

F100151

Hex D Flip-Flop

The F100151 contains six D-type edge-triggered, master/slave flip-flops with true and complement outputs, a pair of common Clock inputs (CP_a and CP_b) and common Master Reset (MR) input. Data enters a master when both CP_a and CP_b are LOW and transfers to the slave when CP_a and CP_b (or both) go HIGH. The MR input overrides all other inputs and makes the Q outputs LOW. All inputs have 50 k Ω pulldown resistors.

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All re-creations are done with the approval of the Original Component Manufacturer (OCM).

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-35835
 - · Class Q Military
 - Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)
 - Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OCM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

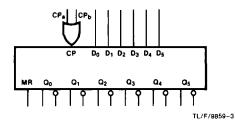
F100151 Hex D Flip-Flop

General Description

The F100151 contains six D-type edge-triggered, master/slave flip-flops with true and complement outputs, a pair of common Clock inputs (CP_a and CP_b) and common Master Reset (MR) input. Data enters a master when both CP_a and CP_b are LOW and transfers to the slave when CP_a and CP_b (or both) go HiGH. The MR input overrides all other inputs

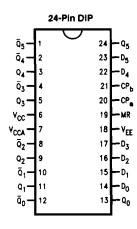
and makes the Q outputs LOW. All inputs have 50 $k\Omega$ pull-down resistors.

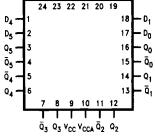
Refer to the F100351 datasheet for:


PCC packaging

Lower power Military versions

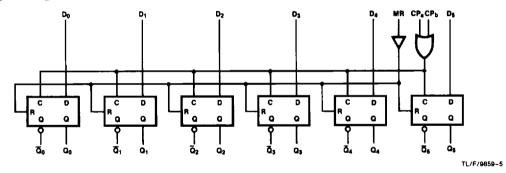
Extended voltage specs (-4.2V to -5.7V)


Ordering Code: See Section 8


Logic Symbol

Pin Names	Description
D ₀ -D ₅	Data Inputs
CP _a , CP _b	Common Clock Inputs
MR	Asynchronous Master Reset Input
Q ₀ -Q ₅	Data Outputs
$\overline{\Omega}_0 - \overline{\Omega}_5$	Complementary Data Outputs
	D_0 - D_5 CP_a , CP_b MR Q_0 - Q_5

Connection Diagrams


Top View

24-Pin Quad Cerpak ${\rm CP_b}\,{\rm CP_a}$ MR ${\rm V_{EE}}\,{\rm D_3}\,{\rm O_2}$

TL/F/9859-2

TL/F/9859-1

Logic Diagram

Truth Table (Each Flip-flop)

Synchronous Operation

	Inp	Outputs		
Dn	CP _a	Q _n (t+1)		
L		L	L	L
н	<i></i>	L	L	н
L	L	~	L	L
н	L	<i></i>	L	н
х	н	~	L	Q _n (t)
X		H	L	Q _n (t)
Х	L	L	L	Q _n (t)

Asynchronous Operation

	Inputs							
Dn	CP _a	CPb	MR	Q _n (t + 1)				
×	х	х	н	L				

H = HIGH Voltage Level

L = LOW Voltage Level

X = Don't Care

t = Time before CP positive transition

t+1 = Time after CP positive transition

__ = LOW-to-HIGH transition

0

Absolute Maximum Ratings

Above which the useful life may be impaired. (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Storage Temperature

-65°C to +150°C

Maximum Junction Temperature (T_J)

+ 150°C

Case Temperature under Bias (T_C) V_{EE} Pin Potential to Ground Pin

V_{EE} Pin Potential to Ground Pi Input Voltage (DC) $0^{\circ}\text{C to} + 85^{\circ}\text{C}$ -7.0V to + 0.5V

V_{EE} to +0.5V

Output Current (DC Output HIGH)
Operating Range (Note 2)

-50 mA -5.7V to -4.2V

DC Electrical Characteristics

 $V_{EE} = -4.5V$, $V_{CC} = V_{CCA} = GND$, $T_{C} = 0$ °C to +85°C (Note 3)

