

The following document contains information on Cypress products. The document has the series name, product name, and ordering part numbering with the prefix "MB". However, Cypress will offer these products to new and existing customers with the series name, product name, and ordering part number with the prefix "CY".

How to Check the Ordering Part Number

- 1. Go to <u>www.cypress.com/pcn</u>.
- 2. Enter the keyword (for example, ordering part number) in the **SEARCH PCNS** field and click **Apply**.
- 3. Click the corresponding title from the search results.
- 4. Download the Affected Parts List file, which has details of all changes

For More Information

Please contact your local sales office for additional information about Cypress products and solutions.

About Cypress

Cypress is the leader in advanced embedded system solutions for the world's most innovative automotive, industrial, smart home appliances, consumer electronics and medical products. Cypress' microcontrollers, analog ICs, wireless and USB-based connectivity solutions and reliable, high-performance memories help engineers design differentiated products and get them to market first. Cypress is committed to providing customers with the best support and development resources on the planet enabling them to disrupt markets by creating new product categories in record time. To learn more, go to www.cypress.com.

Spread Spectrum Clock Generator

MB88152A is a clock generator for EMI (Electro Magnetic Interference) reduction. The peak of unnecessary radiation noise (EMI) can be attenuated by making the oscillation frequency slightly modulate periodically with the internal modulator. It corresponds to both of the center spread which modulates input frequency as Middle Centered and down spread which modulates so as not to exceed input frequency.

Features

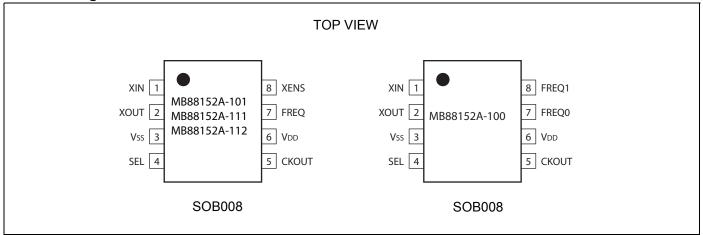
- Input frequency : 16.6 MHz to 134 MHz
- Output frequency : 16.6 MHz to 134 MHz
- Modulation rate : ±0.5%, ±1.5% (Center spread), -1.0%, -3.0% (Down spread)
- Equipped with oscillation circuit: Range of oscillation 16.6 MHz to 48 MHz
- Modulation clock output Duty : 40% to 60%
- Modulation clock Cycle-Cycle Jitter : Less than 100 ps
- Low current consumption by CMOS process : 5.0 mA (24 MHz : Typ-sample, no load)
- Power supply voltage : 3.3 V ± 0.3 V
- Operating temperature : 40° to +85 °C
- Package : SOP 8-pin

٠

Contents

Product Line-up	3
Pin Assignment	3
Pin Description	3
I/O Circuit Type	4
Handling Devices	5
Block Diagram	6
Pin Setting	7
Modulation enable setting	7
SEL modulation rate setting	7
Frequency setting	7
Absolute Maximum Ratings	9
Recommended Operating Conditions	10
Electrical Characteristics	12
DC Characteristics	
AC Characteristics	13

Output Clock Duty Cycle (tDCC = tb/ta)15
Input Frequency (fin = 1/tin)15
Output Slew Rate (SR)15
Cycle-cycle Jitter (tJC = tn - tn + 1)15
Modulation Waveform16
Lock-up Time 17
Oscillation Circuit 18
Interconnection Circuit Example 19
Example Characteristics
Ordering Information 21
Package Dimension
Document History23
Sales, Solutions, and Legal Information24

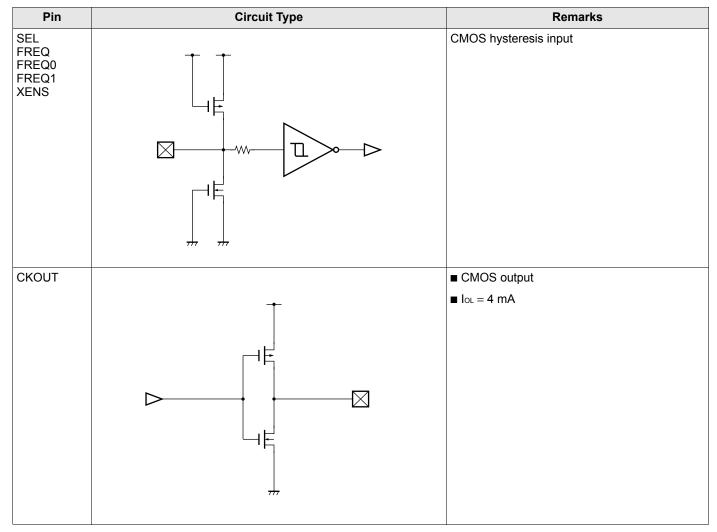


1. Product Line-up

MB88152A has three kinds of input frequency, and two kinds of modulation type (center/down spread), total six line-ups.

