

June 2007

MM74HC139 Dual 2-To-4 Line Decoder

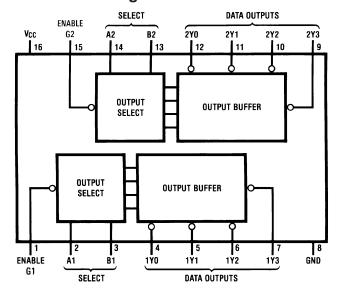
Features

- Typical propagation delays:
 - Select to outputs (4 delays): 18ns
 - Select to output (5 delays): 28ns
 - Enable to output: 20ns
- Low power: 40µW quiescent supply power
- Fanout of 10 LS-TTL devices
- Input current maximum 1µA, typical 10pA

General Description

The MM74HC139 decoder utilizes advanced silicon-gate CMOS technology, and is well suited to memory address decoding or data routing applications. It possesses the high noise immunity and low power consumption usually associated with CMOS circuitry, yet has speeds comparable to low power Schottky TTL logic.

The MM74HC139 contain two independent one-of-four decoders each with a single active low enable input (G1, or G2). Data on the select inputs (A1, and B1 or A2, and B2) cause one of the four normally high outputs to go LOW.


The decoder's outputs can drive 10 low power Schottky TTL equivalent loads, and are functionally as well as pin equivalent to the 74LS139. All inputs are protected from damage due to static discharge by diodes to V_{CC} and ground.

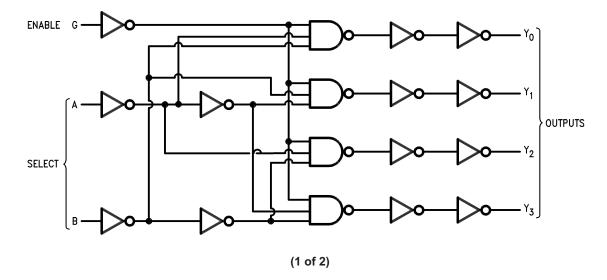
Ordering Information

Order Number	Package Number	Package Description
MM74HC139M	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow

Device also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering number.

Connection Diagram

Truth Table


Inputs						
Enable	Sel	Select		ect Out _l		
G	В	Α	Y0	Y1	Y2	Y3
Н	Х	Х	Н	Н	Н	Н
L	L	L	L	Н	Н	Н
L	L	Н	Н	L	Н	Н
L	Н	L	Н	Н	L	Н
L	Н	Н	Н	Н	Н	L

H = HIGH Level

L = LOW Level

X = Don't Care

Logic Diagram

Absolute Maximum Ratings(1)

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Rating
V _{CC}	Supply Voltage	-0.5 to +7.0V
V _{IN}	DC Input Voltage	–1.5 to V _{CC} +1.5V
V _{OUT}	DC Output Voltage	–0.5 to V _{CC} +0.5V
I _{IK} , I _{OK}	Clamp Diode Current	±20mA
I _{OUT}	DC Output Current, per pin	±25mA
I _{CC}	DC V _{CC} or GND Current, per pin	±50mA
T _{STG}	Storage Temperature Range	−65°C to +150°C
P _D	Power Dissipation	500mW
TL	Lead Temperature (Soldering 10 seconds)	260°C

Note:

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to absolute maximum ratings.

Symbol	Parameter	Min.	Max.	Units
V _{CC}	Supply Voltage	2	6	V
V _{IN} , V _{OUT}	DC Input or Output Voltage	0	V _{CC}	V
T _A	T _A Operating Temperature Range		+85	°C
t _r , t _f	Input Rise or Fall Times			
	V _{CC} = 2.0V		1000	ns
	V _{CC} = 4.5V		500	
	V _{CC} = 6.0V		400	

^{1.} Unless otherwise specified all voltages are referenced to ground.

