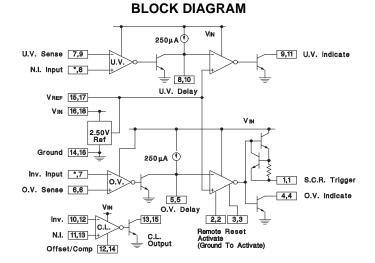


Power Supply Supervisory Circuit

FEATURES

- Includes Over-Voltage, Under-Voltage, and Current Sensing Circuits
- Internal 1% Accurate Reference
- Programmable Time Delays
- SCR "Crowbar" Drive of 300 mA
- Remote Activation Capability
- Optional Over-Voltage Latch
- Uncommitted Comparator Inputs for Low Voltage Sensing (UC1544 Series Only)

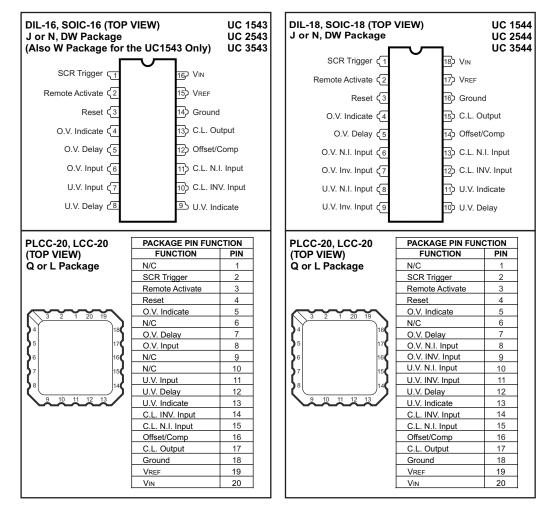

DESCRIPTION

The monolithic integrated circuits contain all the functions necessary to monitor and control the output of а sophisticated power supply system. Over-voltage (O.V.) sensing with provision to triager "crowbar" an external SCR shutdown; an undervoltage (U.V.) circuit which can be used to monitor either the output or to sample the input line voltage; and a third op amp/comparator usable for current sensing (C.L.) are all included in this device, together with an independent, accurate reference generator.

Both over- and under-voltage sensing circuits can be externally programmed for minimum time duration of fault before triggering. All functions contain open collector outputs which can be used independently or wire-or'ed together, and although the SCR trigger is directly connected only to the over-voltage sensing circuit, it may be optionally activated by any of the other outputs, or from an external signal. The O.V. circuit also includes an optional latch and external reset capability.

The UC1544/2544/3544 devices have the added versatility of completely uncommitted inputs to the voltage sensing comparators so that levels less than 2.5 V may be monitored by dividing down the internal reference voltage. The current sense circuit may be used with external compensation as a linear amplifier or as a highgain comparator. Although nominally set for zero input offset, a fixed threshold may be added with an external resistor. Instead of current limiting, this circuit may also be used as an additional voltage monitor.

The reference generator circuit is internally trimmed to eliminate the need for external potentiometers and the entire circuit may be powered directly from either the output being monitored or from a separate bias voltage.


NOTE:

For each terminal, first number refers to 1543 series, second to 1544 series. *On 1543 series, this function is internally connected to VREF.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Connection Diagrams

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

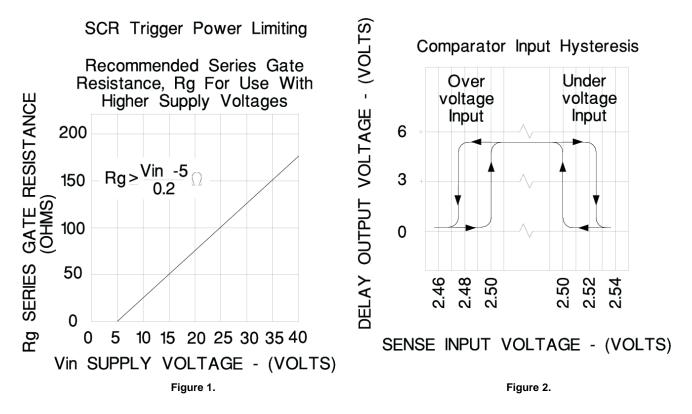
			VALUE	UNIT
V _{IN}	Input supply voltage		40	V
	Sense inputs, voltage range		0 to VIN	v
	SCR trigger current ⁽²⁾		-600	mA
	Indicator output voltage		40	V
	Indicator output sink current		50	mA
	Power dissipation (package limita	ition)	1000	mW
TJ		UC1543, UC1544	-55 to 125	
	Operating temperature range	UC2543, UC2544	-25 to 85	°C
		UC3543, UC3544	0 to 70	
T _{stg}	Storage temperature range		-65 to 150	

(1) Currents are positive-into, negative-out of the specified terminal.