Product	Input/Output Frequency	Modulation Type	Modulation Enable Pin
MB88152A-100	16.6 MHz to 134 MHz	Down spread	No
MB88152A-101	16.6 MHz to 67 MHz		Yes
MB88152A-111	16.6 MHz to 67 MHz	Center spread	Yes
MB88152A-112	40 MHz to 134 MHz		

2. Pin Assignment



3. Pin Description

Pin Name	I/O	Pin No.	Description
XIN	I	1	Crystal resonator connection pin/clock input pin
XOUT	0	2	Crystal resonator connection pin
Vss	-	3	GND pin
SEL	1	4	Modulation rate setting pin
CKOUT	0	5	Modulated clock output pin
Vdd	-	6	Power supply voltage pin
FREQ/FREQ0	1	7	Frequency setting pin
XENS/FREQ1	I	8	Modulation enable setting pin/frequency setting pin

4. I/O Circuit Type

Note: For XIN and XOUT pins, refer to "Oscillation Circuit".

5. Handling Devices

Preventing Latch-up

A latch-up can occur if, on this device, (a) a voltage higher than V_{DD} or a voltage lower than V_{SS} is applied to an input or output pin or (b) a voltage higher than the rating is applied between V_{DD} and V_{SS} pins. The latch-up, if it occurs, significantly increases the power supply current and may cause thermal destruction of an element. When you use this device, be very careful not to exceed the maximum rating.

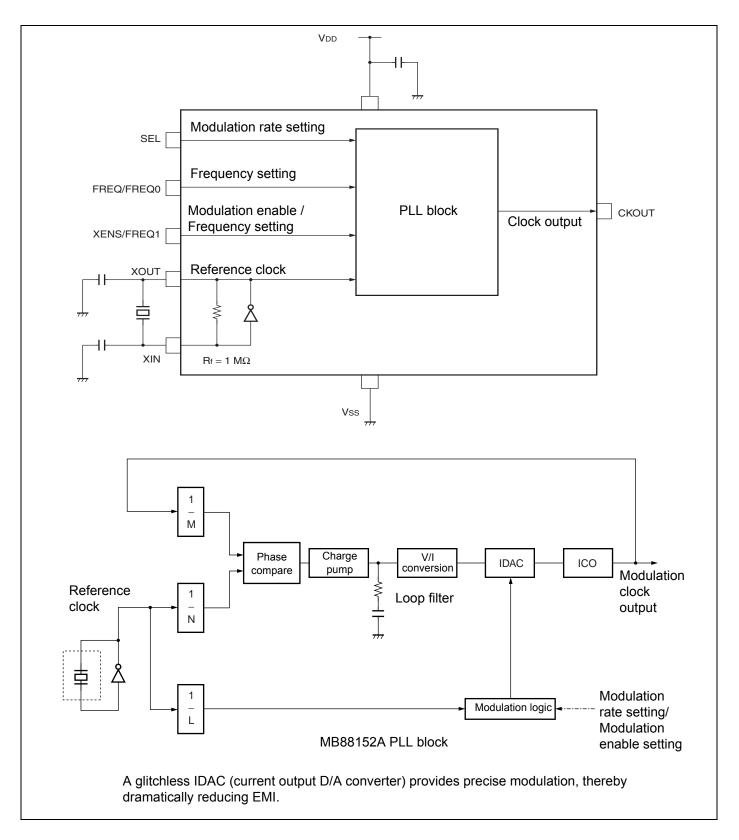
Handling Unused Pins

- Do not leave an unused input pin open, since it may cause a malfunction. Handle by, using a pull-up or pull-down resistor.
- Unused output pin should be opened.

The Attention when the External Clock is Used

- Input the clock to XIN pin, and XOUT pin should be opened when you use the external clock.
- Please pay attention so that an overshoot and an undershoot do not occur to an input clock of XIN pin.

Power Supply Pins


- Please design connecting the power supply pin of this device by as low impedance as possible from the current supply source.
- We recommend connecting electrolytic capacitor (about 10 μF) and the ceramic capacitor (about 0.01 μF) in parallel between Vss and VDD pins near the device, as a bypass capacitor.

Oscillation Circuit

- Noise near the XIN and XOUT pins may cause the device to malfunction. Design printed circuit boards so that electric wiring of XIN or XOUT pin and resonator (or ceramic oscillator) do not intersect other wiring.
- Design the printed circuit board that surrounds the XIN and XOUT pins with ground.

6. Block Diagram

7. Pin Setting

When changing the pin setting, the stabilization wait time for the modulation clock is required. The stabilization wait time for the modulation clock takes the maximum value of Lock-Up time in "AC Characteristics of Electrical Characteristics".