DC Electrical Characteristics⁽²⁾

				T _A =	25°C	T _A = -40 to 85°C	T _A = -55 to 125°C	
Symbol	Parameter	Conditions	V_{CC}	Тур.	0	uaranteed	Limits	Units
V _{IH}	Minimum HIGH Level		2.0V		1.5	1.5	1.5	V
	Input Voltage		4.5V		3.15	3.15	3.15	
			6.0V		4.2	4.2	4.2	
V _{IL}	Maximum LOW Level		2.0V		0.5	0.5	0.5	V
	Input Voltage		4.5V		1.35	1.35	1.35	
			6.0V		1.8	1.8	1.8	
V _{OH}	Minimum HIGH Level	$V_{IN} = V_{IH}$ or V_{IL} :						
	Output Voltage	I _{OUT} ≤ 20μA	2.0V	2.0	1.9	1.9	1.9	V
			4.5V	4.5	4.4	4.4	4.4	
			6.0V	6.0	5.9	5.9	5.9	
		$V_{IN} = V_{IH}$ or V_{IL} :						
		$ I_{OUT} \le 4.0 \text{mA}$	4.5V	4.2	3.98	3.84	3.7	
		$ I_{OUT} \le 5.2 \text{mA}$	6.0V	5.7	5.48	5.34	5.2	
V _{OL}	Maximum LOW Level	$V_{IN} = V_{IH}$ or V_{IL} :						
	Output Voltage	$ I_{OUT} \le 20\mu A$	2.0V	0	0.1	0.1	0.1	V
			4.5V	0	0.1	0.1	0.1	
			6.0V	0	0.1	0.1	0.1	
		$V_{IN} = V_{IH}$ or V_{IL} :						
		$ I_{OUT} \le 4.0 \text{mA}$	4.5V	0.2	0.26	0.33	0.4	
		$ I_{OUT} \le 5.2 \text{mA}$	6.0V	0.2	0.26	0.33	0.4	
I _{IN}	Maximum Input Current	$V_{IN} = V_{CC}$ or GND	6.0V		±0.1	±1.0	±1.0	μA
I _{CC}	Maximum Quiescent Supply Current	$V_{IN} = V_{CC}$ or GND, $I_{OUT} = 0\mu A$	6.0V		8.0	80	160	μA

Note:

2. For a power supply of 5V $\pm 10\%$ the worst case output voltages (V_{OH}, and V_{OL}) occur for HC at 4.5V. Thus the 4.5V values should be used when designing with this supply. Worst case V_{IH} and V_{IL} occur at V_{CC} = 5.5V and 4.5V respectively. (The V_{IH} value at 5.5V is 3.85V.) The worst case leakage current (I_{IN}, I_{CC}, and I_{OZ}) occur for CMOS at the higher voltage and so the 6.0V values should be used.

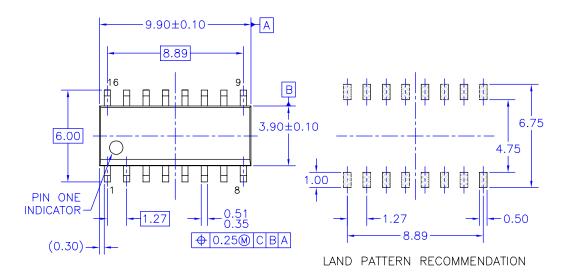
AC Electrical Characteristics

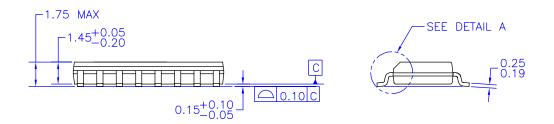
 $\label{eq:CC} V_{CC} = 5V, \ T_A = 25^{\circ}C, \ C_L = 15 \ pF, \ t_r = t_f = 6ns.$