(2) At higher input voltages, a dissipation limiting resistor, RG, is required.

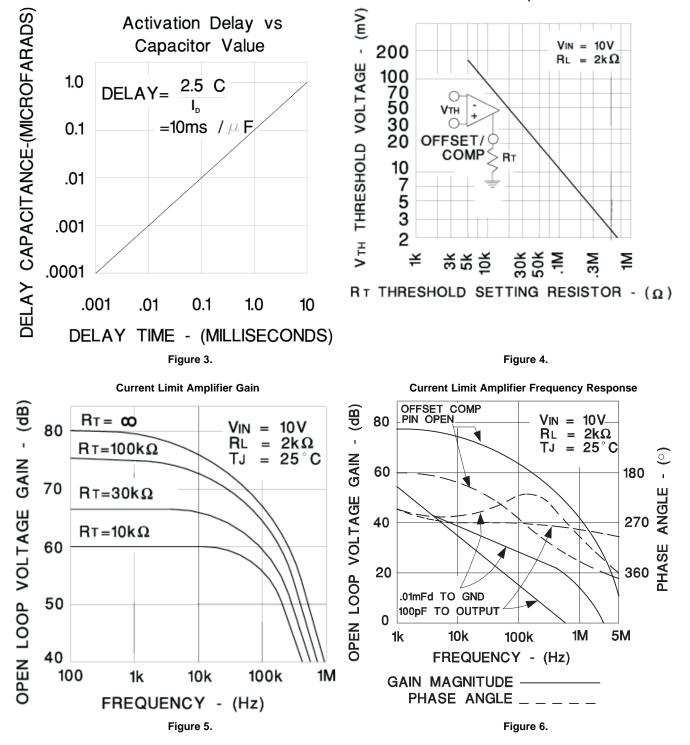
ELECTRICAL CHARACTERISTICS

Unless otherwise stated, these specifications apply for $T_A = -55^{\circ}$ C to 125°C for theUC1543 and UC1544; -25°C to 85°C for the UC2543 and UC2544; and 0°C to 70°C for the UC3543 and UC3544. Electrical tests are performed with $V_{IN} = 10$ V and 2-k Ω pull-up resistors on all indicator outputs. All electrical specifications for the UC1544, UC2544, and UC3544 devices are tested with the inverting over-voltage input and the non-inverting under-voltage input externallyconnected to the 2.5 V reference. $T_A = T_J$.