7.1 Modulation Enable Setting

XENS		Modulation	
L	Modulation	MB88152A-101,	
Н	No modulation	MB88152A-111, MB88152A-112	

Note: MB88152A-100 and MB88152A-110 do not have XENS pin.

7.2 SEL Modulation Rate Setting

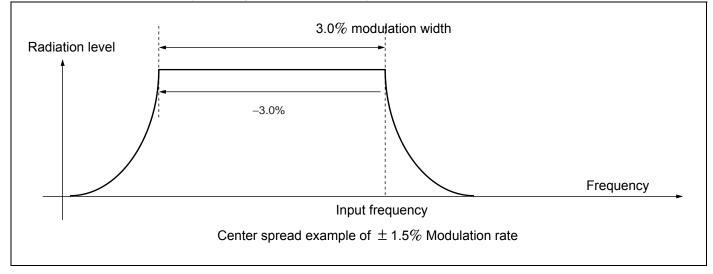
SEL		Modulation Rate	Remarks
L	± 0.5%	MB88152A-111, MB88152A-112	Center spread
	- 1.0%	MB88152A-100, MB88152A-101	Down spread
Н	± 1.5%	MB88152A-111, MB88152A-112	Center spread
	- 3.0%	MB88152A-100, MB88152A-101	Down spread

Note: The modulation rate can be changed at the level of the terminal.

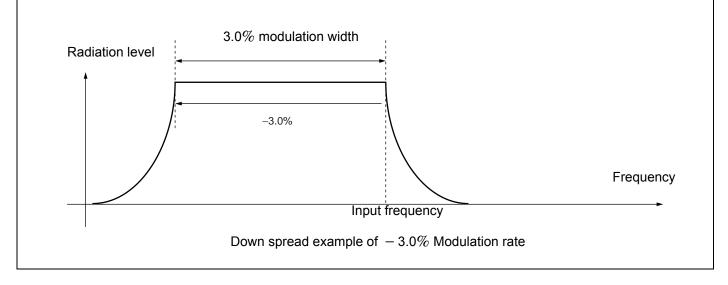
7.3 Frequency Setting

FREQ	Freque	Frequency				
L	16.6 MHz to 40 MHz	MB88152A-101, MB88152A-111				
	40 MHz to 80 MHz	MB88152A-112				
Н	33 MHz to 67 MHz	MB88152A-101, MB88152A-111				
	66 MHz to 134 MHz	MB88152A-112				

Note: MB88152A-100 and MB88152A-110 do not have FREQ pin.


FREQ1	FREQ0	Frequency				
L	L	16.6 MHz to 40 MHz	MB88152A-100			
L	Н	33 MHz to 67 MHz				
Н	L	40 MHz to 80 MHz				
Н	Н	66 MHz to 134 MHz				

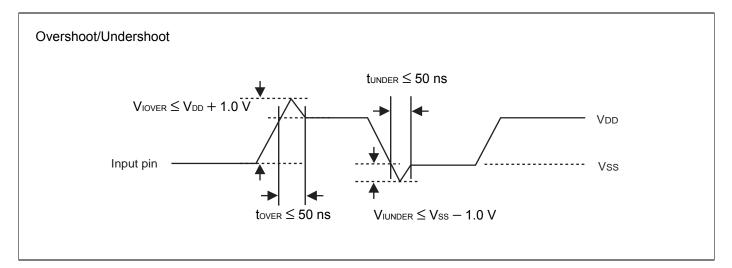
Note: MB88152A-101, MB88152A-111 and MB88152A-112 have neither FREQ0 pin nor FREQ1 pin.


7.3.1 Center Spread

Spectrum is spread (modulated) by centering on the input frequency.

7.3.2 Down Spread

Spectrum is spread (modulated) below the input frequency.