Symbol	Parameter	Min	Тур	Max	Units	Conditions (Note 4)		
V _{OH}	Output HIGH Voltage	Voltage - 1025 -955 -880 m/	mV	V _{IN} = V _{IH} (Max)	Loading with			
V _{OL}	Output LOW Voltage	- 1810	- 1705	- 1620] ""	or V _{IL (Min)}	50Ω to -2.0\	
VOHC	Output HIGH Voltage	- 1035					VIN = VIH (Min)	Loading with
Volc	Output LOW Voltage			1610	1117	or V _{IL (Max)}	50Ω to -2.0V	
VIH	Input HIGH Voltage	- 1165		-880	m∨	Guaranteed HIGH Signal for All Inputs		
V _{IL}	Input LOW Voltage	- 1810		- 1475	mV	Guaranteed LOW Signal for All Inputs		
I _{IL}	Input LOW Current	0.50			μА	V _{IN} = V _{IL (Min)}		

DC Electrical Characteristics

 $V_{EE} = -4.2V$, $V_{CC} = V_{CCA} = GND$, $T_{C} = 0^{\circ}C$ to $+85^{\circ}C$ (Note 3)

Symbol	Parameter	Parameter Min T		Тур Мах		Conditions (Note 4)		
VoH	Output HIGH Voltage	-1020		-870	mV	V _{IN} = V _{IH (Max)}	Loading with	
V _{OL}	Output LOW Voltage	-1810		- 1605] "",	or V _{IL (Min)}	50Ω to -2.0V	
V _{OHC}	Output HIGH Voltage	- 1030		•	mV	V _{IN} = V _{IH} (Min)	Loading with	
Volc	Output LOW Voltage			- 1595	l	or V _{IL (Max)}	50Ω to -2.0V	
V _{IH}	Input HIGH Voltage	-1150		-870	m∨	Guaranteed HIGH Signal for All Inputs		
V _{IL}	Input LOW Voltage	-1810		- 1475	mV	Guaranteed LOW Signal for All Inputs		
l _l L	Input LOW Current	0.50			μΑ	$V_{IN} = V_{IL (Min)}$		

DC Electrical Characteristics

 $V_{EE} = -4.8V$, $V_{CC} = V_{CCA} = GND$, $T_{C} = 0^{\circ}C$ to $+85^{\circ}C$ (Note 3)

Symbol	Parameter Min Output HIGH Voltage - 103	Min Typ Max		Max	Units	Condition	s (Note 4)	
Voн		- 1035		-880	mV	V _{IN} = V _{IH} (Max)	Loading with	
V _{OL}	Output LOW Voltage	- 1830		1620] '''	or V _{IL (Min)}	50Ω to -2.0V	
Vonc	Output HIGH Voltage	-1045			mV	VIN = VIH (Min)	Loading with	
Volc	Output LOW Voltage			- 1610	1110	or V _{IL (Max)}	50Ω to -2.0V	
V _{IH}	Input HIGH Voltage	-1165		- 880	mV	Guaranteed HIGH Signal for All Inputs		
VIL	Input LOW Voltage	-1830		- 1490	mV	Guaranteed LOW Signal for All Inputs		
I _{IL}	Input LOW Current	0.50			μА	V _{IN} = V _{IL} (Min)		

Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

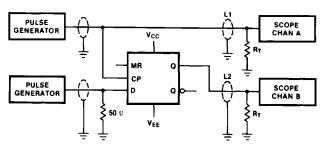
Note 2: Parametric values specified at -4.2V to -4.8V.

Note 3: The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.

Note 4: Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

DC Electrical Characteristics

 $V_{EE} = -4.2V$ to -4.8V unless otherwise specified, $V_{CC} = V_{CCA} = GND$, $T_{C} = 0^{\circ}C$ to $+85^{\circ}C$


Symbol	Parameter	Min	Тур	Max	Units	Conditions	
lін	Input HIGH Current						
	MR	i		450	μА	., .,	
	D ₀ -D ₅			225		V _{IN} = V _{IH} (Max)	
	CP _a , CP _b			520			
I _{EE}	Power Supply Current	~ 210	- 155	- 98	mA	Inputs Open	

Ceramic Dual-In-Line Package AC Electrical Characteristics $V_{EE}=-4.2V$ to -4.8V, $V_{CC}=V_{CCA}=GND$

Symbol	Parameter	T _C =	°C	T _C = +25°C		T _C =	+ 85°C	Units	Conditions
		Min	Max	Min	Max	Min	Max	Units	Conditions
f _{max}	Toggle Frequency	375		375		375		MHz	Figures 2 and 3
t _{PLH} t _{PHL}	Propagation Delay CP _a , CP _b to Output	0.80	2.20	0.80	2.20	0.90	2.40	ns	Figures 1 and 3
t _{PLH} t _{PHL}	Propagation Delay MR to Output	1.20	2.90	1.30	3.00	1.20	3.10	ns	Figures 1 and 4
t _{TLH} t _{THL}	Transition Time 20% to 80%, 80% to 20%	0.45	1.80	0.45	1.70	0.45	1.80	ns	Figures 1 and 3
t _s	Setup Time D ₀ -D ₅ MR (Release Time)	0.70 2.30		0.70 2.30	4.0	0.70 2.60		ns	Figure 5
th	Hold Time D ₀ -D ₅	0.70		0.70		0.70		ns	Figure 5
t _{pw} (H)	Pulse Width HIGH CP _a , CP _b , MR	2.00		2.00		2.00		ns	Figures 3 and 4