PARAMETER		TEST CONDITIONS	UC1543	/UC1544/U UC2544	C2543/	UC3543/UC3544			UNIT	
			MIN	ТҮР	MAX	MIN	ТҮР	MAX		
V	Input voltogo rongo	$T_J = 25^{\circ}C$ to T_{MAX}	4.5		40	4.5		40	v	
V _{IN}	Input voltage range	T _{MIN} to T _{MAX}	4.7		40	4.7		40	V	
I _{CC}	Supply current	$V_{IN} = 40 V$, output open, $T_J = 25^{\circ}C$		7	10		7	10	mA	
00		$T_{MIN} \le T_J \le T_{MAX}$			15			15		
Refere	ence Section						Ľ			
	Output weltere	$T_J = 25^{\circ}C$	2.48	2.5	2.52	2.45	2.50	2.55	v	
V _{OUT}	Output voltage	Over temperature range	2.45		2.55	2.40		2.60	v	
	Line regulation	V _{IN} = 5 to 30 V		1	5		1	5		
	Load regulation	I _{REF} = 0 to 10 mA		1	10		1	10	mV	
	Short circuit current	V _{REF} = 0	-10	-20	-40	-12	-20	-40	mA	
	Temperature stability			50			50		ppm/°C	
SCR T	rigger Section				1				1	
	Peak output current	V _{IN} = 5V, RG = 0, VO = 0	-100	-300	-600	-100	-300	-600	mA	
	Peak output voltage	V _{IN} = 15 V, I _O = -100 mA	12	13		12	13			
	Output OFF voltage	V _{IN} = 40 V		0	0.1		0	0.1	V	
	Remote activate current	R/A Pin = GND		-0.4	-0.8		-0.4	-0.8	mA	
	Remote activate voltage	R/A Pin Open		2	6		2	6	V	
	Reset current	Reset = GND, R/A = GND		-0.4	-0.8		-0.4	-0.8	mA	
	Reset voltage	Reset open, R/A = GND		2	6		2	6	V	
	Output current rise time	$R_{L} = 50, T_{J} = 25^{\circ}C, C_{D} = 0$		400			400		mA/μs	
	Prop. delay from R/A	$R_L = 50, T_J = 25^{\circ}C, C_D = 0$		300			300			
	Prop. delay from O/V input	$R_{L} = 50, T_{J} = 25^{\circ}C, C_{D} = 0$		500			500		ns	
Comp	arator Section								1	
	Input threshold (Input	$T_J = 25^{\circ}C$	2.45	2.50	2.55	2.40	2.50	2.60		
	voltage rising on O.V. and falling on U.V.)	Over temperature range	2.40		2.60	2.35		2.65	V	
	Input hysteresis			25			25		mV	
	Input bias current	Sense input = 0 V		-0.3	-1.0		-0.3	-1.0	μA	
	Delay saturation			0.2	0.5		0.2	0.5	v	
	Delay high level			6	7		6	7	v	
	Delay charging current	$V_{O} = 0$	-200	-250	-300	-200	-250	-300	μA	
	Indicate saturation	I _L = 10 mA		0.2	0.5		0.2	0.5	V	
	Indicate leakage	V _{IND} = 40 V		0.01	1.0		0.01	1.0	μA	
	Propagation data:	Input over drive = 200 mV, $T_J = 25^{\circ}C, C_D = 0$		400			400		ns	
	 Propagation delay 	Input over drive = 200 mV, $T_J = 25^{\circ}C, C_D = 1 \mu F$		10			10		ms	

ELECTRICAL CHARACTERISTICS (continued)

Unless otherwise stated, these specifications apply for $T_A = -55^{\circ}C$ to $125^{\circ}C$ for theUC1543 and UC1544; -25°C to $85^{\circ}C$ for the UC2543 and UC2544; and 0°C to 70°C for the UC3543 and UC3544. Electrical tests are performed with $V_{IN} = 10$ V and 2-k Ω pull-up resistors on all indicator outputs. All electrical specifications for the UC1544, UC2544, and UC3544 devices are tested with the inverting over-voltage input and the non-inverting under-voltage input externallyconnected to the 2.5 V reference. $T_A = T_J$.


Current Limit Section											
Input voltage range		0		VIN -3V	0		VIN -3V	V			
Input Bias Current	Offset pin open, V _{CM} = 0		-0.3	-1.0		-0.3	-1.0	μΑ			
Input offect veltage	Offset pin open, $V_{CM} = 0$		0	10		0	10	mV			
Input offset voltage	10k from offset pin to GND	80	100	120	80	100	120	mv			
CMRR	$0 \le V_{CM} \le 12 \text{ V}, \text{ V}_{IN} = 15 \text{ V}$	60	70		60	70					
AVOL	$ \begin{array}{l} \mbox{Offset pin open, V}_{CM} = 0 \\ \mbox{V,} \\ \mbox{R}_L = 10 \ \mbox{k}\Omega \ \mbox{to} \ \mbox{15 k}\Omega, \\ \mbox{V}_{OUT} = 1 \ \mbox{to} \ \mbox{V} \end{array} $	72	80		72	80		dB			
Output saturation	I _L = 10 mA		0.2	0.5		0.2	0.5	V			
Output leakage	V _{IND} = 40 V		0.01	1.0		0.01	1.0	μΑ			
Small signal bandwidth	$A_V = 0$ dB, $T_J = 25$ °C		5			5		MHz			
Propagation delay	Propagation delay $V_{OVERDRIVE} = 100 \text{ mV}, T_J = 25^{\circ}\text{C}$					200		ns			