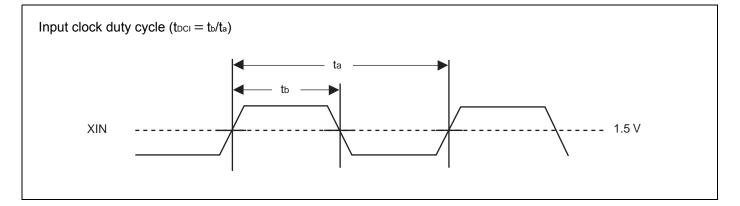


8. Absolute Maximum Ratings

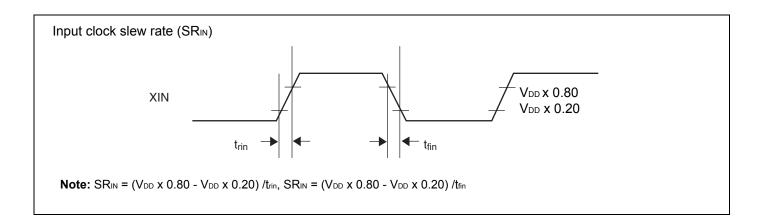
Parameter	Symbol	Ra	Unit	
	Symbol	Min	Max	
Power supply voltage ^a	Vdd	- 0.5	+4.0	V
Input voltage ^a	Vi	Vss - 0.5	V _{DD} + 0.5	V
Output voltage ^a	Vo	Vss - 0.5	V _{DD} + 0.5	V
Storage temperature	Tst	- 55	+ 125	°C
Operation junction temperature	TJ	- 40	+ 125	°C
Output current	lo	- 14	+ 14	mA
Overshoot	VIOVER	-	V_{DD} + 1.0 (tover \leq 50 ns)	V
Undershoot	VIUNDER	$V_{SS} - 1.0$ (tunder ≤ 50 ns)	-	V

a. The parameter is based on $V_{ss} = 0.0 V$.

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.



9. Recommended Operating Conditions


						($V_{\rm SS} = 0.0 V$	
Parameter	Symbol	Pin	Conditions		Value			
Parameter	Symbol	Symbol Pill	Conditions	Min	Тур	Мах	Unit	
Power supply voltage	Vdd	VDD	-	3.0	3.3	3.6	V	
"H" level input voltage Vн	VIH	SEL, FREQ/FREQ0, XENS/FREQ1	-	Vdd x 0.8	-	V _{DD} + 0.3	V	
		XIN	16.6 MHz to 100 MHz	VDD x 0.8	_	V _{DD} + 0.3	V	
			100 MHz to 134 MHz	VDD x 0.9	_	V _{DD} + 0.3	V	
"L" level input voltage	VIL	SEL, FREQ/FREQ0, XENS/FREQ1	-	Vss	-	VDD x 0.2	V	
		XIN	16.6 MHz to 100 MHz	Vss	-	Vdd x 0.2	V	
			100 MHz to 134 MHz	Vss	-	Vdd x 0.1	V	
Input clock	t DCI	XIN	16.6 MHz to 100 MHz	40	50	60	%	
duty cycle			100 MHz to 134 MHz	45	50	55		
Input clock slew rate	SRIN	XIN	Input frequency 40 MHz to 100 MHz	0.0475 x fin — 1.75	_	-	V/ns	
		Input frequency 100 MHz to 134 MHz	3	-	-			
Operating temperature	Та	-	-	-40	-	+ 85	·С	

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges. Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.

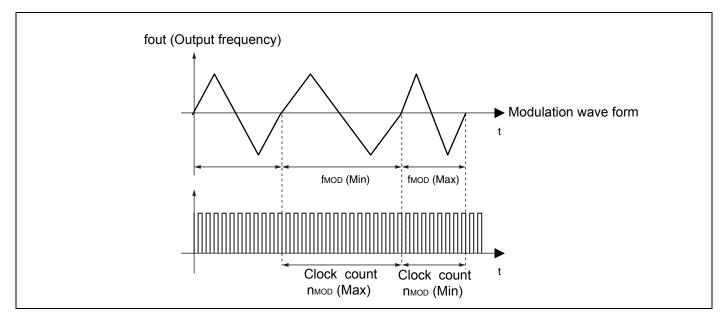
No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their representatives beforehand.

10. Electrical Characteristics

10.1 DC Characteristics

Parameter	O. mahad	Dia	Din Conditions		Value		
Parameter	Symbol	Pin	Conditions	Min	Тур	Мах	– Unit
Power supply current	lcc	Vdd	24 MHz output No load capacitance	-	5.0	7.0	mA
Output voltage	Vон	CKOUT	"H" level output $I_{OH} = -4 \text{ mA}$	V _{DD} - 0.5	-	Vdd	V
	Vol		"L" level output $I_{OL} = 4 \text{ mA}$	Vss	-	0.4	V
Output impedance	Zo	CKOUT	16.6 MHz to 134 MHz	-	45	-	Ω
Input capacitance	Cin	XIN, SEL, FREQ/ FREQ0, XENS/ FREQ1	Ta = +25 °C $V_{DD} = V_1 = 0.0 V$ f = 1 MHz	_	-	16	pF
Load capacitance	C∟	CKOUT	16.6 MHz to 67 MHz	-	_	15	pF
			67 MHz to 100 MHz	-	_	10	
			100 MHz to 134 MHz	-	_	7	

