage HIGH     | 1100<br>980<br>910     | 10 <b>30</b><br>910<br>820 | 950<br>820<br>720       | mV<br>mV<br>mV | -55℃<br>+25℃<br>+125℃    | $V_{IN} = V_{IH} \text{ or } V_{IL},$<br>Loading 100 $\Omega$ to $-2V$ |
| VOL             | Output Voltage LOW      | - 1810                 | -1705                      | - 1620                  | mV             | -55°C to +125°C          |                                                                        |
| VIH             | Input Voltage HIGH      | 2.35<br>-2.50<br>-2.70 | -                          |                         | V<br>V<br>V    | 55°C<br>+25°C<br>+125℃   | Guaranteed Input HIGH                                                  |
| V <sub>IL</sub> | Input Voltage LOW       |                        |                            | -3.15<br>-3.30<br>-3.50 | V<br>V<br>V    | −55°C<br>+25°C<br>+125°C | Guaranteed Input LOW                                                   |
| IEE             | Power Supply Current    | -90                    | -65                        |                         | mA             | + 25°C                   | Input Open                                                             |
| VEE             | Supply Voltage Range    | -5.5                   | -5.0                       | -4.75                   | v              | -55°C to +125°C          |                                                                        |
| VREF            | Input Reference Voltage |                        | -2.9                       |                         | v              | + 25°C                   |                                                                        |

11C05





#### **FIGURE 2. AC Input Requirements**

Note: Trigger amplitudes refer to the circuit end of the input cable as opposed to the signal generator end.

A DC coupled input should be designed to provide specified  $V_{IH}$  and  $V_{IL}$  levels. For AC coupling, an external resistor may or may not be necessary depending on the application. If an input signal is always present, only the capacitor is required because an internal  $400\Omega$  resistor connected between CP and  $V_{REF}$  centers the AC signal about mid-threshold. For applications in which an input signal is not

always present, AC coupling requires that an external 10  $K\Omega$  resistor be connected between CP and V<sub>EE</sub>. This offsets the input sufficiently to avoid extreme sensitivity to noise when no signal is present. Otherwise, noise triggering can lead to oscillation at about 450 MHz. For best operation, both outputs should be equally loaded.

11005