TYPICAL CHARACTERISTICS

UC1543, UC1544 UC2543, UC2544 UC3543, UC3544 SLUS188A-APRIL 1997-REVISED FEBRUARY 2007

Current Limit Input Threshold

APPLICATION INFORMATION

The values for the external components are determined as follows:

$$V_{TH} = \frac{1000}{R1}$$
Current limit input threshold,

 C_{S} is determined by the current loop dynamics

$$I_{P} \cong \frac{V_{TH}}{R_{SC}} + \frac{V_{O}}{R_{SC}} \left(\frac{R2}{R2 + R3}\right)$$

Peak current to load,

$$I_{SC} = \frac{V_{TH}}{R_{SC}}$$

Short circuit current,

$$V_{O(low)} = \frac{2.5(R4 + R5 + R6)}{R5 + R6}$$

Low output voltage limit,

$$V_{O(high)} = \frac{2.5(R4 + R5 + R6)}{R6}$$

High output voltage limit,

Voltage sensing delay, $t_D = 10,000C_d$

$$R_G > \frac{V_{IN} - 5}{0.2}$$

SCR trigger power limiting resistor,

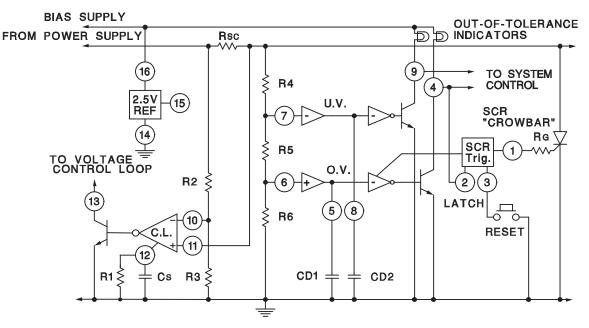
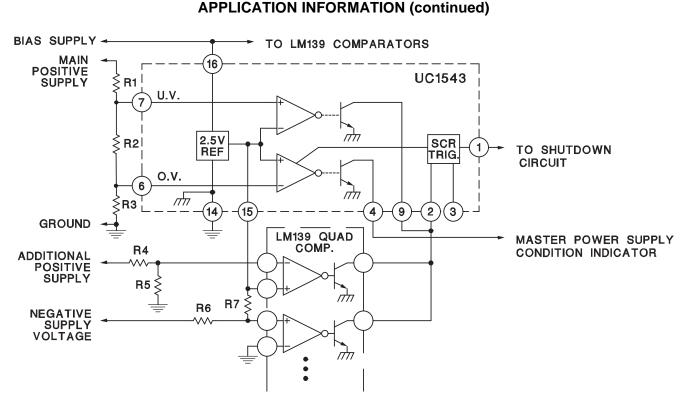



Figure 7. Typical Application

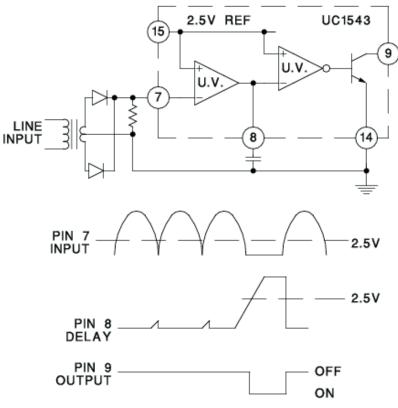


Figure 9. Input Line Monitor

APPLICATION INFORMATION (continued)