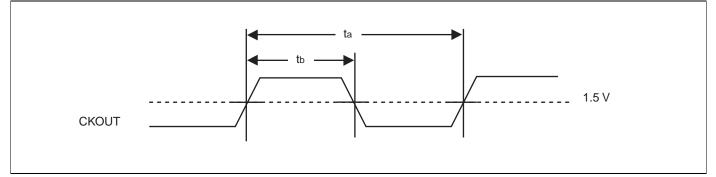
 $(Ta = -40^{\circ}C \text{ to } + 85^{\circ}C, V_{DD} = 3.3 \text{ V} \pm 0.3 \text{ V}, V_{SS} = 0.0 \text{ V})$



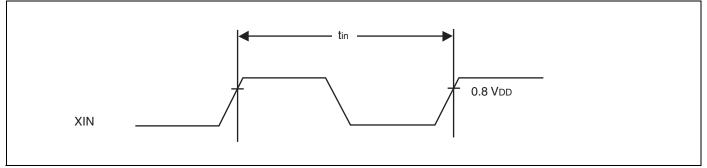
10.2 AC Characteristics

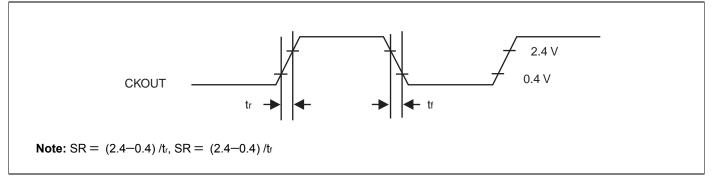
Deremeter	Symbol	Pin	Conditions		Value		
Parameter	Symbol	PIN	Conditions	Min	Тур	Max	Unit
Oscillation frequency	fx	XIN,	Fundamental oscillation	16.6	_	40	MHz
		XOUT	3rd over tone	40	-	48	_
Input frequency	fin	XIN	MB88152A-100	16.6	-	134	MHz
			MB88152A-101/111	16.6	-	67	_
			MB88152A-112	40	-	134	
Output frequency	fout	CKOUT	MB88152A-100	16.6	-	134	MHz
			MB88152A-101/111	16.6	-	67	
			MB88152A-112	40	-	134	
Output slew rate	SR	CKOUT	0.4 V to 2.4 V Load capacitance 15 pF	0.4	-	4.0	V/ns
Output clock duty cycle	tDCC	CKOUT	1.5 V	40	-	60	%
Modulation frequency (Number of input clocks per modulation)	fмор (Пмор)	CKOUT	MB88152A-100 FREQ[1:0] = (00)	fin/2640 (2640)	fin/2280 (2280)	fin/1920 (1920)	kHz (clks)
			MB88152A-100 FREQ[1:0] = (01)	fin/4400 (4400)	fin/3800 (3800)	fin/3200 (3200)	
			MB88152A-100 FREQ[1:0] = (10)	fin/5280 (5280)	fin/4560 (4560)	fin/3840 (3840)	
			MB88152A-100 FREQ[1:0] = (11)	fin/8800 (8800)	fin/7600 (7600)	fin/6400 (6400)	
			MB88152A-101/111 FREQ = 0	fin/2640 (2640)	fin/2280 (2280)	fin/1920 (1920)	
			MB88152A-101/111 FREQ = 1	fin/4400 (4400)	fin/3800 (3800)	fin/3200 (3200)	
			MB88152A-112 FREQ = 0	fin/5280 (5280)	fin/4560 (4560)	fin/3840 (3840)	
			MB88152A-112 FREQ = 1	fin/8800 (8800)	fin/7600 (7600)	fin/6400 (6400)	
Lock-Up time	tlк	CKOUT	16.6 MHz to 80 MHz	-	2	5	ms
			80 MHz to 134 MHz	-	3	8	1
Cycle-cycle jitter	tjc	CKOUT	No load capacitance, Ta = $+25$ °C, V _{DD} = 3.3 V	-	-	100	ps-rms

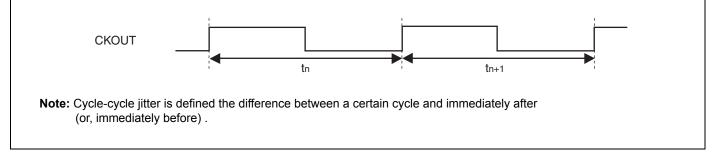
 $(Ta = -40^{\circ}C \text{ to } + 85^{\circ}C, V_{DD} = 3.3 \text{ V} \pm 0.3 \text{ V}, V_{SS} = 0.0 \text{ V})$