Cerpak AC Electrical Characteristics $V_{EE} = -4.2V$ to -4.8V, $V_{CC} = V_{CCA} = GND$

Symbol	Parameter	T _C = 0°C		T _C = +25°C		T _C = +85°C		Units	Conditions
	T drameter	Min	Max	Min	Max	Min	Max	Cints	Conditions
f _{max}	Toggle Frequency	375		375		375		MHz	Figures 2 and 3
t _{PLH} t _{PHL}	Propagation Delay CP _a , CP _b to Output	0.80	2.00	0.80	2.00	0.90	2.20	ns	Figures 1 and 3
t _{PLH}	Propagation Delay MR to Output	1.20	2.70	1.30	2.80	1.20	2.90	ns	Figures 1 and 4
t _{TLH} t _{THL}	Transition Time 20% to 80%, 80% to 20%	0.45	1.70	0.45	1.60	0.45	1.70	ns	Figures 1 and 3
t _s	Setup Time D ₀ -D ₅ MR (Release Time)	0.60 2.20		0.60 2.20		0.60 2.50		ns	Figure 5
th	Hold Time D ₀ -D ₅	0.60		0.60	-	0.60		ns	Figure 5
t _{pw} (H)	Pulse Width HIGH CP ₈ , CP _b , MR	2.00		2.00		2.00		ns	Figures 3 and 4

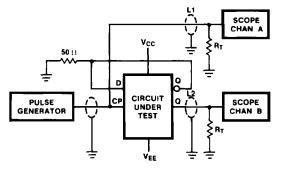


FIGURE 1. AC Test Circuit

Notes:

 $\begin{array}{lll} V_{CC},\,V_{CCA}=~+2V,\,V_{EE}=-2.5V\\ L1~and~L2=~equal~length~50\Omega~impedance~lines\\ R_{T}=~50\Omega~terminator~internal~to~scope\\ Decoupling~0.1~\mu F~from~GND~to~V_{CC}~and~V_{EE}\\ All~unused~outputs~are~loaded~with~50\Omega~to~GND\\ C_{L}=~Fixture~and~stray~capacitance~<~3~pF \end{array}$

TL/F/9859-6

Notes:

 $\begin{array}{l} V_{CC},\ V_{CCA} = +2V,\ V_{EE} = -2.5V\\ L1\ and\ L2 = equal\ length\ 50\Omega\ impedance\ lines\\ R_T = 50\Omega\ terminator\ internal\ to\ scope\\ Decoupling\ 0.1\ \mu F\ from\ GND\ to\ V_{CC}\ and\ V_{EE}\\ All\ unused\ outputs\ are\ loaded\ with\ 5011\ to\ GND\\ C_L = Jig\ and\ stray\ capacitance\ \le\ 3\ pF \end{array}$

TL/F/9859-7

TL/F/9859-8

FIGURE 2. Toggle Frequency Test Circuit

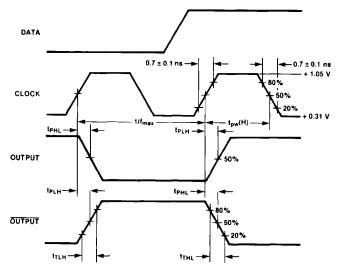


FIGURE 3. Propagation Delay (Clock) and Transition Times

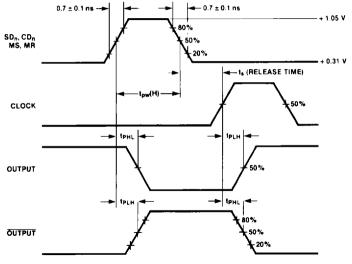
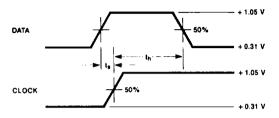



FIGURE 4. Propagation Delay (Reset)

TL/F/9859-10

TL/F/9859-9

Notes:

 t_{s} is the minimum time before the transition of the clock that information must be present at the data input.

th is the minimum time after the transition of the clock that information must remain unchanged at the data input.

FIGURE 5. Setup and Hold Time