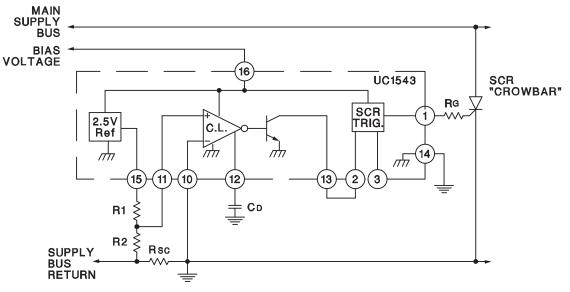


Figure 10. Overcurrent Shutdown

6-Feb-2020

PACKAGING INFORMATION

Orderable Device	Status	Package Type	•	Pins	•	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
5962-8774001EA	ACTIVE	CDIP	J	16	1	TBD	Call TI	N / A for Pkg Type	-55 to 125	5962-8774001EA UC1543J/883B	Samples
5962-8774001FA	ACTIVE	CFP	W	16	25	TBD	Call TI	N / A for Pkg Type		5962-8774001FA UC1543W/883B	Samples
UC1543J	ACTIVE	CDIP	J	16	1	TBD	Call TI	N / A for Pkg Type	-55 to 125	UC1543J	Samples
UC1543J883B	ACTIVE	CDIP	J	16	1	TBD	Call TI	N / A for Pkg Type	-55 to 125	5962-8774001EA UC1543J/883B	Samples
UC1543L	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	UC1543L	Samples
UC1543L883B	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	UC1543L/ 883B	Samples
UC1543W883B	ACTIVE	CFP	W	16	25	TBD	Call TI	N / A for Pkg Type		5962-8774001FA UC1543W/883B	Samples
UC2543DW	ACTIVE	SOIC	DW	16	40	Green (RoHS & no Sb/Br)	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	UC2543DW	Samples
UC2543J	ACTIVE	CDIP	J	16	1	TBD	Call TI	N / A for Pkg Type	-25 to 85	UC2543J	Samples
UC2544DW	ACTIVE	SOIC	DW	18	40	Green (RoHS & no Sb/Br)	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	UC2544DW	Samples
UC3543J	ACTIVE	CDIP	J	16	1	TBD	Call TI	N / A for Pkg Type	0 to 70	UC3543J	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

www.ti.com

6-Feb-2020

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

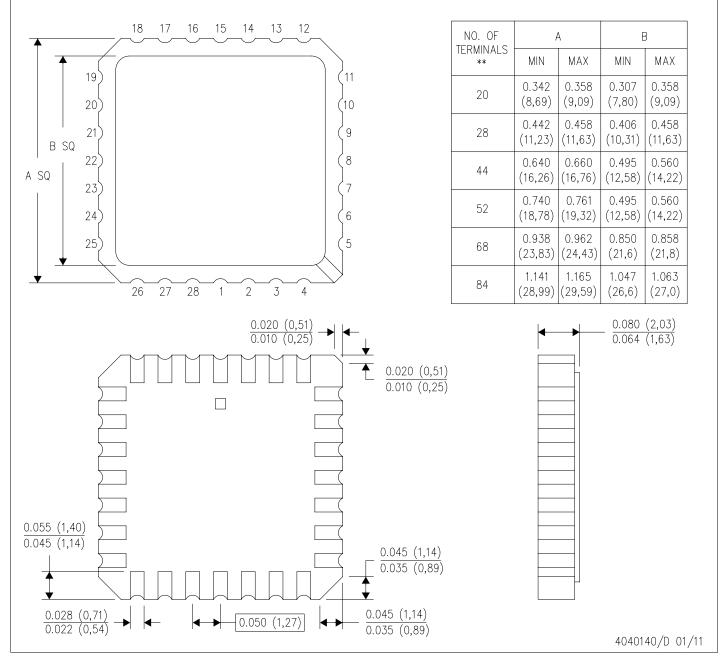
⁽⁶⁾ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF UC2543, UC2543M, UC3543M :

Catalog: UC2543


• Military: UC2543M, UC1543

NOTE: Qualified Version Definitions:

- Catalog TI's standard catalog product
- Military QML certified for Military and Defense Applications

LEADLESS CERAMIC CHIP CARRIER

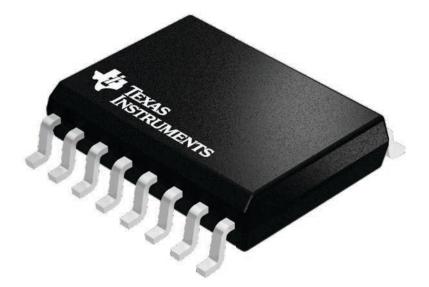
FK (S-CQCC-N**) 28 TERMINAL SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