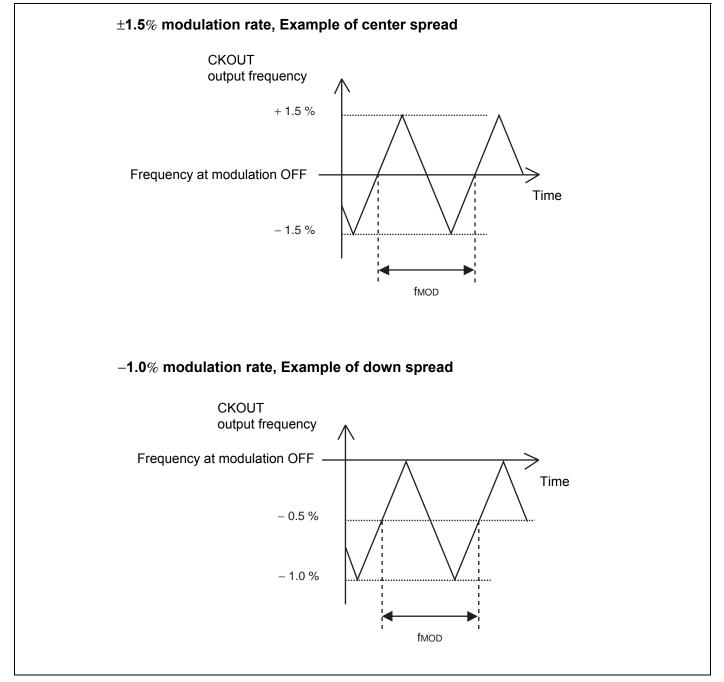
<Definition of modulation frequency and number of input clocks per modulation>


- MB88152A contains the modulation period to realize the efficient EMI reduction.
- The modulation period fmod depends on the input frequency and changes between fmod (Min) and fmod (Max).
- Furthermore, the average value of fmod equals the typical value of the electrical characteristics.

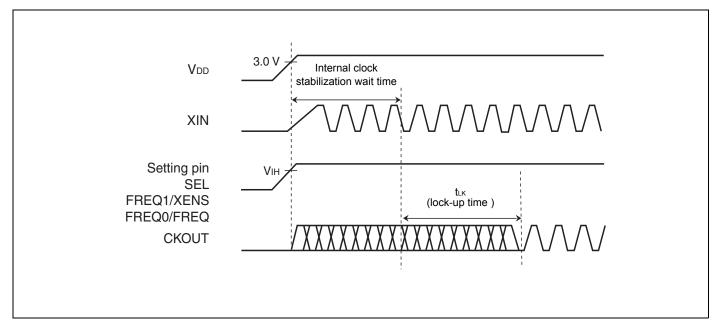

11. Output Clock Duty Cycle ($t_{DCC} = t_b/t_a$)


12. Input Frequency ($f_{in} = 1/t_{in}$)

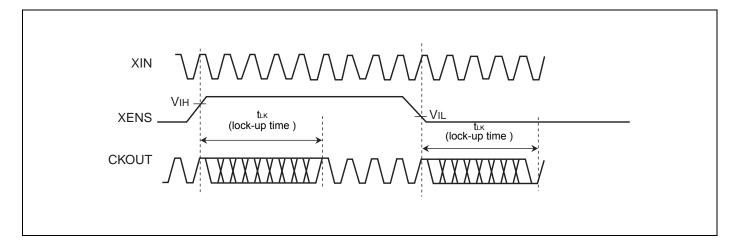
13. Output Slew Rate (SR)