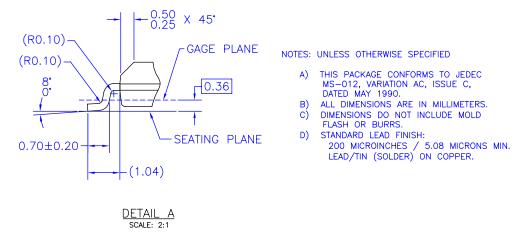
Symbol	Parameter	Conditions	Тур.	Guaranteed Limit	Units
t _{PHL} , t _{PLH}	Maximum Propagation Delay, Binary Select to any Output 4 levels of delay		18	30	ns
t _{PHL} , t _{PLH}	Maximum Propagation Delay, Binary Select to any Output 5 levels of delay		28	38	ns
t _{PHL} , t _{PLH}	Maximum Propagation Delay, Enable to any Output		19	30	ns

AC Electrical Characteristics

 $C_L = 50$ pF, $t_r = t_f = 6$ ns (unless otherwise specified).


				T _A =	25°C	T _A = -40 to 85°C	T _A = -55 to 125°C	
Symbol	Parameter	Conditions	V_{CC}	Тур.	G	uaranteed	Limits	Units
t _{PHL} , t _{PLH}	Maximum Propagation	(3)	2.0V	110	175	219	254	ns
	Delay Binary Select to any Output 4 levels of delay		4.5V	22	35	44	51	
	Output 4 levels of delay		6.0V	18	30	38	44	
t _{PHL} , t _{PLH}	Maximum Propagation	(4)	2.0V	165	220	275	320	ns
	Delay Binary Select to any Output 5 levels of delay		4.5V	33	44	55	64	
	Output 5 levels of delay		6.0V	28	38	47	54	
t _{PHL} , t _{PLH}			2.0V	115	175	219	254	ns
	Delay Enable to any Output		4.5V	23	35	44	51	
			6.0V	19	30	38	44	
t _{TLH} , t _{TLH}	Maximum Output Rise and		2.0V	30	75	95	110	ns
	Fall Time		4.5V	8	15	19	22	
			6.0V	7	13	16	19	
C _{IN}	Maximum Input Capacitance			3	10	10	10	pF
C _{PD}	Power Dissipation Capacitance ⁽⁵⁾	(5)		75				pF


Notes:


- 3. 4 levels of delay are A to Y1, Y3 and B to Y2, Y3.
- 4. 5 levels of delay are A to Y0, Y2 and B to Y0, Y1.
- 5. C_{PD} determines the no load dynamic power consumption, $P_D = C_{PD} \ V_{CC}^2 f + I_{CC} \ V_{CC}$, and the no load dynamic current consumption, $I_S = C_{PD} \ V_{CC} \ f + I_{CC}$.

Physical Dimensions

Dimensions are in millimeters unless otherwise noted.

M16AREVK

Figure 1. 16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow Package Number M16A

TRADEMARKS

The following are registered and unregistered trademarks and service marks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks

ACEx® Build it Now™ CorePLUS™ CROSSVOLT™ CTL™ Current Transfer Logic™ EcoSPARK® FACT Quiet Series™ FACT® FAST® FastvCore™ FPS™	Green FPS™ e-Series™ GTO™ i-Lo™ IntelliMAX™ ISOPLANAR™ MegaBuck™ MICROCOUPLER™ MicroPak™ Motion-SPM™ OPTOLOGIC® OPTOPLANAR® PDP-SPM™	Power-SPM™ PowerTrench® Programmable Active Droop™ QFET® QS™ QT Optoelectronics™ Quiet Series™ RapidConfigure™ SMART START™ SPM® STEALTH™ SuperFET™	SyncFET™ The Power Franchise® TM TinyBoost™ TinyBuck™ TinyLogic® TINYOPTO™ TinyPower™ TinyPower™ TinyPWIT™ TinyWire™ µSerDes™ LIHC®
FPS™ FRFET [®] Global Power Resource SM	PDP-SPM™ Power220 [®] Power247 [®]	SuperFET™ SuperSOT™-3 SuperSOT™-6	µSerDes™ UHC [®] UniFET™ VCX™
Green FPS™	POWEREDGE [®]	SuperSOT™-8	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

Rev. I28