- C. This package can be hermetically sealed with a metal lid.
- D. Falls within JEDEC MS-004

DW 16

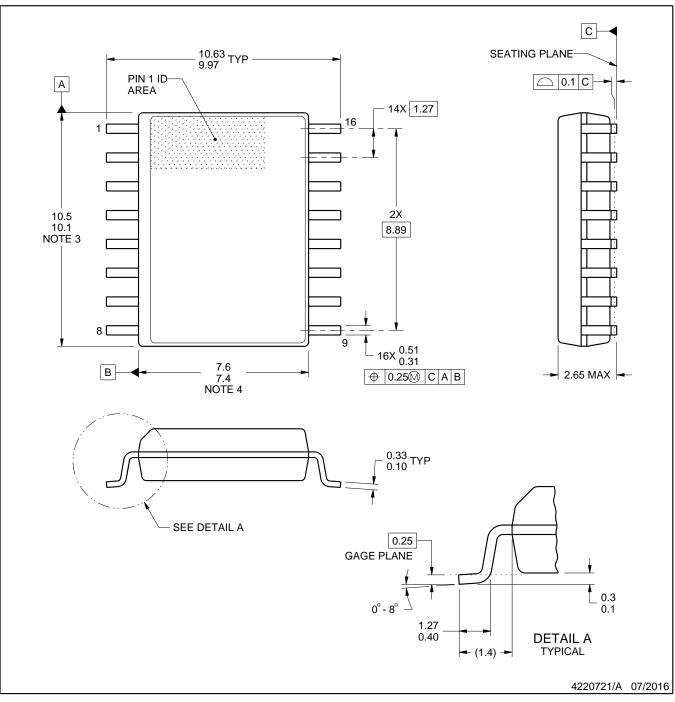

GENERIC PACKAGE VIEW

SOIC - 2.65 mm max height

SMALL OUTLINE INTEGRATED CIRCUIT

7.5 x 10.3, 1.27 mm pitch

This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details.


DW0016A

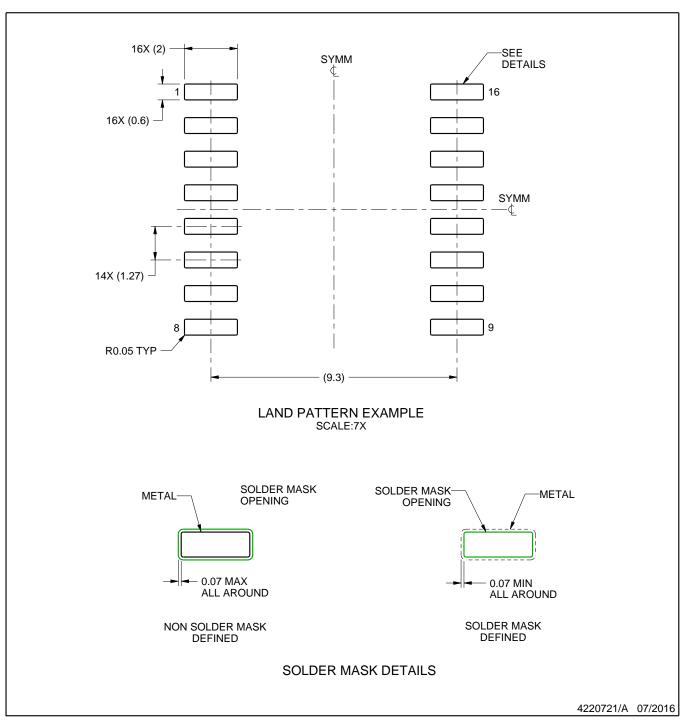
PACKAGE OUTLINE

SOIC - 2.65 mm max height

SOIC

NOTES:

- 1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 This drawing is subject to change without notice.
 This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm, per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm, per side.
- 5. Reference JEDEC registration MS-013.