14. Cycle-cycle Jitter ($t_{JC} = |t_n - t_{n+1}|$)

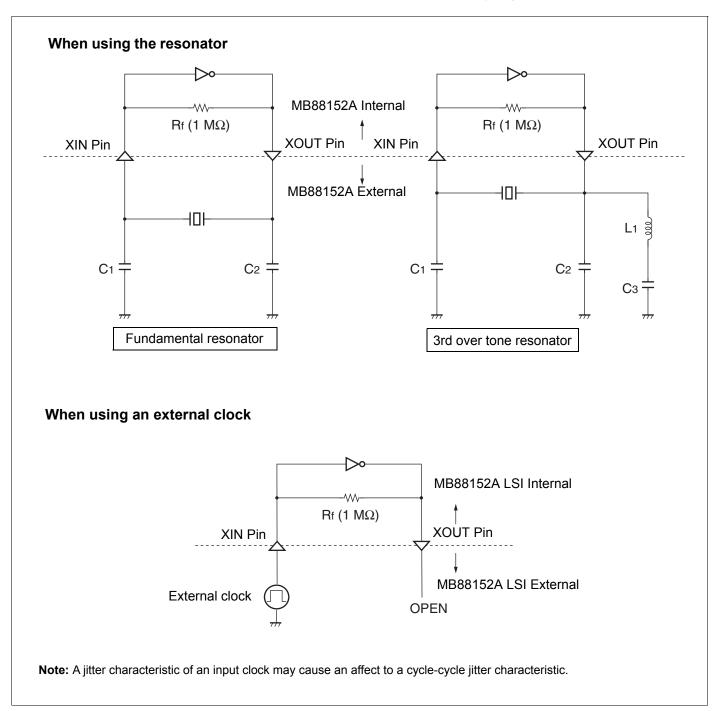


15. Modulation Waveform

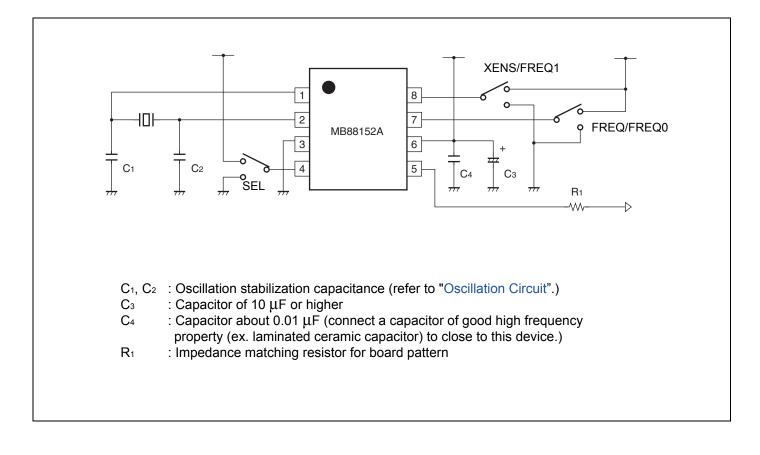


16. Lock-up Time

If the setting pin is fixed at the "H" or "L" level, the maximum time after the power is turned on until the set clock signal is output from CKOUT pin is (the stabilization wait time of input clock to XIN pin) + (the lock-up time " t_{LK} "). For the input clock stabilization time, check the characteristics of the resonator or oscillator used.

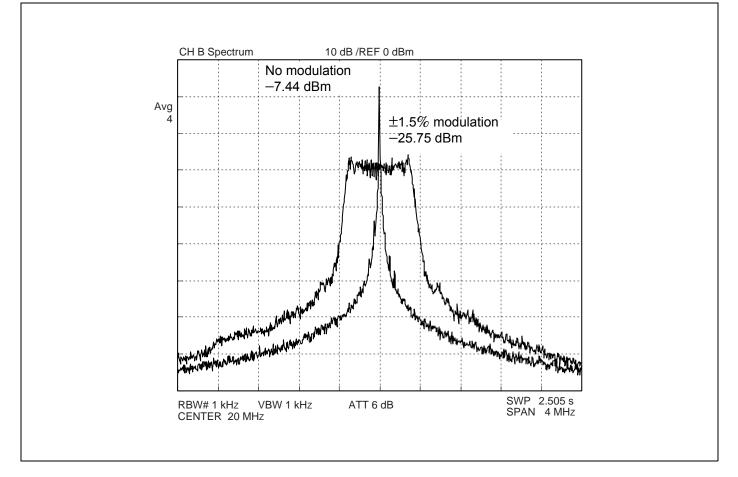

For modulation enable control using the XENS pin during normal operation, the set clock signal is output from CKOUT pin at most the lock-up time (t_{LK}) after the level at the XENS pin is determined.

Note: When the pin setting is changed, the CKOUT pin output clock stabilization time is required. Until the output clock signal becomes stable, the output frequency, output clock duty cycle, modulation period, and cycle-cycle jitter cannot be guaranteed. It is therefore advisable to perform processing such as cancelling a reset of the device at the succeeding stage after the lock-up time.


17. Oscillation Circuit

The left side of figures below shows the connection example about general resonator. The oscillation circuit has the built-in feedback resistance (R_f). The value of capacity (C_1 and C_2) is required adjusting to the most suitable value of an individual resonator. The right side of figures below shows the example of connecting for the 3rd over-tone resonator. The value of capacity (C_1 , C_2 and C_3) and inductance (L_1) is needed adjusting to the most suitable value of an individual resonator. The most suitable value is different by individual resonator. Please refer to the resonator manufacturer which you use for the most suitable value. When an external clock is used (the resonator is not used), input the clock to XIN pin and do not connect anything with XOUT pin.