DW0016A

EXAMPLE BOARD LAYOUT

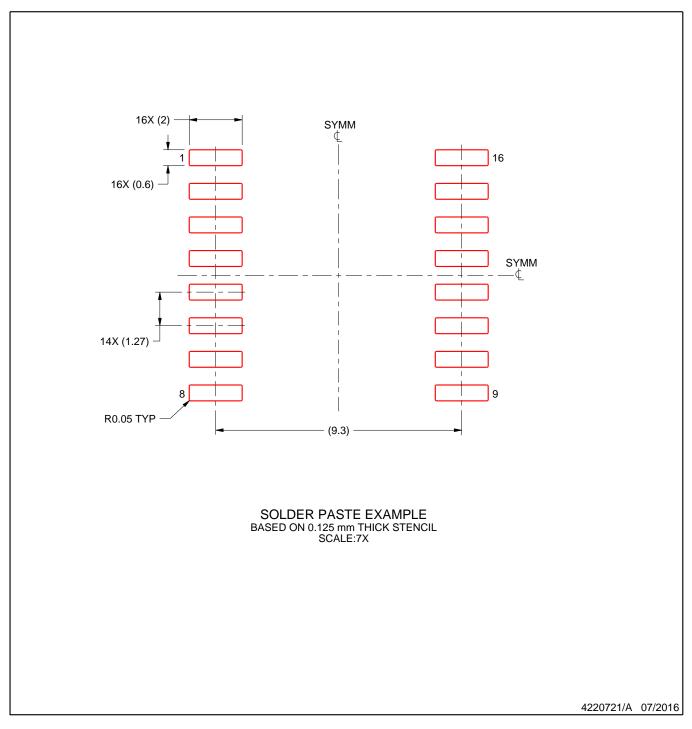
SOIC - 2.65 mm max height

SOIC

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



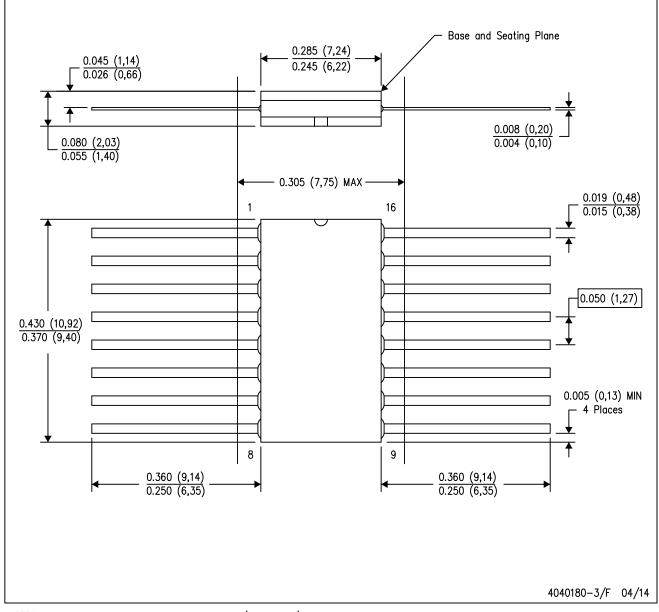
DW0016A

EXAMPLE STENCIL DESIGN

SOIC - 2.65 mm max height

SOIC

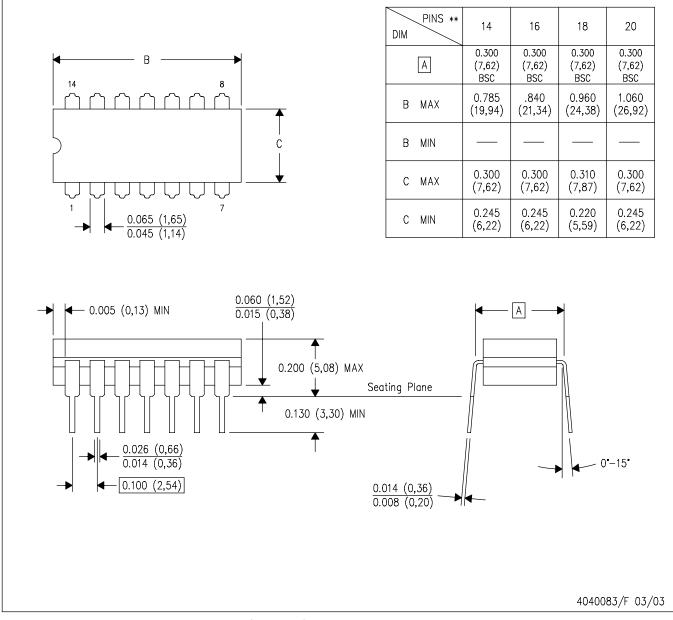
NOTES: (continued)