18. Interconnection Circuit Example

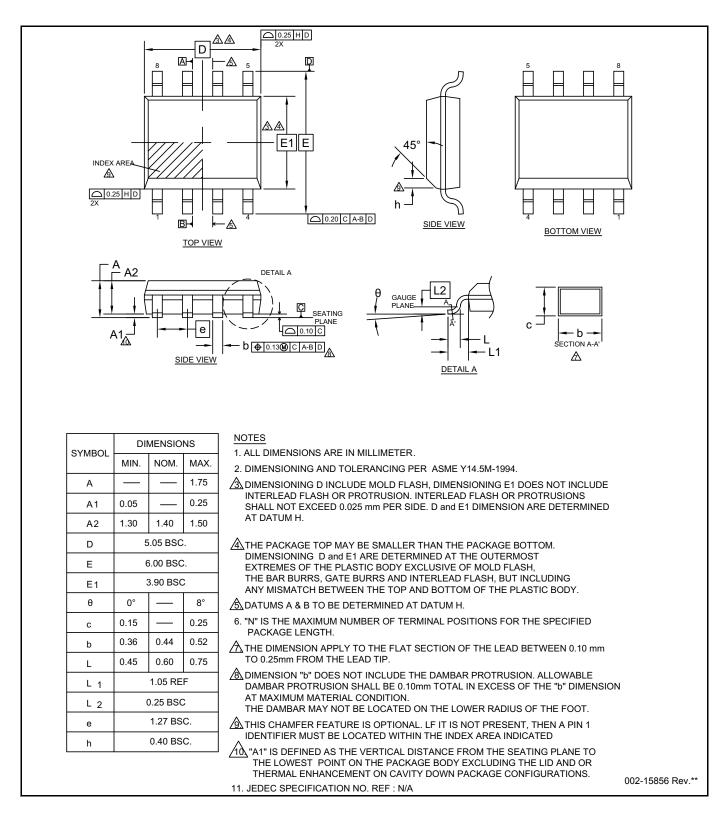


19. Example Characteristics

The condition of the examples of the characteristics is shown as follows : Input frequency = 20 MHz (Output frequency = 20 MHz : Use for MB88152A-111)

Power-supply voltage = 3.3 V, None load capacity, Modulation rate = $\pm 1.5\%$ (center spread).

Spectrum analyzer HP4396B is connected with CKOUT. The result of the measurement with, RBW = 1 kHz (ATT use for -6 dB).



20. Ordering Information

Part Number	Input/Output Frequency	Modulation Type	Modulation Enable pin	Package	Remarks
MB88152APNF-G-100-JNE1	16.6 MHz to 134 MHz	Down spread	No	8-pin plastic	
MB88152APNF-G-101-JNE1	16.6 MHz to 67 MHz	Down spread	Yes	SOP (SOB008)	
MB88152APNF-G-111-JNE1	16.6 MHz to 67 MHz	Center spread	Yes		
MB88152APNF-G-112-JNE1	40 MHz to 134 MHz	Center spread	Yes		
MB88152APNF-G-100-JNEFE1	16.6 MHz to 134 MHz	Down spread	No	8-pin plastic	Emboss taping (EF type)
MB88152APNF-G-101-JNEFE1	16.6 MHz to 67 MHz	Down spread	Yes	SOP (SOB008)	
MB88152APNF-G-111-JNEFE1	16.6 MHz to 67 MHz	Center spread	Yes		
MB88152APNF-G-112-JNEFE1	40 MHz to 134 MHz	Center spread	Yes	_	
MB88152APNF-G-100-JNERE1	16.6 MHz to 134 MHz	Down spread	No	8-pin plastic	Emboss taping (ER type)
MB88152APNF-G-101-JNERE1	16.6 MHz to 67 MHz	Down spread	Yes	SOP (SOB008)	
MB88152APNF-G-111-JNERE1	16.6 MHz to 67 MHz	Center spread	Yes		
MB88152APNF-G-112-JNERE1	40 MHz to 134 MHz	Center spread	Yes	1	

21. Package Dimension

Document History

Document Title: MB88152A Spread Spectrum Clock Generator Document Number: 002-08308					
Revision	ECN	Orig. of Change	Submission Date	Description of Change	
**	-	TAOA	06/29/2009	Initial release.	
*A	5560671	TAOA	12/28/2016	Migrated Spansion datasheet "DS04-29125-3E" into Cypress Template.	
*В	6003426	TAOA	12/25/2017	Deleated EOL part number: MB88152A-102/110 Updated Package Dimensions: Updated to Cypress format Changed the package name from FPT-8P-M02 to SOB008	

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

Arm [®] Cortex [®] Microcontrollers	cypress.com/arm		
Automotive	cypress.com/automotive		
Clocks & Buffers	cypress.com/clocks		
Interface	cypress.com/interface		
Internet of Things	cypress.com/iot		
Memory	cypress.com/memory		
Microcontrollers	cypress.com/mcu		
PSoC	cypress.com/psoc		
Power Management ICs	cypress.com/pmic		
Touch Sensing	cypress.com/touch		
USB Controllers	cypress.com/usb		
Wireless Connectivity	cypress.com/wireless		

PSoC[®] Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6 MCU

Cypress Developer Community Community | Projects | Video | Blogs | Training | Components

Technical Support cypress.com/support

© Cypress Semiconductor Corporation, 2006-2017. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software is oftware provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or systems, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising form or related to all Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.