8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

9. Board assembly site may have different recommendations for stencil design.

W (R-GDFP-F16)

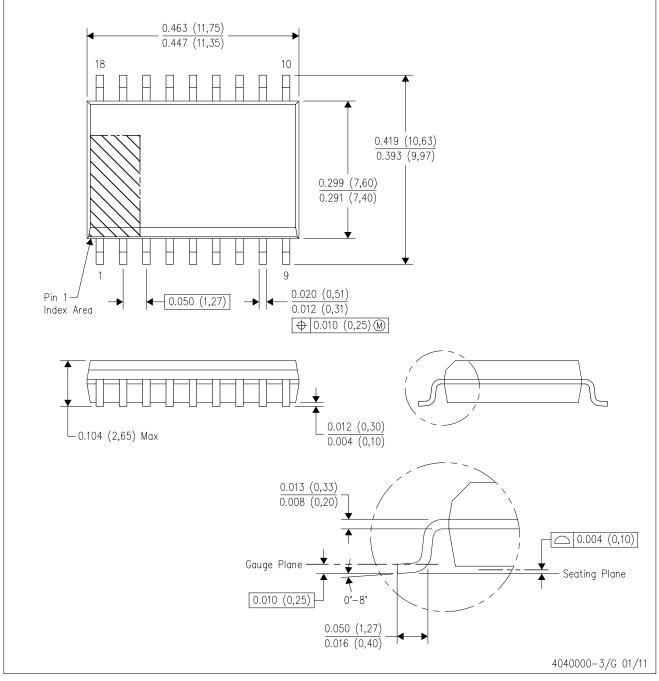
CERAMIC DUAL FLATPACK



- NOTES: A. All linear dimensions are in inches (millimeters).
 - B. This drawing is subject to change without notice.
 - C. This package can be hermetically sealed with a ceramic lid using glass frit.
 - D. Index point is provided on cap for terminal identification only.
 - E. Falls within MIL STD 1835 GDFP2-F16

J (R-GDIP-T**) 14 LEADS SHOWN

CERAMIC DUAL IN-LINE PACKAGE



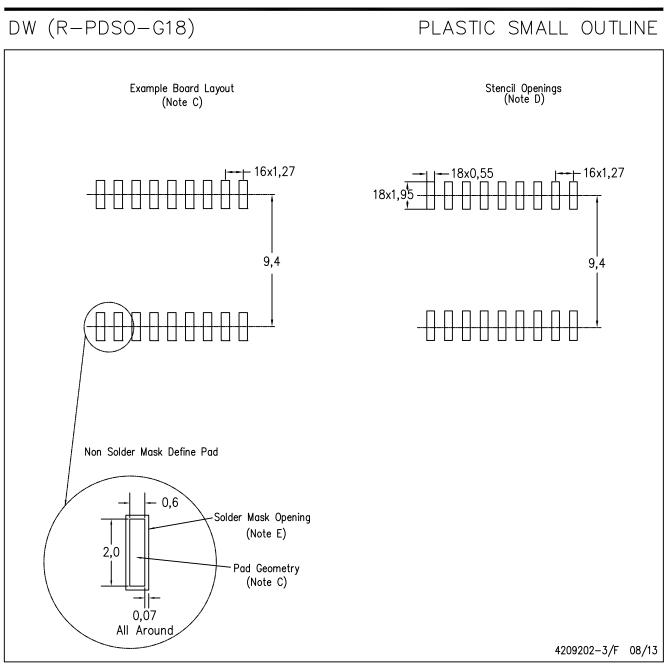
NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

DW (R-PDSO-G18)

PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters). Dimensioning and tolerancing per ASME Y14.5M-1994.


B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).

D. Falls within JEDEC MS-013 variation AB.

LAND PATTERN DATA

NOTES:

A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Refer to IPC7351 for alternate board design.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2020, Texas Instruments Incorporated